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Abstract: This paper proposes an ultra-compact filtering power divider with a wide harmonic
suppression band. In this design, the proposed power divider (PD) in the ideal case has 100% size
reduction and an infinite number of harmonics suppression. However, in the real case, the proposed
divider has a 92% size reduction and suppresses the 2nd to 45th harmonics. The small-proposed
divider is designed at 0.9 GHz. The typical Wilkinson divider has two long quarter-wavelength
branches. In the proposed design, new resonant series LC branches are used instead of the divider’s
typical branches, leading to performance improvements in the proposed PD. To the best of the authors’
knowledge, the proposed filtering PD has the best size reduction, and harmonics suppression reported
thus far. The proposed divider has a filtering response with good insertion loss at the passband,
which is desirable for modern communication systems.

Keywords: compact power divider; lumped components; performance improvement; size reduction

1. Introduction

Power dividers (PDs) are essential devices commonly used in communication circuits.
PDs are used for power division or combination in amplifiers, antennas, phase shifters,
mixers, modulators, and frequency multipliers [1]. Dividers have been widely used in
modern 5G communications circuits and systems— the specifications of sub-6 GHz, 5G
applications are explained in [2,3]. In addition, the dividers can be integrated into the
MIMO antenna applications [4,5].

Two common types of PDs in microwave applications are Wilkinson and Gysel. A
typical Wilkinson power divider (WPD) has two long quarter-wave (λ/4) length branches
with a 100 Ω lumped resistor between output ports. A Gysel power divider has six λ/4
length branches, and two 50 Ω lumped resistors. Both of these dividers are large (especially
Gysel) and have undesirable harmonics. Several works have partially made improvements
on these drawbacks in recent decades. Open-ended stubs were exploited to address the
large size and undesirable harmonics in [1]. However, this method is simple: many open-
ended stubs are needed to remove many harmonics, and each applied stub creates one
narrow transmission zero, which helps the suppression band.

In some designs, the electronic band gap (EBG) cells [6,7] and defected ground struc-
ture (DGS) [8,9] are used to overcome these drawbacks of the standard dividers. An
additional stage is needed for these two structures in the fabrication process, which results
in the complexity of circuit design. Resonator cells [10–14] are widely used in the divider
branches to create filtering responses, remove harmonics and reduce the length of the long
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branches. The applied resonators increase the insertion losses of the dividers, and all these
mentioned power dividers suffer from high insertion losses.

In some research [15,16], coupled lines were used in the divider structure to suppress
unwanted harmonics. With the applied coupled lines method, only signals at operating
frequency were passed, and the signals at other frequencies were eliminated, which creates
filtering responses. Unfortunately, the coupled lines method cannot improve the size
of the circuit. For example, the size of both dividers in [15,16] is more significant than
the typical divider. Recently higher frequencies for power dividers have been achieved
using optical fiber substrates [17,18]. In addition, methods of optimization and artificial
intelligence (AI) have been recently used to design power dividers and other microwave
components [19,20].

Resonators are also used for performance improvement in the power dividers [21–26].
Different shapes of the resonators have been recently presented, such as U-shaped [21],
T-shaped [22], Pi-shaped, [23] stepped impedance [24], and patch resonators [25,26]. In [25],
patch resonators were used to design a filtering power divider. The circular divider
was designed in [25], and a dual-band operation was achieved. However, the obtained
suppression band was not wide enough, and the undesirable harmonics can pass through
the divider. Patch resonators and meandered lines were used in [26] to design a radial
filtering divider. An acceptable suppression band was obtained in [26], but the final size
of the divider was larger than the typical structure. Moreover, artificial intelligence (AI)
techniques [27–31] and optimization methods [32–38], which are useful tools, have been
recently applied to design PDs and other microwave components [39,40].

All the discussed works in the literature have partially improved the large size and
harmonic presence drawbacks of the typical power divider. However, the proposed work
has solved these two drawbacks with the best results compared to the previous works, such
that to the author’s best knowledge, the best size reduction and harmonic suppression are
achieved simultaneously. This paper incorporates the LC lumped elements into proposed
developed LC branches, which can be used instead of the power divider main branches.
The proposed new branches have resulted in a compact design of the power divider
with the desired percentage of miniaturization. In addition, a filtering response with a
wide suppression band has been obtained for the proposed divider using the developed
LC branches.

2. Structure of the Typical WPD

As depicted in Figure 1, the typical Wilkinson divider has two long λ/4 branches and
a lumped 100 ohms resistor. The microstrip realization of the normal WPD is shown in
Figure 2. This structure has a large size of λ/8 × λ/8. This large size is the first drawback
of this typical divider.
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Figure 2. Microstrip realization of the typical WPD.

An Agilent ADS simulator carried out the divider design, and the circuit simulator
and electromagnetic (EM) simulator were carried out based on the Duroid5880 substrate
with εr = 2.2 and 0.508 mm thickness.

The typical WPD frequency response is depicted in Figure 3. The typical divider per-
forms well at the operating frequency. Nonetheless, this structure passes unwanted signals
at higher frequencies, like the desired signals at operating frequencies, without suppression.
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3. Proposed WPD Structure

As mentioned in the previous section, the typical divider not only has a large size
but also suffers from undesirable harmonics. To overcome these drawbacks proposed LC
branch is designed to provide a suppression band and miniaturize the circuit size. The
proposed LC branch’s structure is shown in Figure 4. The developed LC branch has a very
short length and provides a filtering response at the desired frequency.
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4. Proposed LC Branch Analysis

The typical and proposed branches should have the same response at the operating
frequency. Thus, the ABCD matrix of these branches should be equal. The main λ/4 branch
line has one microstrip line, and the ABCD matrix for this part is demonstrated with MMB.
The proposed branch line has two microstrip lines with an electrical length of θ1 and a
series of lumped components. The ABCD matrix for the first part is noted with M1, and the
ABCD matrix for the series lumped elements is noted with MLMP.

As mentioned, the ABCD matrices of the proposed LC branch and normal branch
should be equal; therefore, the equation is written in (1):

M1 × MLMP × M1 = MMB (1)

The values of M1, MLMP, and MMB are written in Equations (2)–(4):

MQWL =

[
0 j

√
2Z0

j/
√

2Z0 0

]
(2)

M1 =

[
cos(θ1) jZ1 sin(θ1)

jY1 sin(θ1) cos(θ1)

]
(3)

MLMP =

[
1 jLω− j/(C0ω)
0 1

]
(4)

The applied inductor in the proposed branch consists of two series inductors of L0 and
Lm. The Lm with two adjacent transmission lines creates a composite line, which provides a
miniaturization of the power divider. The L0C0 is tuned at the central frequency (f0), as
illustrated in Figure 5. Therefore, the MLMP matrix can be written in the analysis at the
central frequency as (5).

MLC =

[
1 jLmω
0 1

]
(5)Sustainability 2022, 14, x FOR PEER REVIEW 5 of 16 
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By solving Equation (1) and substituting Equations (1)–(5), Equations (6)–(9) can be written:

2Z1 = Lmω0 tan(2θ1) (6)

√
2 =

Z1

Z0
sin(2θ1) +

Lmω0

2Z0
+

Lmω0

2Z0
cos(2θ1) (7)

1√
2
=

Z0

Z1
sin(2θ1)−

Z0Lmω0

2Z1
2 +

Z0Lmω0

2Z1
2 cos(2θ1) (8)

From Equations (7) and (8), Equation (9) is achieved as follows:

2− Z1
2

Z02 =

√
2Lmω0

Z0
(9)
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By solving Equation (9), the normalized value of Z1 can be calculated as written in (10):

Z1

Z0
=
−
√

2 +
√

2 + tan(2θ1)
2

tan(2θ1)
(10)

5. Proposed WPD with LC Branch Analysis

The proposed structure of the WPD with the presented LC branches is shown in
Figure 6. The design goal is a 900 MHz divider with a 90% size reduction.
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The occupied size of the typical WPD is λ/8 × λ/8. In the proposed WPD, to have a
90% size reduction, the occupied size should be 0.1 × (λ/8 × λ/8). Therefore, the proposed
branch length (θ1 + length of lumped components + θ1) should be 30◦, which is equal
to 0.08 λ. Thus, the θ1 should be approximately 15◦ (0.04 λ). The lengths of the lumped
components (L and C) are neglected. Until now, the value of the θ1 has been calculated,
and to calculate the unknown parameter of Z1, from (10) and considering Z0 = 50 Ω, the Z1
can be determined as follows:

Z1

Z0
=
−
√

2 +
√

2 + tan(30)2

tan(30)
(11)

The value of impedance is equal to Z1 = 18.9 Ω. The dimensions of the proposed
branches with the applied substrate of Duroid5880 substrate with εr = 2.2 and 0.508 mm
thickness are depicted in Figure 7.
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As seen in Figure 5, the applied inductor consists of two series inductors of L0 and
Lm. The value of Lm can be easily obtained from Equation (6), considering the 900 MHz
operating frequency as follows:

Lm =
2Z1

w× tan(30)
(12)
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with Z1 = 18.9 Ω and w = 2π × (900 MHz), the value of Lm is 11.58 nH. L0 and C0 can be
obtained from (13), which have several answers. If we select 0.5 PF for the applied capacitor
according to (13), the L0 value is 62 nH:

w =
1√

L0 × C
(13)

The value of the applied inductor can be calculated from (14), which is equal to 73.5 nH:

L = L0 + Lm (14)

6. The Proposed Power Divider Design

The design process of the proposed divider is depicted in Figure 8. At first, a typical
WPD at 900 MHz, with a large size, is designed. The first design of WPD is proposed
according to the analysis, which has an 82% size reduction. The length of the proposed
transmission line is obtained analytically. Finally, the optimized WPD is presented and
fabricated with a 92% size reduction.
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6.1. Typical WPD Design

In this section, the typical WPD at 900 MHz is realized with microstrip lines to have
better compression at first. The realized typical WPD is shown in Figure 9a. The typical
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WPD has a size of 33.9 mm × 34.7 mm. The scattering parameters of typical WPD are
depicted in Figure 9b, showing the divider’s correct performance at 900 MHz.
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6.2. First Design of the Proposed WPD without Optimization

In the second step, two proposed developed LC branch lines, designed in Section 5
with calculated dimensions, are used instead of the long branches of the typical divider.
The proposed WPD is depicted in Figure 10. The overall size of the proposed WPD is
13.9 mm × 15.3 mm, which offers an 82% reduction in size compared to typical WPD. In
the simulation process, some values are tuned to have better results. The obtained values
from analysis, simulation and measurement are listed in Table 1.
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Figure 10. The first design of the proposed WPD at 900 MHz 82% size reduction.

The first design of the proposed WPD response at the main frequency is shown in
Figure 11a. These parameters at a wide frequency range are depicted in Figure 11b. This
divider performs correctly at 900 MHz and suppresses the 2nd to 45th unwanted harmonics
with a high level of attenuation.
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Table 1. Obtained values from the simulation and measurement.

Values Analysis 1st Design 2nd Design Fabrication

W (mm) 5.6 5.3 3.2 3.2
L1 (mm) 9.8 9.4 6.5 6.5
L (nH) 73.5 66 68.3 68
C (pF) 0.5 0.43 0.43 0.43

f (MHz) 900 900 900 900
Size Reduction 90% 82% 92% 92%

Harmonics Suppression ∞ 2nd–45th 2nd–45th 2nd–45th
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6.3. Second Design of the Proposed WPD with Improvement

In the final step, the proposed WPD is presented, and the layout of the proposed
divider is depicted in Figure 12. The proposed WPD final size is only 9.9 mm ×10.4 mm,
which shows a 92% size miniaturization.

The scattering parameters of the proposed WPD near the orating frequency are shown
in Figure 13a. The proposed WPD acts correctly at 900 MHz. The S21 parameter at the
operating frequency is −3.3 dB, which offers about 0.3 dB insertion loss. The S11, S22, and
S23 parameters are about −20 dB, which shows good divider performance at the operating
frequency. The proposed WPD has noticeable performance at higher frequencies. A wide
stopband has been obtained for the proposed divider from 1.8 GHz up to 40 GHz, which
shows excellent harmonics suppression. The simulated results of the proposed WPD are
depicted in Figure 13b.
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The layout comparison between the proposed and typical WPD is depicted in Figure 14.
The proposed WPD only occupies 0.08% of the normal WPD, showing a 92% size reduction.
The fabricated photo of the proposed WPD is depicted in Figure 15.
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Figure 15. Fabricated photo of the proposed 900 MHz divider with a 92% size reduction.

The proposed divider’s fabrication accuracy is critical due to the narrow microstrip
lines applied. Any fabrication error or substrate loss will disturb frequency response.
Therefore, the photolithography method is used to create an accurate prototype, and after
this step, the lumped capacitors and inductors are soldered on the prototype.

The simulated and measured results of the fabricated divider are shown in Figure 16.
The proposed divider frequency response is depicted in Figure 16a, and a wide operating
frequency range is illustrated in Figure 16b.

The performances of the designed WPD and related works are compared in Table 2.
The proposed WPD has the most compact size and best suppression band among the
reported studies. The size reduction in Table 2 is calculated based on the normalized size of
the dividers.
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Table 2. Performance summary of the proposed WPD and related works.

Ref Freq
(GHz)

Size
Reduction

Number of Harmonics
Suppression Methods

[41] 1 0% 2nd–4th Open stubs
[42] 2.4 70% 2nd–5th EBG Cells
[43] 1.5 0% 2nd–3rd DGS Cells
[44] 2.4 39% 2nd-3rd EBG Cells
[45] 0.9 66% 2nd–3rd Coupled Line
[46] 1.5 0% 2nd–3rd Lumped Capacitor
[47] 2.4 44% 2nd–3rd Resonator Cell
[48] 0.9 47% 3rd Resonator Cell
[49] 1 55% 2nd–5th Open Stubs
[50] 2.65 63% 3rd and 5th Open Stubs
[51] 1 54% 2nd–7th Open Stubs

[52] 1 71% 2nd–12th Resonator Cell &
Open Stubs

[53] 1 0% 2nd–3rd Open Stubs
[54] 1 0% 2nd Open And Short Stubs

[55] 2 0% 2nd Resonator Cell &
Open Stubs

[56] 1.9 55 % 2nd–4th Resonator Cell

[57] 1.5 52% 3rd–6th Lumped Element &
Resonator Cell

[58] 2.4 0% 2nd–3rd Resonator Cell
[59] 1.5 16% 3rd–4th Lumped Capacitor
[60] 1 60% 2nd–4th Lumped Inductor
[61] 1.65 35% 3rd and 5th Open Stubs
[62] 0.9 0% 2nd–4th Open And Short Stubs
[63] 2 50% 2nd–14th Resonator Cell
[64] 0.7 73% 2nd–15th Aperiodic Open Stubs
[65] 0.8 82.8% 2nd–25th LC Branches

This Work 0.9 92% 2nd–45th LC Branches
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7. Conclusions

A 900 MHz WPD, with excellent size reduction and harmonics suppression, is de-
signed, analyzed, and implemented in this paper. In this WPD, compact proposed series
LC branches are used instead of the long microstrip lines in the typical WPD, which leads
to excellent compact size, filtering response, and performance improvement. The designed
WPD has a 92% size reduction compared to the typical WPD and suppresses the 2nd to 45th
unwanted harmonics. The proposed WPD has the most compact size and best suppression
band, which have been reported up until now. In this paper, the WPD is initially designed
analytically, then simulated with ADS software, and the proposed device is fabricated at
the end. All of the calculated, simulation and measured values have good agreements,
confirming the proposed design’s validity.
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