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Abstract: This paper aims at reducing greenhouse gas emissions, which contributes to carbon
neutrality, and, at the same time, preventing mine heat disasters and extracting highly mineralized
(HM) mine water, so as to realize the synergy between CO2 storage (CS) and geothermal extraction
and utilization (GEU) in a high temperature (HT) goaf. With this purpose, an innovative CS-GEU
technology for HT and HM water in deep mine is proposed, based on the mechanism of water-rock-
CO2 effect (WRCE) and the principle of GEU in the mine. This technology uses GEU to offset the costs
of CO2 storage and refrigeration in HT mine. A general scheme for a synergistic system of CS and
GEU in the goaf is designed. The feasibility of CS-GEU technology in the deep goaf is demonstrated
from the views of CS and GEU in the goaf and the principles of a synergistic system. It is clarified
that the CO2 migration-storage evolution and the multi-field coupling principle in the goaf are the
key scientific issues in realizing the synergic operation of CS and GEU. It proposes the key techniques
involved in this process: CO2 capture and CO2 transportation, layout and support of drill holes and
high-pressure (HP) pipelines, and HP sealing in the goaf. The research results provide new ideas for
CS and GEU of HT and HM mine water in deep mine.

Keywords: CO2 storage; mine geothermal; synergistic system; highly mineralized mine water

1. Introduction

China is committed to peaking its carbon emissions and controlling its greenhouse gas
emissions by 2030 and strives to achieve carbon neutrality by 2060 [1]. Carbon peaking and
carbon neutrality reflect China’s responsibility of controlling greenhouse gas emissions as a
major country, and represent a significant opportunity for China’s industries to achieve
green and low-carbon transformation [2]. Achieving carbon neutrality marks the end of the
traditional industrial era and an important turning point in the transformation of an eco-
nomic development mode. However, China is currently in a stage of rapid industrialization
and urbanization, with a huge demand for energy. China’s socio-economic development
is mainly driven by coal, and fossil fuels account for 85% of the total amount of energy.
We are confronted with many challenges in the transformation of traditional industries
and enormous pressure for emission reduction in industrial power generation [3–5]. To
achieve the ambitious goal of carbon neutrality in the process of socio-economic develop-
ment, solutions such as reducing carbon emissions and increasing carbon sinks have been
put forward. From the perspective of China’s energy structure, carbon storage and other
carbon negative emission technologies are effective technical approaches. Carbon capture
and carbon storage technologies become key scientific and technological issues [6–10].
See Figure 1.
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at a depth of 1000 m in most mines of China can reach 35–45 °C [20]. Therefore, mine heat 
disasters will cause great harm to underground workers, and huge funds should be in-
vested in mine cooling. There is a huge underground space in the goaf of a coal mine. 
Usually, the advancing length can reach 4–5 km, the strike length can reach 400 m, the 
height of the vertical caving zone and fracturing zone can reach 60 m, and the water stor-
age coefficient is about 0.4 [21]. Therefore, the porous rock mass in the goaf can store a 
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cost of water purification can be reduced. The deep mine goaf is used to achieve CO2 stor-
age, mine water purification, and mine geothermal extraction. With this technology, the 
intergrowth and associated resources of coal measures and abandoned underground 
space in the mine can be fully and effectively utilized. Scholars have made research on CS 
in coal mine. Wang SM et al. discussed the various conditions of CS in the coal mining 
area, and proposed relevant technologies of CS in the mining goaf and coal seam gasifi-
cation cavity [22]. Liu L et al. proposed the academic conception of the CS method based 
on functional backfilling, and formed the theoretical and technical conception of using the 
solid waste backfilling technology to realize mine CS [23]. Roddy, D. J et al. reviewed key 
developments in technologies for underground coal gasification (UCG), Carbon Capture 
and Storage (CCS) and CS in coal seam voids and quantified the scale of the opportunity 
that these technologies open up [24]. 
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propose the concrete system scheme of the technology. The feasibility of the process is 
demonstrated, and the scientific issue of CS-GEU system is explained. In addition, we put 
forward the key technologies involved in the CO2 storage process, so as to explore new 
means and technologies for CCS and give guidance to the use of underground reservoirs 
in the goaf to achieve CO2 storage. 
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After longwall mining in the coal seam, the overlying rock strata (RS) in the goaf
collapse, and the rock fractures, break through the overlying aquifer. Thus, the goaf is filled
with water, causing changes to the local hydrogeological characteristics [11]. During this
period, a series of water-rock and water-coal reactions occur such as evaporation and con-
centration, dissociative adsorption, solution and precipitation, redox, ion exchange, chemi-
cal degradation, etc. These reactions will produce HM mine water in some areas [12–17].
The treatment of such mine water requires a large amount of costs. In the mines in central
and eastern China and new mines in western China, the coal resources at a buried depth of
over 1000 m account for more than 50% [18,19]. With the increase in mining depth, ground
temperature gradually increases. The temperature on the surrounding rock at a depth of
1000 m in most mines of China can reach 35–45 ◦C [20]. Therefore, mine heat disasters
will cause great harm to underground workers, and huge funds should be invested in
mine cooling. There is a huge underground space in the goaf of a coal mine. Usually, the
advancing length can reach 4–5 km, the strike length can reach 400 m, the height of the
vertical caving zone and fracturing zone can reach 60 m, and the water storage coefficient
is about 0.4 [21]. Therefore, the porous rock mass in the goaf can store a large amount of
HM mine water and geothermal resources. Mine geothermal and water, as the intergrowth
and associated resources of coal measures, occur in a wide range and are stably supplied.
If disasters are regarded as resources for rational development and utilization, production
and operation costs can be greatly reduced.

By injecting HP CO2 into the goaf, CO2 can be stored in the sealed mine goaf. At the
same time, HT mine water is pumped to extract geothermal and water resources from the
goaf, which is regarded as a heat and water reservoir. This provides stable and sustainable
geothermal energy and water supply for the surrounding buildings, and reduces the cost
of mine cooling and CO2 storage technology. In addition, as CO2 softens HM water, the
cost of water purification can be reduced. The deep mine goaf is used to achieve CO2
storage, mine water purification, and mine geothermal extraction. With this technology,
the intergrowth and associated resources of coal measures and abandoned underground
space in the mine can be fully and effectively utilized. Scholars have made research on CS
in coal mine. Wang SM et al. discussed the various conditions of CS in the coal mining area,
and proposed relevant technologies of CS in the mining goaf and coal seam gasification
cavity [22]. Liu L et al. proposed the academic conception of the CS method based on
functional backfilling, and formed the theoretical and technical conception of using the
solid waste backfilling technology to realize mine CS [23]. Roddy, D. J et al. reviewed key
developments in technologies for underground coal gasification (UCG), Carbon Capture
and Storage (CCS) and CS in coal seam voids and quantified the scale of the opportunity
that these technologies open up [24].

In this paper, we provide an innovative technology of CO2 storage and geothermal
extraction for HT and HM mine water in deep mines based on coal mining practices, and
propose the concrete system scheme of the technology. The feasibility of the process is
demonstrated, and the scientific issue of CS-GEU system is explained. In addition, we put
forward the key technologies involved in the CO2 storage process, so as to explore new
means and technologies for CCS and give guidance to the use of underground reservoirs in
the goaf to achieve CO2 storage.
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2. General Scheme

The synergic operation of CS and GEU in the goaf is realized by integrating geothermal
mining technology, CO2 storage technology and mining practice. The goaf is used as a heat
reservoir to achieve CO2 storage and the extraction and utilization of mine geothermal
resources. The general scheme is shown in Figure 2.
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First of all, the CO2 gas produced after or during coal combustion in power plants
was captured and then purified. CO2 was purified through the transportation by a series
of HP pipelines, which were laid to the adjacent air shaft industrial plant of the deep
mine. An HP CO2 storage tank was installed in the air shaft industrial plant to store
some CO2 as a buffer. The CO2 was delivered to the opposite direction of the air shaft,
so that the CO2 could be discharged along with the return air flow, to prevent accidents
caused by CO2 leakage in the mine. A chamber was set up near the goaf to store the
CO2 supercritical preparation equipment, which prepared supercritical CO2. The CO2 was
delivered to the above-mentioned chamber through a series of tunnels, and was compressed
to a supercritical state ready for injection under a pressure of 7 MPa and at a temperature
of 33.1 ◦C.

The goaf was sealed and made HP resistant in advance. The overlying RS fractures,
artificial dam joints, coal pillar dam fractures and water seepage places were sealed by
spraying slurry and injecting gel. The goaf and its overlying structure must be well
sealed. An HP pipeline leading into the goaf was arranged, through which the prepared
supercritical CO2 was transported into the goaf. The mine water in the goaf was mixed
with supercritical CO2, causing a series of reactions to produce carbonic acid precipitation.
The CO2 was in full contact with the fractured rocks, causing a series of WRCE to produce
new carbonic acid minerals, and thus CO2 was stored in the goaf.

Geothermal extraction was conducted on the other side of the goaf. Multiple rows
of pumping holes leading into the goaf were set up at the mining level. Insulating water-
transporting pipelines were arranged, and pumps were used to extract HT mine water
under a constant pressure. Hot water was lifted to the surface industrial plant through
the main shaft. The surface plant was equipped with a water source heat pump system,
consisting of gas-liquid separation equipment, water source heat pump units, filters and
other equipment. Firstly, gas-liquid separation treatment was conducted on the extracted
hot water to separate CO2 from it, and then the heat pump system was used to extract
heat energy from the water. Heat exchange was made with the closed-loop system in
the residential area. This would support the heating and bathing of the residents in and
surrounding the mine area. The collected CO2 could be reinjected into the extraction
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area through pipelines. After heat extraction, the mine water could be reinjected into
the overlying aquifer of the goaf, which would reduce the sedimentation of the aquifer.
Intermittent heat extraction can be adopted as the geothermal mining mode in the goaf. The
extracted flow can be reduced when the mine water is at a low temperature, and increased
when the heat is replenished in the goaf and the temperature of mine water recovers. This
can extend the life of heat extraction in the goaf, improve the quality of heat extraction, and
realize the continuous extraction of geothermal energy.

3. Feasibility of CS-GEU Technology

Using the HT mine goaf to store CO2 and extract geothermal resources involves
theoretical technologies such as mine geothermal resource development, WRCE in mine
goaf, and goaf sealing. The authors investigated the feasibility of CS and geothermal
extraction in the HT mine goaf based on the existing research results.

3.1. CS in Mine Goaf

(1) Mineral storage
Due to the water-rock lixiviation, precipitation, and adsorption in the goaf, the disso-

lution of the fractured rocks in the goaf produces HM ions, which further intensifies the
mineralization of mine water [25–28].

Jin Yuqi [29] conducted the X-ray diffraction test to analyze the mineral composition
of a landslide in Zezhou, Jincheng City, Shanxi Province, and found a large number of
montmorillonite minerals in the coal measure strata. Zheng Qiming et al. [30] conducted
mineralogical research on the gangue and floor of No. 9 coal seam in Jincheng Prefecture,
Shanxi through X-ray diffraction analysis and Fourier infrared spectroscopy. It was found
that the main clay minerals in the gangue and floor were ammonium illite/montmorillonite
interlayer, illite/montmorillonite interlayer, kaolinite, and sodium mica, with a small
amount of illite. This indicates that a large amount of clay minerals are stored in the coal
mine goaf of some regions in China.

In the above tests and experiments, the rock minerals underwent a water–rock interac-
tion, in which the rocks were dissolved and oxidized, and a large amount of Ca2+, Mg2+,
Si4+, and Fe2+ ions were produced, as shown in Equations (1)–(5):

CaCO3(Calcite)→ Ca2+(aq) + CO2−
3 (aq) (1)

Ca0.165Al2.33Si3.67O10(OH)2(Montmorillonite) + 12H2O(l)→
0.165Ca2+(aq) + 2.33Al(OH)−4 (aq) + 3.67H4SiO4(s) + 2H+(aq)

(2)

Mg5Al2Si3O10(OH)8(Chlorite) + 4H2O(l) →
Mg2+(aq) + 2Al(OH)−4 (aq) + 3H2SiO2−

4 (aq) + 2OH−(aq)
(3)

FeS2(Pyrite) + H2O(l) + O2 → Fe2+(aq) + 2SO2−
4 (aq) + 2H+(aq) (4)

Al2Si2O5(OH)4(Kaolinite) + 5H2O(l)→2Al3+(aq) + 2Si4+(aq) + 14OH−(aq) (5)

As many exchangable cations exist between the crystal layers of montmorillonite [31]
(the cation exchange capacity of montmorillonite can reach 80–150 mmol/g, chlorite and
illite 20–40 mmol/g, and kaolinite 3–15 mmol/g), the calcium and magnesium ions ad-
sorbed on the surface or between layers will possibly produce exchange reactions with the
sodium and potassium ions in the water, as shown in Equations (6) and (7):

Ca2+(Rock–absorbed) + 2Na+(Water) �
Ca2+(Water) + 2Na+(Rock–absorbed)

(6)

Mg2+(Rock–absorbed) + 2K+(Water) �
Mg2+(Water) + 2K+(Rock–absorbed)

(7)
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Fang Zhiyuan [32] took field samples in No.1 Wanli Mine. He made coal, sandy
mudstone and sandstone of the same volume touch and react with the same amount of
mine water for about 70 days at room temperature. The X-ray diffraction results of coal and
rock mass (Table 1) show that after coal, sandy mudstone and sandstone touch and react
with water, the contents of clay minerals such as illite/montmorillonite interlayer, chlorite,
kaolinite and calcite decrease. This indicates that the water–rock interaction causes the
dissolution of clay minerals in coal and rock mass to a large extent, proving the occurrence
of the water–rock interaction in the goaf as shown in Equations (1)–(5).

Table 1. Energy spectrum analysis of mineral elements after water–rock interaction [32].

Mineral Element
Atomic Fraction
before Reaction

/%

Atomic Fraction
after Reaction

/%

Chlorite in coal
Mg 0.95 0.89
Al 9.88 9.2
Si 14.15 10.84

Kaolinite in coal
Al 15.87 12.63
Si 17.54 13.56

Illite in coal
Al 11.87 4.56
Si 17.19 13.96

Kaolinite in sandy mudstone Al 14.04 9.04
Si 15.71 9.95

Chlorite in sandy mudstone Mg 5.91 1.18
Calcite in sandstone Ca 17.3 15.51

When CO2 was injected into the mine water, a series of water-CO2 reactions occurred
and a series of precipitates were produced, as shown in Equations (8)–(12):

H2O(l) + CO2(g) � H2CO3(aq) (8)

HCO−3 (aq) � CO2−
3 (aq) + H+(aq) (9)

Ca2+(aq) + CO2−
3 (aq)→ CaCO3(s) (10)

Mg2+(aq) + CO2−
3 (aq)→ MgCO3(s) (11)

Si4+(aq) + 2CO2−
3 (aq)→ Si(CO 3)2(s) (12)

With the reactions in Equations (10)–(12), the concentrations of Ca2+, Mg2+, and
Si4+ ions in the mine water decreased, promoting the karstification in Equations (1)–(7),
accelerating the dissolution of chlorite minerals, montmorillonite minerals, calcite, pla-
gioclase (including albite and potassium feldspar), kaolinite, etc., and generating new
carbonate minerals.

With the full seepage of CO2 and mine water within the fractured rocks, water-rock-
CO2 interaction occurred in the goaf, where old ores were dissolved and new ores were
generated, as shown in Equations (13)–(16). With the water and CO2 effects, calcium
feldspar, potassium feldspar and sodium feldspar produced carbonic acid precipitation and
kaolinite. In the water, kaolinite was dissolved into Si4+ ions and precipitation reactions
occurred between these ions and CO3

2−, which had been produced by CO2 ionization.

2NaAlSi3O3(Albite) + 2H2CO3(aq) + 9H2O(l)→
Al2Si2O5(OH)4(Kaolinite) + 2Na+(aq) + 2HCO−3 (aq) + 4H4SiO4(s)

(13)

2KAlSi3O3(Potassium Feldspar) + 11H2O(l)→
Al2Si2O5(OH)4(Kaolinite) + 2K+(aq) + 2OH−(aq) + 4H4SiO4(s)

(14)
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2CaAlSi3O3(Calcium Feldspar) + 2CO2(g) + 2H2O(l)→
Al2Si2O5(OH)4(Kaolinite) + CaCO3(s)

(15)

Wang Peng et al. [33] took the typical minerals in the coal as the solid phase and the
HM mine water as the liquid phase, and executed a simulation experiment of mine WRCE
in a reaction kettle at a temperature of 40 ◦C and under a pressure of 3 MPa. After the
kaolinite-CO2-water reaction (Figure 3), the kaolinite surface was dissolved at different
degrees. After dissolution, element C in kaolinite increased significantly, but element
O was obviously not changed (Table 2), indicating that new carbonate minerals were
generated by the reaction on the surface of kaolinite. After calcite-CO2-water reaction, the
content of element Ca in calcite was unchanged (Table 3). The SEM imaging shows that
the morphology was seriously broken after the calcite reaction (Figure 4), indicating that
irregular CaCO3 particles were crystallized on its surface due to the entry of CO2. The
experiment proves the occurrence of WRCE of clay minerals and carbonate minerals in
the goaf.
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after reaction.

Table 2. Analysis of elemental changes before and after kaolinite reaction under the effect of CO2 [33].

Chemical Element

Proportion of Main Elements/%

Before Reaction
After Reaction

CO2

C 0 8.53
Si 22.09 17.90
Al 27.43 22.84
O 48.76 50.49

Table 3. Analysis of elemental changes before and after calcite reaction under the effect of CO2 [33].

Chemical Element

Proportion of Main Elements/%

Before Reaction
After Reaction

CO2

C 11.2 11.35
O 42.46 42.1
Ca 46.35 46.56
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In addition, Ryzhenko [34] confirmed experimentally that silicate minerals such as
feldspar, clay mineral, montmorillonite and mica are likely to dissolve and generate lamellar
albauxite under HP at a temperature of 25–100 ◦C. Qu Xiyu et al. [35] took field samples
in Hailaer Basin and conducted hydrothermal experiments of dawsonite sandstone-CO2-
H2O at different temperatures (100 ◦C, 200 ◦C, 300 ◦C). These experiments prove that new
carbonate minerals are formed after dawsonite is corroded and dissolved, and CO2 is stored
in the form of carbonate minerals. The high-temperature goaf in a deep mine can meet
the above conditions of dawsonite production (rich in clay minerals, temperature > 25 ◦C,
pressure > 7 MPa). At the same time, dawsonite can store CO2 through WRCE. It is
indicated that there may be reactions of dawsonite production and corresponding CO2
storage in the goaf.

If the mine goaf and its overlying strata are sealed well, the surrounding rock with
little permeability, coal pillar dams, artificial dams, and overlying strata can store part
of the gas phase CO2. In addition, coal acts as a natural adsorbent of CO2, and the CO2
transported to the surface of coal pillars or crashed coal is easily absorbed by the coal
bodies. The coal bodies and coal pillar dams inside the mine goaf play a supplementary
role in CO2 storage [36].

In conclusion, the WRCE of minerals (clay minerals, carbonate minerals, coal, etc.) in
the goaf can realize mineral carbonation storage, proving the possibility of CO2 sequestra-
tion in the goaf.

(2) RS storage
After longwall mining was completed, the thick and hard key stratum on top of the

goaf cracked and swung. Thus, a voussoir beam that could stably support the upper
stratum under its control was formed, ensuring that the next key stratum was intact. Due
to the large, buried depth of the deep mine goaf, there was more than one thick and hard
strata with good airtightness and low permeability from the goaf to the surface, ensuring
that the upper part of the goaf was well sealed, as shown in Figure 5a.

The sealing facilities on the goaf side are the coal pillar dam and artificial dam of the
underground reservoir. After artificial sealing treatment, the dams can ensure compression
resistance and avoid the leakage of gas phase CO2. The strike breaking distance of the
goaf’s upper stratum is limited, ensuring that CO2 does not leak through the stratum
laterally, as shown in Figure 5b.

The buried depth of the deep mine is more than 800 m, the ground temperature
is higher than 45 ◦C, and the vertical stress of the initial rock is greater than 7.25 mpa.
According to the law that the horizontal stress is usually greater than the transverse stress
of the initial rock in China, the crustal stress of the goaf in the deep mine can ensure that
CO2 is in a supercritical state.
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In conclusion, CO2 storage can be realized with the use of underground space and
overlying strata in the goaf, as well as the storage effect of the RS.

(3) Dissolution storage and capillary force storage
Firstly, the underground reservoir in the mine goaf stores a large amount of water,

with the potential to dissolve and store a large amount of CO2. Secondly, the geothermal
temperature in the deep mine ranges from 45 ◦C to 50 ◦C, and the temperature of CO2
dissolution is up to 50 ◦C, which can help CO2 to dissolve in the mine water. Then, the
HM mine water is alkaline, promoting the conversion of CO2 to HCO3

− and increasing the
solubility of CO2 in the water [37].

In view of the above, there are many favorable conditions for CO2 dissolution and
storage in deep mine, and thus a large amount of CO2 can be dissolved and stored. However,
further studies should be made on the influence of the chemical characteristics of goaf
water on CO2 dissolution.

Due to the difference of strata in strength and lumpiness, the sizes of fractured rocks
are different. As a result, there are a large number of micro-capillary fractures in the
fractured rocks with a higher strength in the overlying RS. The supercritical CO2 injected
into the goaf has a different wettability from the mine water, so the CO2 transported
into the capillary can be stored in the pores under the capillary force. The mechanism of
CO2 storage under the capillary force in the goaf should be further studied by means of
computer simulation.

3.2. Mine GEU

Geothermal energy, characterized with little influence under climatic conditions, stable
storage, and low cost, is a widely used clean energy. Based on the characteristics of mining
and the goaf, the closed-loop system is designed to extract geothermal resources from the
HT goaf. The goaf is regarded as an HT heat reservoir, and the mine water is regarded
as the heat extraction medium. Mine water enters the goaf from the overlying hydraulic
fractures, seeps and flows into the goaf, and fully contacts and exchanges heat with HT
porous fractured rocks. After fully absorbing heat, the mine water is extracted from the
outlet of the goaf and lifted from the shaft to the ground. Its thermal energy is utilized by
the heat pump system, and the heat dissipation in the lifting process is reduced.
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At present, there are numerous research results of the geothermal mining technology.
David Banks et al. discussed the open- and closed-loop system of mine water heat utiliza-
tion and its advantages and disadvantages in the UK mainland [38]. Manchao He et al.
designed an HEMS deep well cooling system, which extracted and utilized geothermal re-
sources in the mine during the process of mine cooling, through the heat exchange between
mine inflow and high-temperature working face [39]. Zhijun Wan et al. proposed to drill
downwards and inject HP water to the fractured hot dry rock, and to build an EGS system
(enhanced geothermal system) downhole on the basis of the mining level, so as to extract
and utilize geothermal resources in the mine [40]. Panyuan Xue et al. designed a buried
pipe filling body in the roadway to extract geothermal resources from the mine through
heat exchange between the fluid inside the pipe and the surrounding rock [41]. Hai Pu et al.
proposed a method to develop mine geothermal resources with the use of water storage
and heat storage in abandoned mines [42]. Rudakov D et al. evaluated the efficiency of
open geothermal systems in flooded and drained mines for the heat supply of buildings
and proved the good effect of the system [43].

Zhang Shuanglou Coal Mine (Xuzhou City, China) developed a geothermal cascade
processing and utilization system (Figure 6), which extracts mine water and heat energy
through the ground heat pump system for heating, and utilizes mine water through the
underground refrigeration unit for cooling. Thus, an energy-saving and emission reduction
mode of recycling production was developed, which provides heating above the ground
in winter and underground cooling in summer. This mine geothermal system can save
RMB 13.1064 million of heating cost, and can reduce about 17,000 tons of CO2 emissions,
about 98.3 tons of SO2 emissions, about 83.9 tons of nitrogen oxide emissions, and about 16
tons of soot emissions each year. The engineering case shows that it is feasible to utilize
mine geothermal resources by extracting mine water and heat energy, which can effectively
save energy and greatly reduce greenhouse gas emissions, and also reduce the cost of
CO2 storage.
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Figure 6. Thermal cascade process system in deep mine A goaf geothermal extraction model (Figure 7)
was established. The effect of geothermal extraction in the goaf was simulated at a ground tempera-
ture of 60 ◦C, 0.03 ◦C/100 m, under the extraction pressure of 0.03 MPa, at a recharge flow rate of
0.06 m3/s, and at a recharge temperature of 283 K. The temperature change in the goaf is shown
in Figure 8. The extraction temperature can reach above 330 K within the range of 0–10a, and the
temperature difference between the inlet and outlet of the fluid reaches about 47 K (Figure 9). Taking
the average temperature of 325 K (52 ◦C) in the first 20a of this simulation as the extraction tempera-
ture, the heat loss along the way to the ground is about 9–10 ◦C, then the water inlet temperature on
the evaporation side of the ground heat pump is about 42 ◦C. Taking the heating design heat index
as 60 W/m2, the extraction system can sustainably supply heat within a coverage of 180,837 m2 in
winter, and reduce greenhouse gas emissions by about 6690 tons each year.
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3.3. CS-GEU Synergistic System in the Goaf

The concept of synergic operation of geothermal extraction and CO2 storage has
been proposed by scholars at home and abroad. Randolpha et al. proposed the concept
of plume geothermal system: Abandoned oil wells and deep lagoons are considered as
heat reservoirs, and heat exchange is made through CO2 migration in the deep RS. High-
temperature CO2 is extracted and lifted to the ground for power generation, while CO2
geological storage is realized [44].

The system combines the advantages of mine geothermal extraction and CO2 storage
technology. Water with a high specific heat capacity is used as the heat extraction medium
to extract geothermal energy from the goaf. The geothermal system supports high efficiency
of heat exchange and heat extraction, and the heat loss is small in the process of lifting
geothermal water. While CO2 is stored in the goaf, the salinity and alkalinity of mine water
are reduced, the suspended impurities in the mine water are filtered, and the corrosiveness
of geothermal water is weakened. Thus, the corrosion and obstruction of geothermal water
to the extraction equipment and the heat pump system are greatly reduced, and the cost of
mine water treatment in the goaf is reduced. During the process of mine water extraction, a
depressurization funnel is formed, so that CO2 migrates to geothermal extraction wells.
This promotes full seepage of CO2 in the fractured rocks in the goaf, increases the area of
WRCE, and is conducive to the process of CO2 storage [45].

4. Scientific Issue of CS-GEU Technology in Deep Mine Goaf
4.1. CO2 Migration-Storage Evolution in the Mine Goaf

In Section 3.1, we describe the mechanism of CO2 storage in the goaf. Now we will
describe the overall evolution law of the migration, seepage, adsorption, and storage of
supercritical CO2 after it is injected into the goaf, as shown in Figure 10.
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The supercritical CO2 was injected into the goaf from the bottom. The goaf was well
sealed, creating a HP environment. Then, the liquid CO2 entering the goaf was fully mixed
with the mine water, and part of the CO2 was dissolved in the water, generating carbonic
acid and undergoing an electrolysis reaction. Carbonate reacted with metal ions such as
Ca2+, Mg2+ and Si4+ in HM mineral water, and insoluble precipitates such as CaCO3 and
MgCO3 were generated, reducing the concentration of metal ions such as Ca2+, Mg2+ and
Si4+ in the mineral water. This promoted water-karst filtration, adsorption and other actions,
the dissolution of old ores such as chlorite, montmorillonite, and kaolinite (to produce metal
ions), and the production of new carbonate minerals (to produce precipitation). Thereby,
CO2 storage was realized.

Some CO2 dissolved in the water, and with a lower degree of electrolysis, seeped to the
outlet with the mine water inside the fractured rocks in the goaf. In the migration process,
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it might enter the non-conductive fractures of the rock mass or be adsorbed by the capillary
channel. With the passage of time, water-CO2-rock reaction occurred, and carbonate was
formed and stored in the goaf [46–48]. Then, a small part of CO2 was extracted along with
the geothermal water extraction. After heat was taken by the heat pump system, this part
of CO2 was recharged into the goaf. Thus, the above process was repeated.

Influenced by the density difference between some gas phase CO2 and mine water, the
heterogeneity of fractured rocks and other factors, part of the gas phase CO2 migrated to the
upper part of the goaf under the effect of buoyancy, and reached the broken impermeable
RS of the overlying aquifer in the goaf. Some CO2 was blocked by compact RS and
accumulated under the RS, and gas phase CO2 was stored. The other part of CO2 floated to
the alkaline aquifer along the fissures of the RS, where lateral free seepage occurred, and
storage was realized in the aquifer.

According to the above principle, if the goaf is poorly sealed, and there are fissures
directly leading to the ground or weak fissures in the RS, CO2 can leak to the surface
through the fissures, polluting the soil environment, or can accumulate and squeeze in the
rock fissures. When the pressure reaches the ultimate strength of the rock, a large amount
of elastic energy accumulated in the rock will be released, causing serious disasters such
as rock burst and CO2 outburst. In order to make further study on the principle of CO2
storage in the goaf, and to improve its technology, safety and scientificity, it is necessary to
infer and monitor the law of CO2 migration in the goaf and overlaying aquifer.

4.2. Multi-Field Coupling and Evolution Law of Mine Goaf

The CO2 storage—geothermal extraction system in the goaf involves multi-field cou-
pling and evolution law. The multi-field coupling contains mining stress field, the fracture
field generated by rock fracture, the hydrological field of mine water, liquid CO2 and
gaseous CO2 flow in fractured rocks, the thermal field of goaf heat reservoir, and the mine
water-rock-CO2 chemical field, as shown in Figure 11.
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The mechanical field in the goaf controls the pore distribution of fractured rocks,
which directly affects the seepage path of fluid. The distribution of fluid streamline controls
the evolution of thermal field in the goaf, and the thermal strain of rock mass caused by
thermal field change affects the evolution of the mechanical field. On the contrary, fluid
seepage causes extra stress on the rock mass and affects the evolution of the mechanical
field; the internal heat dissipation caused by the rock mass strain affects the thermal field;
the change in the thermal field affects the viscosity coefficient of fluid and the mechanical
properties of rock mass. The chemical field is affected by the other three fields at the same
time. The reaction speed is affected by the temperature field and mechanical field, and the
reaction activity is affected by the fluid seepage. On the contrary, chemical reaction changes
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the density, solute and seepage path of fluid, and changes the mineral composition and
strength of rock mass. The endothermic and exothermic processes of chemical reactions
influence the thermal field to some extent.

According to the above multi-field evolution law, mine water extraction under a
constant pressure will cause changes in the hydrological field and stress field in the goaf
and influence CO2 migration. Appropriate extraction pressure can promote CO2 seepage
in the goaf; too small extraction pressure will cause huge CO2 loss; too large extraction
pressure will reduce the extraction life of the geothermal system. Injection of HP CO2
can change the stress field in the goaf. Excessive injection pressure and flow will lead to
instability of the coal pillar dam in the goaf and fracture in the overlying RS. As a result, a
large amount of CO2 will leak in the mine or to the surface, which will cause great harm.
Therefore, a study should be made on the multi-field evolution law in the goaf on the
theoretical basis of multi-field coupling and its evolution law in the goaf, and by means of
experiment and numerical simulation. Moreover, reasonable geothermal water extraction
pressure, holes layout, CO2 injection pressure and injection flow should be put forward
in combination with engineering practice. These will help us coordinate mine geothermal
extraction and CO2 storage and avoid mutual interference between the two. By this, we
can make full use of the underground space and geothermal resources in the goaf, extend
the lifetime of geothermal extraction in the goaf, reduce the impact of geothermal water
extraction on the surface, and avoid huge CO2 seepage into the atmosphere.

5. Techniques for Geothermal Extraction and CO2 Storage

The key techniques for geothermal extraction and CO2 storage are shown in Figure 12.

Sustainability 2022, 14, x FOR PEER REVIEW 14 of 20 
 

The key techniques for geothermal extraction and CO2 storage are shown in Figure 

12. 

 

Figure 12. Basic framework of CS-GEU system in deep mine goaf 

5.1. CO2 Capture and High-Concentration CO2 Transport in Power Plants 

CO2 is generated by power generation in coal power plants. In order to obtain high-

purity CO2, reduce energy consumption, and increase net carbon sequestration, it is 

necessary to adopt efficient, cheap and low-carbon CO2 capture and transportation 

methods. 

CO2 capture technologies in coal power plants include pre-combustion capture, in-

combustion capture, and post-combustion capture. Pre-combustion capture utilizes coal 

gasification and reforming technologies to separate CO2 from coal. The process is complex 

and the CO2 capture cost is high, but a high concentration of CO2 can be produced through 

the separation. In-combustion capture mainly uses the oxygen-enriched combustion 

technology, in which the concentration of the captured CO2 is as high as 95%. However, 

the power consumption of oxygen production equipment is too high and will reduce the 

net carbon sink. Post-combustion capture technology is relatively mature. It uses alkaline 

absorbents to absorb CO2 and releases it for CO2 capture. This method is cheap, but the 

concentration of captured CO2 is low. CO2 transportation refers to transporting the 

separated CO2 to the storage site through pipelines or by transportation means. Due to 

the differences in the distance and means of transportation, carbon emissions and costs 

during transportation are different, which will influence the final net carbon 

sequestration. 

Based on the costs and carbon emissions in CO2 capture and transportation, multi-

index evaluation methods, covering cost, carbon emissions, safety, etc., have been set up. 

According to the distance between the power plant and the adjacent mine, a variety of 

CO2 capture and transportation portfolios have been established. These portfolios will be 

evaluated comprehensively with the multi-index evaluation method. With these methods, 

we can select the greenest, most economical, and safest CO2 transportation method, 

increase the net amount of CO2 storage, and reduce the storage cost. 

5.2. Boreholes, HP Pipelines and Pipeline Supports in the Goaf 

Whether injecting supercritical CO2 into the goaf or extracting geothermal water from 

the goaf, the boreholes, pipeline layout and pipeline supports cannot be ignored. Drilling 

holes and arranging supports in the goal is a technical problem, due to the accumulation 

of fractured rocks, the complex structure and stress distribution of fractured rocks, 

sediment blockage and pipeline shearing in the pipelines arranged in the goaf. 

To solve the problems of supporting the boreholes and the blockage of pipeline 

layout in the goaf, large diameter rigid casings are used to support the transportation and 

extraction pipelines (Figure 13). The boreholes are connected to the “annular” large pore 

area on the goaf floor, which promotes the seepage of injected CO2 in the fractured rocks, 

and enables CO2 to fully migrate to the open space around the mine. 

Figure 12. Basic framework of CS-GEU system in deep mine goaf.

5.1. CO2 Capture and High-Concentration CO2 Transport in Power Plants

CO2 is generated by power generation in coal power plants. In order to obtain high-
purity CO2, reduce energy consumption, and increase net carbon sequestration, it is neces-
sary to adopt efficient, cheap and low-carbon CO2 capture and transportation methods.

CO2 capture technologies in coal power plants include pre-combustion capture, in-
combustion capture, and post-combustion capture. Pre-combustion capture utilizes coal
gasification and reforming technologies to separate CO2 from coal. The process is complex
and the CO2 capture cost is high, but a high concentration of CO2 can be produced through
the separation. In-combustion capture mainly uses the oxygen-enriched combustion tech-
nology, in which the concentration of the captured CO2 is as high as 95%. However, the
power consumption of oxygen production equipment is too high and will reduce the net
carbon sink. Post-combustion capture technology is relatively mature. It uses alkaline
absorbents to absorb CO2 and releases it for CO2 capture. This method is cheap, but
the concentration of captured CO2 is low. CO2 transportation refers to transporting the
separated CO2 to the storage site through pipelines or by transportation means. Due to the
differences in the distance and means of transportation, carbon emissions and costs during
transportation are different, which will influence the final net carbon sequestration.
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Based on the costs and carbon emissions in CO2 capture and transportation, multi-
index evaluation methods, covering cost, carbon emissions, safety, etc., have been set up.
According to the distance between the power plant and the adjacent mine, a variety of
CO2 capture and transportation portfolios have been established. These portfolios will be
evaluated comprehensively with the multi-index evaluation method. With these methods,
we can select the greenest, most economical, and safest CO2 transportation method, increase
the net amount of CO2 storage, and reduce the storage cost.

5.2. Boreholes, HP Pipelines and Pipeline Supports in the Goaf

Whether injecting supercritical CO2 into the goaf or extracting geothermal water from
the goaf, the boreholes, pipeline layout and pipeline supports cannot be ignored. Drilling
holes and arranging supports in the goal is a technical problem, due to the accumulation of
fractured rocks, the complex structure and stress distribution of fractured rocks, sediment
blockage and pipeline shearing in the pipelines arranged in the goaf.

To solve the problems of supporting the boreholes and the blockage of pipeline
layout in the goaf, large diameter rigid casings are used to support the transportation and
extraction pipelines (Figure 13). The boreholes are connected to the “annular” large pore
area on the goaf floor, which promotes the seepage of injected CO2 in the fractured rocks,
and enables CO2 to fully migrate to the open space around the mine.
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In the hole-forming, pipe-jacking, and hole-sealing technology, a high-power drilling
rig is used. After the coal pillar dam is drilled to the designated position, the drilling is
withdrawn. The drill bit is removed, and the high-strength protective pipe is pushed into
the borehole using the thrust of the drilling rig. The protective pipe head is installed with a
screen tube and is sealed. After installation, the gaps around the protective pipe are filled
with polyurethane, then the HP CO2 injection hose is installed into the protective pipe. The
gap between the hose and the protective pipe is filled with grout to seal the pipe. Finally,
the hose is connected to the HP CO2 transportation pipeline.

5.3. Sealing and Pressurizing Technology in the Goaf

When the goaf is used for CO2 storage, it is necessary to prevent the gaseous or liquid
CO2 injected into the goaf from leaking into the coal mine through the fissures of the goaf
coal pillar, artificial dam, sealing wall, return airway, etc. A large amount of underground
CO2 leakage will cause serious accidents. Therefore, before injecting CO2, it is necessary to
evaluate and deal with the tightness of the goaf, as shown in Figure 14.
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A certain amount of natural tracer gas can be injected into the goaf, and a detection
point and corresponding equipment can be set up at intervals around the goaf. If the
leakage of tracer gas is detected at a certain measuring point, it means that there are leakage
fissures in this section of surrounding rock or coal wall, which needs to be sealed. Sealing
treatment can be conducted by grouting the surrounding rock or coal wall. The goaf
can be filled with concrete-based colloid to seal the wall fissures and the roof-floor joints.
Otherwise, gel can be injected into the coal mass, then condense and solidify inside the coal
mass, which will prevent air leakage.

Since the liquid pressure is omnidirectional, the goaf should be able to withstand
large lateral loads. The abilities of coal pillars and artificial dams to withstand lateral
compression in the goaf are evaluated, using professional simulation software such as
FLAC3D, UDEC, and ANSYS. The overlying RS pressure and CO2 storage pressure are
taken as boundary conditions, and the weakening to the strength of the coal pillar dam
caused by fluid seepage should be considered [50–53]. If the strength of the coal pillar
or artificial dam in the goaf is insufficient, artificial reinforced concrete dams can be built
outside the coal pillar dam and the artificial dam. Bolts can be used to connect them, so
that the overall coal pillar is stressed. Thus, the aspect ratio of the coal pillar is artificially
changed, thereby improving the ability of the dam body to withstand lateral loads.

5.4. Underground CO2 Leakage and CO2 Migration Monitoring Technology in the Goaf

The migration law of CO2 injected into the goaf was explored to understand CO2
migration and storage in the goaf, fractured overlying RS, and overlying aquifer, and to
evaluate the safety and effectiveness of using the goaf for CO2 storage. By monitoring
the PH value of the surface soil, the influence of CO2 leakage on the environment was
studied to discover various potential dangers. By monitoring the CO2 concentration in the
underground pipelines and the air around the goaf, the safety of transportation pipelines
was monitored in real time, to evaluate the tightness of the goaf, and to prevent accidents
caused by huge CO2 leakage in the mine.

Because sampling and measurement are simple and rapid, at a low price and analysis
cost, the natural tracer sulfur hexafluoride (SF6) can be used to study the migration law of
CO2 in the goaf. SF6 was mixed with CO2 in a certain proportion, and the mixed gas was
injected into the goaf. Then, gas patterns were obtained from inside the goaf, the overlying
RS of the goaf, and the overlying aquifer of the goaf by drilling holes in the ground. Then,
a gas chromatograph was used to detect the tracer content. According to the contents of
the tracers in different locations, the CO2 migration law can be verified, the principle of
CO2 storage in the goaf can be analyzed, and the capacity of CO2 storage in the goaf can
be evaluated.

Soil samples near the goaf were collected on the surface, their PH values and con-
ductivities were measured, and CO2 concentration was analyzed. If the measured CO2
concentration on the surface is too high, it means that there are fissures in the goaf directly
leading to the surface, so that a large amount of CO2 injected into the goaf leaks to the
surface. Therefore, grouting and sealing measures must be conducted on the surface and
the overlying RS in the goaf to reduce CO2 leakage into the atmosphere.

5.5. High-Efficiency Variable-Condition Heat Pump and Gas-Liquid Separation Technology

COP (energy efficiency ratio), an important parameter of water source heat pump,
is influenced by the unit structure, water source quality, cooling medium, and the heat
exchanger structure. Because there are great differences in the temperature and quality of
the extracted mine water, shallow groundwater, domestic water, etc., the energy efficiency
ratio of the heat pump unit should be improved to produce more heat energy with less
power consumption. Thus, the components of the heat pump unit should be designed and
optimized according to the practical working conditions such as the temperature, quality,
and flow rate of the extracted mine water, so as to realize high-efficiency operation of
the heat hump with low energy consumption. The fluid obtained by the heat pump is
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introduced into the underground system from the shaft, and recharged into the fractured
rocks in the goaf, making full use of the mine water geothermal resources.

When geothermal water is extracted from underground mines, it takes some CO2
with it. In order to prevent the extracted gaseous CO2 from impacting the surface heat
pump unit, it is necessary to separate the CO2 from the extracted mine water underground.
At present, domestic and overseas gas-liquid separation technologies include gravity
gas-liquid separation, inertial gas-liquid separation, centrifugal gas-liquid separation,
rectification gas-liquid separation, etc. An overall evaluation is conducted, according to the
ratio of gaseous CO2 in the extracted hot water and the extraction parameters, and based
on the power consumption, carbon emission, safety, cost and other indicators of the process
and equipment. The most suitable gas-liquid separation technology and equipment are
applied in this process.

6. Discussions
6.1. Limitations

At present, this technology lacks the utilization of the CO2 resource, and it takes a
long time (50–100 years) to convert CO2 into carbonate ores. CS in deep mine goaf will lead
to a higher pore pressure and make surrounding rock undergo higher lateral pressure than
the original water storage pressure. This will require high-strength materials to seal the
goaf and may lead to mine rock burst.

6.2. Further Studies

Firstly, a specific economic evaluation of the technology is required, including the cost
and income of operating the system at different flow rates and depths, under different
pressures of the mine, geological conditions, and climatic conditions, and in different
seasons. Methods of constructing the system at a lower cost are discussed and studied,
such as filling and sealing the goaf with waste gangue and colloid, and constructing the
in-situ geothermal utilization system. Secondly, the feasibility of the technology can be
further demonstrated, involving the influence of CO2 migration and accumulation on the
overlying RS of the goaf, the possible leaking path of CS in the goaf, and the blocking
method. If possible, field tests should be executed in the goaf of an abandoned mine to
explore new methods and approaches of CS technology in the goaf under actual conditions.

7. Conclusions

(1) The CO2 storage and geothermal extraction technology of high temperature and
HM water in deep mine is firstly proposed, integrating the geothermal extraction technol-
ogy in the high temperature mine and the CO2 storage technology in the goaf. It aims at
using the underground space in the goaf to store CO2, while softening HM mine water, and
extracting geothermal resources from the high-temperature mine water.

(2) The feasibility of CO2 storage in the goaf is proved theoretically, and the technical
principle of synergic operation of CO2 storage and geothermal extraction is explained.
While CO2 is stored in the goaf, the corrosion of geothermal water on the extraction
equipment is greatly alleviated. The extracted mine water forms a depressed-down funnel,
which promotes full CO2 seepage in the fractured rocks in the goaf.

(3) The general scheme of synergistic technology of CO2 storage and geothermal
extraction in the deep mine at a high temperature and the HM water is proposed, which
includes CO2 capture and transportation, the sealing of the goaf, the injection of HP CO2,
and the extraction of hot water in the goaf. It puts forward the scientific issues of synergistic
technology of CO2 storage—geothermal extraction in the goaf, including the evolution law
of CO2 migration—storage in the goaf.

(4) Five key techniques of CO2 storage and geothermal extraction of high temperature
and HM water in deep mine are proposed: high concentration CO2 capture and transporta-
tion, goaf pressurization and sealing, goaf drilling and support, detection of CO2 migration,
and high-efficiency heat pump.
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Term Abbreviation
Highly mineralized HM
High temperature HT
High pressure HP
Water-rock-CO2 effect WRCE
Geothermal extraction and utilization GEU
Rock strata RS
CO2 storage CS
Underground coal gasification UCG
Carbon capture and storage CCS
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