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Abstract: Based on second-level L-band sounding data, the vertical distribution and variation of
meteorological elements at airports in 2010–2020 are investigated. At the same time, the relationships
between airport visibility and meteorological elements at different potential heights are also investi-
gated. Then, based on hourly measurements of 26 meteorological elements in 2018–2020, the hourly
visibility of airports is predicted by 9 artificial intelligence algorithm models. The analyses show:
(1) For the vertical changes in four meteorological elements of the airports, the negative vertical
trends of temperature and relative humidity increase clearly from northwestern to southeastern
China. The significant negative trend of air pressure in the vertical direction in the eastern China is
greater. (2) Within about 2000 geopotential metres (gpm) from the ground, the visibility has a strong
correlation with the air pressure, and most of them are negative. Within 400 gpm from the ground,
airport visibility is negatively correlated with the relative humidity. At 8:00 a.m., airport visibility
is positively correlated with the wind speed within 2000 gpm from the ground at most airports,
while at 20:00 p.m., the positive correlation mainly appears within 400 gpm from the ground. (3) The
passive aggressive regression-(PAR) and isotonic regression-(IST) based models have the worst effect
on airport visibility prediction. The dispersion degree of the visibility simulation results obtained
by Huber regression-(HBR) and random sample consensus regression-(RANSAC) based models is
relatively consistent with the observations.

Keywords: airport visibility; prediction; artificial intelligence; L-band sounding data

1. Introduction

The observation and analysis of high-altitude meteorological data are of great signifi-
cance in meteorology. The horizontal movement of the atmosphere characterized by these
data, accompanied by the exchange of heat and water vapor, can reveal the specific process
of the occurrence, development and evolution of a certain weather situation, so it plays an
important role in forecasting. In China, the L-band electronic radiosonde system, which
can provide second-order radiosonde positioning data with high vertical resolution, was
fully used for exploration in 2011. The detection accuracy of air pressure, temperature and
humidity improved greatly after the L-band radar detection system was put into use in the
meteorological industry. Based on L-band sounding data, scholars have carried out applied
research in many aspects. For severe convective weather, Qing et al. [1] established a pre-
diction model for short-term rainstorm prediction in the Sichuan Basin based on the V-3θ
graph made by L-band sounding data. Huang et al. [2] studied the variation characteristics
of atmospheric physical quantities based on L-band sounding data and found that there
was downdraft between 850 hPa and 500 hPa; additionally, the speed of balloons returned
to normal after 500 hPa. By analyzing the humidity observation conditions of the three
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main L-band radiosondes used in China and their deviation distribution characteristics,
and referring to the corresponding deviation correction tests on the correction methods of
radiosonde humidity at home and abroad, Hao et al. [3] developed a correction method
suitable for China’s L-band radiosondes and applied it in the model assimilation analysis
to improve the assimilation and prediction results. According to the characteristics of
L-band second-level data, Tian and Zhang [4] made a preliminary analysis on the applica-
tion prospect in artificial precipitation operation, in order to improve its application rate
in artificial precipitation operation. According to the characteristics of L-band sounding
data, their application in airport visibility will make a great contribution to the research of
airport visibility.

Airport low-visibility events will affect the take-off and landing of aircraft, personnel
safety and major economic losses, which makes it urgent to conduct in-depth research on
airport visibility. Most studies of airport visibility are mainly to predict the airport visibility
through other meteorological elements or air pollution factors. Debashree et al. [5] selected
NO2, wind speed, relative humidity, CO, and temperature as parameters and used an
artificial neural network (ANN) model to forecast the spatial visibility during fog over the
Kolkata airport. Based on air temperature, relative humidity, visibility, wind speed, wind
direction, precipitation, soil temperature and soil moisture, a new model for nowcasting
visibility in the coastal desert area of Dubai [6]. Based on observations of wind speed
and other four meteorological elements from October to March in the last decade, Zhu
et al. [7] forecast hourly visibility at Urumqi Airport. Kneringer et al. [8] used an ordered
logistic regression model to forecast cold season visibility at Vienna International Airport.
Based on meteorological elements and air pollution indicators, Deng et al. [9] used the
long-term short-term memory network (LSTM) model and introduced a weighted loss
function to forecast low visibility for airports, and the results showed that under appropriate
super parameters, the RMSE of visibility decreased by 37% under 1600 m and 21% under
800 m. Won et al. [10] investigated the visibility of Incheon International Airport in South
Korea during 2015–2017 and its relationship with PM2.5 and PM10, and then established
a truncated regression model to quantitatively describe the change in visibility, which
showed that the visibility decline was mainly determined by the interaction between PM2.5
and meteorological factors (such as fog, haze, high temperature, low relative humidity
and weak wind speed). Sara et al. [11] discussed an hourly short-term prediction of low-
visibility events at Spain Villanubla Airport with PM10, PM2.5, temperature, precipitation,
pressure, relative humidity, wind speed and wind direction by Markov chain models and
machine learning techniques. Wu et al. [12] used the atmospheric state information of the
airport ground station to build a plateau airports visibility prediction model to predict the
hourly visibility of the plateau airports in the next 1–6 h by the LSTM. Liu et al. [13] used
data-driven depth learning method and multiple nonlinear regression analysis method to
analyze the relationship between the runway visual range (RVR) and ground meteorological
elements for different reasons and input the pseudo color images converted by the original
images into the depth model integrated by two popular convolutional neural network
(CNN) models: VGG-16 and Xception for analysis.

According to previous studies, due to the limitation of meteorological data, less
kinds of meteorological elements can be used, and only the most common individual
meteorological elements are used to predict visibility. At the same time, almost no scholars
try to explore the relationship between airport visibility and L-band sounding data. In
view of the above problems, on the one hand, this study attempts to analyze the temporal
and spatial characteristics of L-band sounding data and explore their relationship with
airport visibility. On the other hand, this study will use a variety of meteorological elements
to further explore the short-term approach forecast of airport visibility combined with
artificial intelligence methods.
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2. Methodology
2.1. Data

Forty-seven international airports in China were selected as research objects to study
the relationship between L-band sounding data and visibility and explore hourly visibility
prediction. Among them, 22 airports own the second level L-band sounding data. Figure 1
and Table 1 show the locations of the airports and whether they have L-band sounding data.

Figure 1. The locations of the selected 47 international airports in China. Purple points and red points
indicate airports with L-band sounding data and without L-band sounding data, respectively.

L-band high-altitude meteorological detection is coordinated by secondary wind radar
and electronic radiosonde. It mainly detects high-altitude wind direction, wind speed,
air temperature, air pressure and other meteorological elements. The sounding data are
detected twice a day at 8:00 a.m. and 20:00 p.m. Beijing Time (BJT). L-band can provide
sounding data with high vertical resolution (the sampling period of electronic radiosonde
can reach 1.2 s). Observed second level L-band sounding data is obtained from the website
of Climate Data Center of China Meteorological Administration (CMA; https://data.cma.cn;
last accessed on 17 August 2022). The data has undergone strict quality control, such as
allowable value range check, rigid value check, vertical consistency check, climate limit
value check, filter check, monotonicity check, consistency check between elements, etc.
Since the quality control scheme of second level data is not the focus of this study, it will
not be given unnecessary details here. Based on the second level L-band sounding data
during 2010–2020, the mean of the data per minute is calculated to convert the second level
data into minute level data. As the different detection duration for each detection, the first
60 min of each sounding data of the airport are selected for the unified analysis.

Hourly meteorological elements are obtained from the CMA (https://data.cma.cn,
accessed on 21 September 2022). From more than 92,000 national and regional weather
stations in China, the visibility average after data quality control of the five stations closest
to the airport is selected as the actual visibility on the airport. For data quality control,
missing, mutation point and abnormal hourly data are detect first, and then the abnormal
values are deleted, and the missing values are interpolated. Considering the required high
time resolution and long time series, the hourly 26 meteorological elements in 2018–2020

https://data.cma.cn
https://data.cma.cn
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are selected to form the datasets required for visibility forecast. The elements contained in
second level sounding data and hourly meteorological elements are shown in Table 2.

Table 1. Information about the selected international airports.

Airports with L-Band Sounding Data Airports without L-Band Sounding Data
ID Code Name City ID Code Name City

1 CGO Xinzheng Zhengzhou 1 CAN Baiyun Guangzhou
2 DLC Zhoushuizi Dalian 2 CKG Jiangbei Chongqing
3 HAK Meilan Haikou 3 CTU Shuangliu Chengdu
4 HET Baita Hohhot 4 CZX Benniu Changzhou
5 HGH Xiaoshan Hangzhou 5 DSN Yijinhuoluo Erdos
6 HRB Taiping Harbin 6 DYG Hehua Zhangjiajie
7 KHH Gaoxiong Gaoxiong 7 HFE Xinqiao Hefei
8 KOW Huangjin Ganzhou 8 HLD Dongshan Hailar
9 KWL Liangjiang Guilin 9 JHG Gasa Xishuangbanna

10 LJG Sanyi Lijiang 10 JNZ Jinzhou Jinzhou
11 LXA Gongga Lhasa 11 LHW Zhongchuan Lanzhou
12 NKG Lukou Nanjing 12 MFM Aomen Macao
13 NNG Wuwei Nanning 13 NGB Lishe Ningbo
14 PEK Shoudu Beijing 14 NTG Xingdong Nantong
15 SHA Honqiao Shanghai 15 NZH Xijiao Manzhouli
16 SHE Taoxian Shenyang 16 PVG Pudong Shanghai
17 SYX Fenghuang Sanya 17 SJW Zhengding Shijiazhuang
18 TAO Liuting Qingdao 18 TXN Tunxi Huangshan
19 URC Diwobu Urumqi 19 TYN Wusu Taiyuan
20 XMN Gaoqi Xiamen 20 WEH Dashuipo Weihai
21 XUZ Guanyin Xuzhou 21 WNZ Longwan Wenzhou
22 YNJ Chaoyangchuan Yanji 22 WUH Tianhe Wuhan

23 XIY Xianyang Xian
24 YNZ Nanyang Yancheng
25 YTY Taizhou Yangzhou

Table 2. The details of the minute sounding data and hourly meteorological data.

Elements of the Hourly Meteorological Data Elements of the Minute Sounding Data

Air temperature (◦C) Pressure (hPa) Air temperature (°C)
Minimum temperature (◦C) Sea level pressure (hPa) Pressure (hPa)
Maximum temperature (◦C) Vapor pressure (hPa) Relative humidity (%)
Dew point temperature (◦C) 2-min average wind speed (m/s) Wind speed (m/s)

Relative humidity (%) 10-min average wind speed (m/s) Wind direction (degree)
Precipitation in the past hour (mm) Maximum wind speed (m/s) Geopotential hight (gpm)

Precipitation in the past 6 h (mm) Wind direction of maximum wind
speed (degree)

Precipitation in the past 12 h (mm) Extreme instantaneous wind speed (m/s)

Ground surface temperature (◦C) Direction with extreme wind
speed (degree)

Ground temperature at 5 cm depth (◦C) Maximum instantaneous wind speed in
the past 6 h (m/s)

Ground temperature at 10 cm depth (◦C) Direction of Maximum instantaneous
wind speed in the past 6 h (degree)

Ground temperature at 15 cm depth (◦C) Maximum instantaneous wind speed in
the past 12 h (m/s)

Ground temperature at 20 cm depth (◦C) Direction of Maximum instantaneous
wind speed in the past 12 h (degree)
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2.2. Methods
2.2.1. Trend Test

The Mann–Kendall (MK) test, whose advantage is that it can test linear or nonlinear
trend, is a rank-based nonparametric test [14,15]. In the test, the null hypothesis (H0) and
the alternative hypothesis (H1) are equal on whether there is a time-series trend in the
observed data. In the MK test, the statistical value S and the standardized test statistical
value Z are calculated as follows:

S =
n−1

∑
i=1

n

∑
j=i+1

sgn
(
Xj − Xi

)
(1)

sng
(
Xj − Xi

)
=


+1, if

(
Xj − Xi

)
> 0

0, if
(
Xj − Xi

)
= 0

−1, if
(
Xj − Xi

)
< 0

(2)

Var(S) =
1

18

[
n(n− 1)(2n + 5)−

q

∑
p=1

tp
(
tp − 1

)(
2tp + 5

)]
(3)

Z =


S−1√
Var(S)

if S > 0

0 if S = 0
S+1√
Var(S)

if S < 0
(4)

where Xi and Xj correspond to i and j in the time series; n is the length of the time-series
data; tp is the binding value corresponding to the number p; Z is the change trend of
time series data. If Z > 0, it means that the time series data shows an increasing trend
with the passage of time; Otherwise, it means that the time series data show a decreasing
trend with the passage of time. When |Z| > Z(1−α/2), the null hypothesis is rejected and
it is considered that there is a significant trend in the time series data. Z(1−α/2) can be
calculated from the standard normal distribution table. When the significance level α = 5%,
the corresponding value of Z(1−α/2) is 1.96.

The nonparametric Sen’s slope [16] is used to quantify the monotonic trends [17]. The
advantage of this method is that it limits the influence of external interference on the trend
of time series data.

β = Median
(

Xj − Xi

j− i

)
(5)

where for any i < j, Xi and Xj are the values corresponding to i and j in the time series data;
β is the calculated value of the trend size of time series data.

2.2.2. Artificial Intelligence Algorithms
Isotonic Regression (IST)

IST is a regression model that makes nonparametric estimation on given data in mono-
tonic function space [18]. A finite set of real numbers Y = y1, y2 · · · yn and X = x1, x2 · · · xn
are given to train a model to minimize the following equation:

f(x) =
n

∑
i=1
ωi(yi − xi)

2 (6)

where xi ≤ x2 · · · ≤ xn,ωi are positive weights. In this study, the pool adjacent violators
algorithm (PAVA) is used to simplify IST, making it an unweighted linear sequence IST.
Roughly speaking, the process of PAVA algorithm is described as follows: Starting from
y1 on the left, moving y1 to the right until the first violation are encountered, namely
yi < yi + 1. Then we replace these y before the violation with y2 to meet the monotonicity.
Then this process will continue until reaching yn.
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Bayesian Ridge Regression (BRR)

BRR is proposed based on an improved Bayesian method and least squares [19,20].
This method adds L2 regularization to the linear Bayesian regression model, combines
the prior information of relevant parameters to form a prior distribution and gives the
estimated value. The function of Bayesian linear regression is shown in Equation (7), which
aims to find the parameter vector distribution that minimizes the loss function Equation (8):

y(x,ω) =
n

∑
j=0
ωjϕj(x) = ωTϕ(x) (7)

J(ω) =
m

∑
i=1
{y(xi,ω)− ti}2 (8)

where n is the dimension of sample space; m is the sample capacity;ω is a parameter vector;
ϕ(x) is a nonlinear function of the input vector x, where ϕ0(x) = 1, ti is the observed value,
ti = y(xi, ω) + ε, ε is noise, assuming ε and ω obey Gaussian distribution N

(
0,σ2

1
)

and
N
(
0,σ2

2
)

respectively, t obeys the Gaussian distribution of the mean y(x, ω). The class
conditional probability density function of t is Equation (9), The prior probability ofω is
Equation (10):

p(t|ω) =
1

2πσ1
2 exp

(
− 1

2σ2
1

m

∑
i=1
{y(xi,ω)− ti}2

)
(9)

p(ω) =
1

2πσ22 exp

(
− 1

2σ2
2
ωTω

)
(10)

According to Bayesian rules:

p(ω|t) = p(ω)p(t|ω)

p(t)
(11)

ln(p(ω|t)) = − 1
2σ2

1

m

∑
i=1
{y(xi,ω)− ti}2 − 1

2σ2
2
ωTω+ c (12)

where p(ω|t) is a posteriori probability; p(t) is a constant independent of ω; C is constant.
BRR automatically introduces the regular term in the estimation process, and finally obtains
the posterior distribution of parameters, which avoids over fitting in maximum likelihood
estimation and obtains more accurate parameter estimation.

Least Absolute Shrinkage and Selection Operator (LASSO)

LASSO is a kind of compression estimation [21]. It constructs a penalty function to
obtain a more refined model, which makes it compress some regression coefficients; that is,
the sum of the absolute values of the forced coefficients is less than a fixed value. At the
same time, some regression coefficients are set to zero. Therefore, it retains the advantage
of subset contraction and is a biased estimation for processing complex collinear data.

In ordinary linear regression, the objective of optimization is to minimize the sum
of squares of residuals. However, when the number of independent variables is large, or
there is a multicollinearity problem between variables, it is easy to lead to cumbersome
solution of the generalized inverse matrix, complex model, and finally over fitting. The
regularization method is mainly used to solve the above problems. On the basis of the loss
function, a penalty function related to the coefficient is added to constrain the complexity
of the model, so as to select the model with less empirical risk and model complexity at the
same time. The optimized objective function is:

J(β) =
N

∑
i−1

(
yi − αi −

P

∑
j−1

xijβj

)2

+ λf(β) (13)
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where yi represents the dependent variable, αi represents the offset term, xij represents the
independent variable, βj is a coefficient, N is the number of data groups, P is the number of
independent variables, λ ≥ 0 represents the coefficient to balance the regularization term
and sum of squared residual and f(β) is the penalty function related to coefficient matrix β.

LASSO sets penalty function f(β) as the L1 norm for coefficient matrix β and ignores
the influence of the bias term αi on the final result. In order to increase the proportion of
regularization term in the optimization objective function and strengthen the constraint
of coefficients, the sum of squared residual in Equation (13) is averaged and added to the
regularization term; then, the optimization objective function of LASSO algorithm can be
shown as:

J(β) =
1
N

N

∑
i−1

(
yi −

P

∑
j−1

xijβj

)2

+ λ||β||l (14)

L1 norm is to sum the absolute values of each element of the corresponding vector.
Therefore, the optimization objective function of LASSO algorithm is discontinuous and
differentiable. Generally, the gradient descent methods are used to solve it.

Passive Aggressive Regression (PAR)

PAR embodies an idea of online learning [22], which can continuously integrate new
samples to adjust the classification model and enhance the classification ability of the model.
PAR optimizes its own model according to the following judgment criteria: (A) The model
will not be adjusted when the sample classification is correct and the model predicts the
possibility accurately (more than one degree); (B) when the sample classification is correct
but the model’s prediction of probability is biased (not very accurate), the model makes a
slight adjustment; (C) the model makes a large adjustment when the sample classification
is wrong. In this process, different samples with different weights can gradually approach
a suitable parameter to represent the relationship between different features.

Random Sample Consensus Regression (RANSAC)

RANSAC adopts the iterative method to estimate the mathematical model from a
group of discrete observation data and improves the probability by increasing the number
of iterations [23]. RANSAC uses the optimization method to select the parameters of the
model, that is, first build the cost function, and then determine the model parameters by
maximizing the cost function. The specific model is as follows:

θ̂ = arg max{
ϕ∈ϑ
∑ J[ρ(ϕ, θ)]} (15)

where θ is the model parameter set, ϕ is the feature point set, ρ Is the error function, J
represents the cost function. In the linear detection problem, j is the number of feature
points in the uniform set.

RANSAC randomly selects subsets of observation data. The number of elements in
the subsets is the minimum number of data required to determine the model n. the selected
subsets are assumed to be local points, and the algorithm is completed according to the
following steps: (A) A model is determined by the assumed local point, and the relevant
unknown parameters are determined by the local point and the model. (B) Use the model
obtained in Step A to test other data. If the linear distance from a point to the model is
within the threshold range, it is judged that the point is an internal point. (C) The estimated
model is considered to be reasonable enough, if enough points are judged as local points.
(D) All local points are used to re estimate the model, and this model is used as the final
model of the data. The whole process is an iteration, and the best fitting model is selected
by a fixed number of iterations.
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Huber Regression (HBR)

Huber loss function is that L2 loss function is used when the prediction deviation
is less than the robustness parameter; When the prediction deviation is greater than the
robustness parameter, L1 loss function is used. Huber regression does not ignore the
existence of outliers and uses linear loss for outliers [24]. Compared with L2 loss, Huber
regression reduces the weight of outliers and ultimately reduces the impacts of outliers
on regression. Subsequently, Huber and Peter [25] proved the large sample asymptotic
property of the parameter estimator of Huber regression and made it widely used in many
fields. The optimization objective function of Huber regression is as follows:

min
ω,σ

n

∑
i=1

(σ+ Hε(
Xiω− yi

σ
)σ) + α||ω||22 (16)

where

Hε(z) =
{

z2, if|z| < ε

2ε|z| − ε2 otherwise
(17)

Elastic-Net Regression (ENR)

When multiple features are correlated, LASSO may choose only one at random, while
Ridge regression [26] will choose all features. At this time, it is easy to think that if these
two regularization methods are combined, the disadvantages of the two methods may be
combined. This regularized algorithm is called ENR. ENR is a linear regression model
using L1 and L2 priors as regularization matrices [27]. ENR automatically selects features
while maintaining the shrinkage coefficient. It can select group related features, or select
more features than the number of samples to saturate the features. It is suitable for models
with multiple features related to each other. ENR is defined as follows:

argmin[
N

∑
i=1

(yi − ŷi)
2 + γα

k

∑
j=1
||βj||1 +

γ(1− α)
2

N

∑
i=1
||βj||22] (18)

where γ is a complex parameter that controls the degree of compression (0 means no
penalty, ∞ means full penalty), α(0 ≤ α ≤ 1) is the mixed parameter of elastic network,
||βj||22 is the ridge regression term, ||βj||1 is the lasso item.

Automatic Relevance Determination Regression (ARD)

ARD is a sparse model obtained in data training based on Bayesian principle applied to
regression problems [28]. Let the sample data set used for training be {xn, tn | n = 1, 2, · · ·N},
xn represents the sample input value used for training, tn represents the output of indepen-
dent distribution, and establish the functional relationship between xn and tn:

tn = y(xn;ω) + ξn (19)

where ξn satisfying the additional Gaussian noise for ξn~N(0, σ2), σ2 is the quantity to be
solved, and it can be inferred that Equation (9) satisfies the Gaussian distribution:

p(tn|x) = N(tn | y(xn),σ2) (20)

Since tn does not interfere with each other and is independent of each other, the
likelihood function of the training sample set can be expressed as follows:

p(t|ω,σ2) = 2πσ2−N
2 exp{− 1

2σ2 ||t− θω||
2} (21)

whereω = [ω0,ω1, · · ·ωN]
T, θ is n× (n + 1) matrix,ωi satisfies the Gaussian distribution

of the prior distribution that the mean is 0 and the variance is α−1
i . Hyperparameter
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α = [α0,α1, · · · ,αN]
T,αi corresponds to one ωi. The prior distribution can be obtained

from the training sample data set. The likelihood function of the training sample set is
determined by Equation (21). According to the Bayesian principle, the weight valueωi, the
expression of the posterior distribution, can be obtained as follows:

p(t|ω,α,σ2) =


P(t|ω,σ2)P(ω,α)

P(t|α,σ2)

(2π)−(N+1)/2|∑ |−1/2 exp
{
− 1

2ω−mT ∑−1(ω−m)
} (22)

where m = σ2 ∑ θTt, ∑ =
(
σ−2θTθ+ A

)−1
, A = diag(α0,α1, · · · ,αN). The maximum

likelihood function is:

p(t|α,σ2) =

{ ∫
P(t
∣∣ω,σ2)P(ω

∣∣α)dω
(2π)−(N+1)/2|C|−1/2 exp

{
1
2 tTC−1t

} (23)

where C = σ2I + θA−1θT, C is the covariance. After calculating the partial derivatives of α
and σ2 and making their values equal to 0, the following two formulas can be obtained.

αnew
i = ri/µ2

i (24)

(
σ2
)new

=
||t− θµ||2

N−∑N
i ri

(25)

where: µi represents the ith posterior average weight, and ri is the element on the ith main
diagonal. In the calculation process, the values of m and Σ are updated with the iteration
until the convergence condition or the maximum number of iterations are satisfied.

Tweedie Regression (TWD)

Tweedie distribution family is a kind of exponential divergence model, which generally
uses TWP(ϑ,ϕ), where ϑ Is the specification parameter, and ϕ is the discrete parameter [29].
A Tweedie distribution family is completely determined by its variance function V(µ) = µP.
P is taken from (−∞, 0)∪ [1,+∞). It includes several common important distributions as its
special cases: p = 0, 1, 2, 3 correspond to normal distribution, Poisson distribution, Gamma
distribution and inverse Gaussian distribution respectively. Take Tweedie distribution as
the distribution of dependent variable to establish a generalized linear model as follows:

yi ∼ TWP(ϑi,ϕi) (26)

µi = E(yi) (27)

g(µi) = x′iβ (28)

where xi =
(
xi1, · · · , xq

)T is a vector composed of q classification variables, T represents
transpose, and β represents a parameter vector of order q× 1.

Table 3 shows the information of the nine methods and their applicability descriptions.
The implementation of the above 9 algorithms all relies on Python programming and its
algorithm libraries. Among the nine algorithms, except BRR algorithm [30] applied in
the field of visibility prediction, other algorithms are not widely used in airport visibility
prediction. This study hopes to try these unused methods.
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Table 3. The information of 9 artificial intelligence algorithm models and their applicability.

Model Names Applicability

1 Isotonic regression (IST)-based model

IST can find a non decreasing approximation function on the training data
while minimizing the mean square error. The advantage of this model is that it
does not assume any form of objective function. Isotonic expression has no
requirements on the output characteristics of the model and is applicable to the
case of large sample size. However, it is easy to over fit when the sample size is
small. IST is usually used as an auxiliary method to repair the uneven
correction results caused by data sparsity.

2 Bayesian Ridge Regression
(BRR)-based model

BRR is a special case of Bayesian linear regression and belongs to Ridge
regression. It has all the characteristics of ridge regression and Bayesian
linear regression.

3 Least absolute shrinkage and selection
operator (LASSO)-based model

LASSO is a method that can establish a generalized linear model and filter
variables, which is powerful and effective. At the beginning, this statistical
model was applied in the field of geophysics, and later it was applied to model
building in the medical field. As LASSO has the function of “variable
selection”, it is often used in traditional low dimensional data in economics.

4 Passive Aggressive Regression
(PAR)-based model

PAR embodies an idea of online learning, which can continuously integrate
new samples to adjust the classification model and enhance the classification
ability of the model.

5 Random sample consensus Regression
(RANSAC)-based model

RANSAC can estimate the parameters of the mathematical model through
iteration from a set of observation data containing outliers. It is an uncertain
algorithm—it has a certain probability to get a reasonable result; In order to
improve the probability, the number of iterations must be increased. Its
advantage is that it can estimate model parameters robustly, but its
disadvantage is that only a certain probability can get a credible model, and
the probability is proportional to the number of iterations.RANSAC is
commonly used in computer vision.

6 Huber Regression (HBR)-based model

HBR model depends on M-estimate. Compared with the mean, the
measurement is less sensitive to outliers. HBR does not ignore outlier, and the
linear loss of outlier is adopted, which relatively reduces the weight of outlier
and ultimately reduced the impact of outlier on the regression results. And
HBR should be faster than RANSAC.

7 Elastic-Net Regression (ENR)-based
model

When multiple features are related, LASSO can only randomly select one of
them, while Ridge regression will select all features. ENR can combine the
advantages of the two regularization methods, making this method very
useful when many features are interrelated. The best thing about ENR is that
they can always produce efficient solutions. Since it does not generate cross
paths, the resulting solutions are quite good.

8 Automatic Relevance Determination
Regression (ARD)-based model

The maximum likelihood method is used to optimize the parameters, which
can infer the relative importance of different inputs from the data. This is an
example of ARD. The model is suitable for real-time operation and has been
applied to earthquake early warning, earthquake ground motion attenuation
estimation and structural health monitoring

9 Tweedie Regression
(TWD)-based model

TWD distribution is a compound distribution of Poisson distribution and
gamma distribution. One of the most obvious characteristics of TWD
distribution is to generate samples with a value of 0 with a certain probability.
This method is often used to analyze semi-continuous data composed of zero
and positive continuous data, which widely exists in actuarial science,
geosciences and other fields.

2.2.3. The Kurtosis and Skewness Coefficient

Comparing the shape property is is an effective method to test the simulations, as
shape property are related to the extreme frequency and amplitude of the data [31]. Kurtosis
and skewness are two important measures. Kurtosis is a statistic that studies the steep or
smooth distribution of data. Through the kurtosis coefficient, whether the data is steeper
or smoother than the normal distribution can be determined. Skewness is a statistic that
studies the symmetry of data distribution. Through the skewness coefficient, the degree
and direction of asymmetry of data distribution can be determined.
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The formula of kurtosis coefficient is as follows:

K =

1
n ∑n

i=1[
(

Xi−µ
σ )4

]
(

1
n ∑n

i=1[(Xi − µ)2]
)2 (29)

where µ is the mean value and σ is the standard deviation. The kurtosis coefficient of the
data that completely obey the normal distribution is 3. The larger the kurtosis coefficient,
the higher and sharper the probability distribution diagram is, and the smaller the kurtosis
coefficient is, the fatter it is.

The formula of skewness coefficient is as follows:

S =
E
[
x3]− 3µσ2 − µ3

σ3 (30)

where µ is the mean value, σ is the standard deviation and E
[
x3] is the 3-order origin

moment of x. When S < 0, the probability distribution is left biased. When S = 0, it means
that the data is relatively evenly distributed on both sides of the average value, which is not
necessarily an absolute symmetrical distribution. When S > 0, the probability distribution
diagram is biased to the right.

3. Results
3.1. Vertical Distribution and Variation of Meteorological Elements at Airports

For the four elements (temperature, air press, relative humidity and wind speed) of
L-band sounding data, the vertical distribution of the mean observed twice at 8:00 a.m. and
20:00 p.m. is basically the same in 2010–2020 (Figure 2). Temperature observed at 8:00 a.m.
and at 20:00 p.m. ranges from −77.9 ◦C in the 47th minute at HAK in Haikou to 23.1 ◦C in
the 0th minute at HAK and ranges from −78.3 ◦C in the 47th minute at HAK to 24.8 ◦C in
the 0th minute at HAK, respectively (Figure 2a,e). The maximum geopotential height that
sounding balloon at all stations can reach in the 60th minute is 27,128.4 geopotential metre
(gpm) and 27,274.7 gpm at 8:00 a.m. and 20:00 p.m., respectively. In general, within the
above two geopotential height ranges, the sounding data at the stations decrease with the
increase in geopotential height. However, for most stations, the lowest temperature does
not appear in the 60th minute or so but in the 45th- to 55th-minute period. This is related to
the detector gradually reaching the stratosphere troposphere junction and even entering
the stratosphere. The heat in the troposphere mainly comes from the radiation of the earth’s
surface, and the temperature of the troposphere decreases with increasing height. The main
heat of the stratosphere comes from the ultraviolet rays in the solar radiation absorbed
by the original ozone: Therefore, the higher the height, the more solar radiation received,
and the temperature increased. In addition to altitude, geographical regions also affect the
temperature of vertical detection. For example, the vertical temperature of SYX at Sanya
and HAK at Haikou in the tropics is slightly higher than that of other geographical regions.

Air press observed at 8:00 a.m. and at 20:00 p.m. ranges from 19.1 hPa in the 60th
minute at LXA in Lhasa to 1016.7 hPa in the 0th minute at SHA in Shanghai and ranges from
18.8 hPa in the 60th minute at LXA to 1016.0 hPa in the 0th minute at SHA, respectively
(Figure 2b,f). As the geopotential height increases, the air pressure decreases. In Lhasa,
Lijiang and other high-altitude airports, due to the influence of altitude, the 0th minute
air pressure is significantly lower than that of other airports. Relative humidity observed
at 8:00 a.m. and at 20:00 p.m. ranges from 2.0% in the 60th minute at LJG in Lijiang to
90.9% in the 0th minute at SYX in Sanya and ranges from 2.0% in the 60th minute at LJG
to 90.6% in the 0th minute at SYX, respectively (Figure 2c,g). Similar to temperature and
air pressure, the relative humidity also changes with the change in geopotential height;
that is, the relative humidity decreases with the increase in geopotential height. SYX, HAK
and other airports located in the tropical monsoon region have high humidity near the
ground due to climate reasons. LXA, located on the Tibetan Plateau, shows a pattern that
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the relative humidity increases first and then decreases. Unlike other airports, LXA shows
a pattern of relative humidity increasing first and then decreasing, especially at 20:00 p.m.
Wang et al. [32] found that the cloud base height at the entrance of the water vapor channel
of Yarlung Zangbo Grand Canyon in dry and rainy seasons is mainly 0–1 km and 2–3 km,
and more than 40% of the cloud base height is less than 1 km, which is the reason for more
precipitation in this region. A large number of humid low clouds may also be the reason
why the relative humidity in LXA rises first and then decreases. Wind speed observed at
8:00 a.m. and at 20:00 p.m. ranges from 0.4 m·s−1 in the 0th minute at XNN in Caojiabao
to 45.5 m·s−1 in the 33rd minute at SHA and ranges from 1.5 m·s−1 in the 0th minute at
KOW in Ganzhou to 45.5 m·s−1 in the 33rd minute at SHA, respectively (Figure 2d,h).
Unlike temperature, air pressure and relative humidity, wind speed does not have a simple
positive or negative correlation with geopotential height, and the stronger wind speed
mainly concentrate in the 20th–50th minute period. The wind speed at each airport has
little difference near the ground, and the larger wind speed mainly occurs at low altitude
airports, such as SHA, NKG in Nanjing and XUZ in Xuzhou. Due to the influence of uneven
ground near the ground, the friction slows down the flow of air and the wind is weak. With
the increase in geopotential height, the friction force of air becomes small and the wind
force gradually increases. Below the tropopause, wind speed usually increases with height
and reaches the maximum at the tropopause. While wind speed above the tropopause
decreases with the increase in geopotential height.

Figure 2. Vertical distribution of the mean of temperature (a,e), air pressure (b,f), relative humidity
(c,g) and wind speed (d,h) within 0th−60th minutes of sounding balloon rise during 2010−2020. The
upper and lower lines represent data detected at 8:00 a.m. and 20:00 p.m., respectively. The airports
are arranged left-to-right by altitude along the x-axis.

At 8:00 a.m. and 20:00 p.m., the vertical changes in each meteorological element
in 0th–60th minutes are basically the same (Figure 3). The negative vertical trend of
temperature has an obvious pattern of increasing from northwestern to southeastern China,
and all of them are statistically significant (p < 0.05) (Figure 3a,b). The vertical trends
of temperature range from −2.04 ◦C/min at HAK to −0.97 ◦C/min at HRB and from
−2.06 ◦C/min at HAK to −0.97 ◦C/min at HRB at 8:00 a.m. and 20:00 p.m., respectively.
The vertical trends of air press range from−15.80 hPa/min at PEK to−9.21 hPa/min at LXA
and from −15.95 hPa/min at PEK to −9.12 hPa/min at LXA at 8:00 a.m. and 20:00 p.m.,
respectively (Figure 3d,e). In eastern and western China, the vertical trend range of air
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pressure is different, although both are significantly decreased, and the negative trend in
the eastern is greater. In the Tibetan Plateau and its surroundings with higher altitude and
lower air pressure, the vertical change in air pressure is small. The vertical trends of relative
humidity range from −1.30%/min at KOW to −0.48%/min at LXA and from −1.25%/min
at KOW to −0.27%/min at LXA at 8:00 a.m. and 20:00 p.m., respectively (Figure 3g,h).
With the increase in geopotential height, the relative humidity decreased significantly at
all airports. Similar to temperature, the vertical downward trend of relative humidity
also shows a decreasing pattern from southeastern to northwestern China in space. The
vertical trends of wind speed range from −0.08 m·s−1/min at LJG to 0.57 m·s−1/min at
CGO and from −0.08 m·s−1/min at LJG to 0.56 m·s−1/min at CGO at 8:00 a.m. and
20:00 p.m., respectively (Figure 3j,k). The regularity of the vertical change in wind speed
is not as strong as the above three meteorological elements. On the one hand, the vertical
change at all airports is not statistically significant, on the other hand, there is no obvious
spatial distribution pattern for wind speed. The wind speed over most airports increases
with the increase in geopotential height within 0th–60th minutes, but the wind speed
of individual airports decreases with the increase in geopotential height, especially the
airports in Hainan Island. Low altitude location and strong sea breeze near the ground
may lead to different performances of airports in Hainan. The different performance of
URC should also be related to the perennial more sandstorms near the ground in this area.
From the relationship between the vertical trends in various meteorological elements and
the altitude of the airports, the vertical change in air pressure has a greater relationship
with the altitude of the airport, which may also be the reason for its east-west distribution
in space (Figure 3c,f,i,l).

Figure 3. Vertical trend of 4 meteorological elements within 0th–60th minutes of sounding balloon
rise (a,b,d,e,g,h,j,k) and the relationship between the vertical trends and the elevations of the L-band
sounding stations (c,f,i,l). The left and middle columns represent trends at 8:00 a.m. and 20:00 p.m.,
respectively. The right column shows the relationship between the trends and elevations at 8:00 a.m.
The relationship at 20:00 p.m. is not shown here as it is basically the same as 8:00 a.m. Triangles
represent statistically significant trends (p < 0.05).
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3.2. Relationship between Meteorological Elements and Visibility at Different Geopotential Heights

Whether at 8:00 a.m. or 20:00 p.m., the correlation between the four meteorological
elements and visibility is not significant (Figure 4). The Spearman correlation coefficients
between airport visibility and temperature range from −0.359 at LXA to 0.704 at HAK and
from −0.352 at LXA to 0.666 at URC at 8:00 a.m. and 20:00 p.m., respectively (Figure 4a,e).
The visibility of most airports shows no significant positive correlation with the temper-
ature within 0th–30th minutes. The greatest positive correlation between visibility and
temperature within 0th–30th minutes occurred at HAK in Haikou and URC in Urumqi.
While greater negative correlation within the 0th–30th minutes occurred at LXA in Lhasa,
LJG in Lijiang and PEK in Beijing. The strong correlation between temperature and airport
visibility is mainly concentrated in the 0th–30th minutes, and then the small correlation
coefficient or the reversal of the positive and negative correlation in the 30th–60th minutes
both show the weakening of the correlation. The Spearman correlation coefficients between
airport visibility and air pressure range from −0.629 at HAK to 0.423 at URC and from
−0.569 at HAK to 0.471 at URC at 8:00 a.m. and 20:00 p.m., respectively (Figure 4b,f).
Within 5 min of vertical rise (within about 2000 gpm from the ground), the visibility has a
strong correlation with the air pressure. Additionally, at most airports, the lower the air
pressure under 2000 gpm from the ground, the better the visibility. After exceeding the
range of 2000 gpm, the correlation between visibility and air pressure at most airports is
weakened, but the positive and negative correlations at some airports are reversed, such as
URC, HAK, and HRB in Harbin.

Figure 4. Spearman correlation coefficient between meteorological elements and airport visibility in
every minute during 2010–2020. From left to right are the correlation coefficients of temperature (a,e),
air pressure (b,f), relative humidity (c,g) and wind speed (d,h) with visibility. The first row and the
second row represent 8:00 a.m. and 20:00 p.m., respectively. The airports are arranged left-to-right by
altitude along the x-axis.

The Spearman correlation coefficients between airport visibility and relative humidity
range from −0.672 at CGO to 0.322 at HAK and from −0.625 at URC to 0.289 at NNG at
8:00 a.m. and 20:00 p.m., respectively (Figure 4c,g). In almost all airports, the visibility is
negatively correlated with the relative humidity within 400 gpm from the ground (within
2 min of vertical rise), that is, the greater the relative humidity, the poorer the visibility of
the airports, and the negative correlation is greater in airports with lower altitude. With the
increase in vertical height, the correlation between relative humidity and airport visibility
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is weakened, and a few airports have positive and negative correlation reversal. However,
since the detection equipment is far away from the airport due to horizontal movement
during the ascent, the correlation of higher positions seems to be less referential. The
Spearman correlation coefficients between airport visibility and wind speed range from
−0.514 at HAK to 0.544 at HAK and from −0.540 at URC to 0.398 at HAK at 8:00 a.m. and
20:00 p.m., respectively (Figure 4d,h). At 8:00 a.m., the visibility is positively correlated
with the wind speed within 2000 gpm from the ground (within 5 min of vertical rise) at
most airports. After exceeding the range of 2000 gpm, the majority correlation coefficients
are negative. Different from 8:00 a.m., at 20:00 p.m., the positive correlation mainly appear
within 400 gpm from the ground (within 3 min of vertical rise) at most airports. HAK in
Haikou, XNN in Xining and LXA in Lhasa are among the few airports where the visibility
is negatively correlated with the wind speed within 300 gpm.

3.3. Hourly Airport Visibility Prediction by Artificial Intelligence Methods
3.3.1. Model Training

Based on meteorological data and 9 machine learning algorithms, the visibility predic-
tion models of 47 airports are established independently. Hourly samples of 26 meteorolog-
ical elements in 2018–2019 are used to train the visibility prediction models proposed in
this study. On the whole, the hourly visibility prediction model based on various meth-
ods during the training period has good results, the Spearman correlation coefficients are
mostly higher than 0.7, and the standard deviation ratios are around 1 (Figure 5). The
standard deviation ratios of PAR- and IST-based models are not concentrated around 1,
indicating that there is a certain gap between the simulations and the observations during
the training period.

Figure 5. Taylor diagram presents a comparison of the hourly predicted and observed airports
visibility in the training period (2018–2019). The diagram shows the correlation (the arc coordi-
nate) and ratio of the standard deviation (the abscissa and ordinate) between the hourly prediction
and observation.
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From the RMSE (the root mean square error) and MAE (the mean absolute error)
comparison between the simulations and observations in various months, it can also be
seen that In addition to the poor results of PAR- and IST-based models, the other seven
algorithm models perform well and have little difference in results (Figure 6). From June to
September, the results of PAR- and IST-based models are worse than those in other months.
The performances of TWD-, BRR-, ARD- and ENR-based models are relatively similar,
and the distributions of RMSE and MAE of the four models are relatively similar. This
shows that most models are well trained and suitable for hourly visibility prediction at all
selected airports.

Figure 6. RMSE (black) and MAE (blue) between hourly visibility observations and predictions at
47 airports in the training period. (a–l) refers to January to December respectively. The red solid
line and green dotted line represent the median and mean of each algorithm model at 47 airports,
respectively. 25th and 75th percentiles are the bottom and top boundaries of a box, minimum and
maximum are the bottom and top whiskers of a box. The notation applies for following box figures.

3.3.2. Model Testing

The results in testing period of each algorithm model are worse than the training
period (Figures 7 and 8). Similar to the performance in the training period, there is a
certain gap between the dispersion of the airport visibility prediction results obtained by
PAR- and IST-based models and the observations, especially PAR-based models (Figure 7).
Comparing the dispersion degree of the prediction and the observation, the dispersion
degree of the visibility simulation results obtained by HBR- and RANSAC-based models is
relatively consistent with the observations. The visibility prediction performance of ARD-,
BRR-, ENR-, LASSO- and TWD-based models is relatively similar, and the distribution of
47 airports on the Taylor diagram of the corresponding algorithm is relatively consistent.
At the same time, it can be seen that the airports with better visibility prediction results by
different methods, while the airports with the worst prediction results are also fixed. This
indicates that the geographical location of the airport may determine whether the visibility
appears regularly, whether there are more complex inducements and other factors that
affect the prediction results. For the airports located in Shijiazhuang (SJW), Hefei (HFE),
Zhengzhou (CGO), Xuzhou (XUZ), Xianyang (XIY), Nanjing (NKG) and Hangzhou (HGH),



Sustainability 2022, 14, 12213 17 of 24

the visibility can be accurately predicted by the algorithm models, while for the airport
located in Lhasa (LXA), Lanzhou (LHW), Manzhouli (NZH), Hohhot (HET), Shenyang
(SHE), the visibility prediction performance are poor. From the visibility prediction results
in different months, the RMSE and MAE between the predicted and observed are the
smallest in November and December, while the they are the largest from June to September
(Figure 8). RMSE and MAE between the prediction by PAR- and IST-based models and
observation are large in all months.

Figure 7. Taylor diagram presents a comparison of the hourly predicted and observed airports
visibility in the testing period (2020). The diagram shows the correlation (the arc coordinate) and ratio
of the standard deviation (the abscissa and ordinate) between the hourly prediction and observation.

Through kurtosis and skewness coefficients, the shape property of observation and
prediction can be compared (Figures 9 and 10). In addition to the visibility observation of
LHW, LXA, NZH, HET, HLD, SHE, HRB and CKG, the hourly visibility of other airports in
2020 shows a thin tail distribution (kurtosis coefficient > 3) in terms of kurtosis (Figure 9).
For the eight airports with thick tailed observations (kurtosis coefficient < 3), the kurtosis
coefficient of PAR- and HRB-based models prediction are close to the observed values,
especially for the three airports, LHW, LXA and CKG with large observation kurtosis
coefficients. For most airports, the kurtosis of visibility prediction obtained by all algorithm
models is not much different from the kurtosis of observations. Among them, the kurtosis
of the prediction results of all nine algorithm models at HEF, HGH, KWL, NGB, NTG, PVG,
SHA, URC and WNZ are very close to the observations. Compare the prediction results
of the models, IST-based model shows the worst effect. As for many airports, the kurtosis
of the predicted results of IST-based model is greatly different from the kurtosis of the
observation and the results of other algorithm models.
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Figure 8. RMSE (black) and MAE (blue) between hourly visibility observations and predictions at
47 airports in the testing period. (a–l) refers to January to December respectively.

Figure 9. Kurtosis comparison between the hourly visibility observations and predictions at
47 airports in the testing period. The slash shadow represents that the result of this method is
much worse than the observation and other methods.
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Figure 10. Skewness comparison between the hourly visibility observations and predictions at
47 airports in the testing period. The slash shadow represents that the result of this method is much
worse than the observation and other methods.

Unlike the thin tailed distribution in airports visibility observations, which accounts
for the vast majority of kurtosis, the ratio of the number of airports with negative (skewness
coefficient < 0) and positive (skewness coefficient > 0) skew distribution is about 2:1
(Figure 10). For the hourly airport visibility observations in 2020, the maximum and
minimum values of the skewness coefficient occur at DYG in Zhangjiajie and LHW in
Lanzhou, respectively. There is little difference in the skewness coefficients of the airports
with positive skew distribution of visibility, while in the negative skew distribution, the
negative skewness coefficients of LHW, LXA and NZH are obviously higher than others.
The skewness of the prediction results of all nine algorithm models at DSN, DYG, HGH,
JNZ, NKG, URC, WNZ and XUZ are very close to the observations. The skewness coefficient
of IST-based model results is better than kurtosis, though the skewness of IST-based model
predictions is still the worst among all algorithm models.

4. Discussions
4.1. Airports with Typical Relationship between Visibility and Sounding Data

From the relationship between vertical meteorological data and airport visibility, HAK
(in Haikou) is one of the special airports. The visibility of HAK has the greatest positive
correlation with air temperature, relative humidity (within 400 gpm from the ground) and
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wind speed (within 2000 gpm from the ground at 8:00 a.m. and 400 gpm from the ground at
20:00 p.m.) and the greatest negative correlation with air pressure (within about 2000 gpm
from the ground) among all airports. HAK is located on Hainan Island in the tropical
marine monsoon climate zone, and the climate is very complex, which should be the main
reason for the typical visibility of HAK. Hainan Island is one of the regions with the highest
rainfall in the world at the same latitude. However, the total precipitation is large but the
spatial and temporal distribution is uneven. The rainy season generally occurs from May
to October, and the dry season is from November to next April. The precipitation in rainy
season accounts for about 80% of the annual. In winter, the cold air from the north to the
south is blocked by Wuzhi Mountain, forming a static front near Haikou, thus causing low
visibility events at HAK. At the altitude of 925 hPa, when the high-pressure system is in
the north of HAK and the airport is controlled by the northeast wind, the visibility is better,
and the visibility is poor when the airport is affected by the southeast wind and the humid
and hot wind mass on the sea [33]. The high relative humidity in the atmosphere caused by
the climate of Haikou is also an important factor affecting the visibility of HAK, because the
increase in the relative humidity in the atmosphere will promote the hygroscopic growth of
hygroscopic particles, increase the scattering cross section, and then lead to the reduction
of visibility [34,35].

Besides HAK, LXA in Lhasa and URC in Urumqi are also two typical airports. LXA is
among the few airports where the visibility is negatively correlated with the wind speed
within 300 gpm. Which may be related to the fact that LXA is located in the Tibetan Plateau
with special climate. The floating dust and sand rising with the increase in wind speed
contribute to the poor visibility of LXA [17]. Cui et al. [36] point out that the biomass and
incense burned by religious ceremonies during the day have made great contributions to
the low visibility in Lhasa. Although it can try to explain the negative correlation between
visibility and temperature at LXA, it seems that the religious burning of biomass and
incense is mainly concentrated in densely populated urban and rural areas, which will not
have a great impact on airport visibility, and it is difficult to explain the negative correlation
between wind speed and airport visibility.

Compared with other airports, the visibility of URC is more strongly affected by the
temperature. On the one hand, the comparison between winter and summer may be a factor
reflecting the influence of the temperature on the visibility of URC. Urumqi is located at the
rear of the Mongolian cold high in winter. When the stable snow is formed, the inversion
layer is often maintained over the Junggar basin, resulting in the cloudy fog weather in
the Junggar Basin and the northern Xinjiang along the Tianshan Mountains [37]. On the
other hand, the temperature dew point difference directly determined by the temperature
is also a factor that determines the visibility of URC. Liang [38] believes that the visibility
is inversely related to the temperature and dew point difference at URC. The smaller
difference, the easier it is to cause low visibility events.

4.2. Comparison of Airport Visibility Prediction Models

The prediction results of PAR- and IST-based models are worse than those of other
models. For PAR-based model, the PAR reflects an online learning algorithm, that is,
the data is input one by one, and the result is related to the arrangement data of the
data. Therefore, the PAR-based model is unstable and cannot consider the whole situation.
In addition, PAR-based model is an online learning algorithm for large-scale data. Its
advantage is that it does not need all the data, and the model is updated by analyzing new
samples. It has a fast training speed. However, for the meteorological prediction that rely
heavily on large-scale historical data, the past periodic data patterns may be difficult to
obtain effectively, and ultimately lead to poor prediction results. The above-mentioned
defects may be the reason for the poor prediction results of the model. IST does not
require the output characteristics of the model, and it is a nonparametric method for fitting
monotonic models to data. However, this method is prone to computational difficulty
and statistical overfitting problems in higher dimensions [39–41]. Moreover, IST looks for
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a group of piecewise linear continuous functions that are not decreasing. However, for
meteorological data, such as precipitation, wind speed and other characteristics change
periodically with seasons, the data distribution assumed by the model is not consistent
with the actual data distribution, which affects the prediction effect.

In addition to PAR- and IST-based models, the simulation results of other models
are basically similar and the results are also good, which indicates that the other seven
algorithm models can be better applied to airport visibility prediction. From the comparison
of the dispersion of prediction and observation, the visibility prediction based on HBR
and RANSAC are better. The advantage of good robustness of RANSAC algorithm may
make the RANSAC-based model has better prediction performance, that is, the model
parameters can be estimated even if there is a large degree of separation. The Huber loss
function with strong tolerance to noise can better suppress the influence of outliers on the
calculation results, thus making the HBR-based model results more accurate [42].

In addition to the different prediction performance caused by the model’s own at-
tributes, the input data used in this study are all meteorological elements, which may
also be an important factor affecting the prediction results. Because human activities also
make a great contribution to the change in visibility. In the Section 4.1, it is mentioned that
the collective burning of incense in religious areas may lead to a decline in visibility [36].
Moreover, such human activity factors with obvious time characteristics should be taken
into account in the input data of the model, such as the changes in visibility caused by the
massive burning of fossil fuels for heating in northern China in cold seasons [43]. Industry,
energy consumption, vehicles and other socioeconomic factors are significantly associated
with atmospheric aerosols [44–47], and the increase in aerosols will directly lead to the
decrease of visibility. Therefore, in the future model construction, the environmental factors
that affect visibility and changed by human activities mentioned in the previous study,
such as PM2.5, PM10, NO2, SO2, O3 and CO, should be considered at the same time to
improve the prediction accuracy of the model.

5. Conclusions

In this study, L-band sounding data during 2010–2020 is employed to investigate
vertical characteristics of temperature, air pressure, and relative humidity wind speed
at the selected airports. The relationship between airport visibility and meteorological
elements at different potential heights are also examined. Then, based on the hourly
26 meteorological elements in 2018–2020, the hourly visibility of the airports are predicted
by 9 artificial intelligence algorithm models, and the prediction results of different methods
are compared. The major findings are summarized as follows.

(1) For the vertical change in airport meteorological elements, the negative vertical trends
of temperature and relative humidity have an obvious pattern of getting greater from
northwestern to southeastern China. In eastern and western China, the vertical trend
ranges of air pressure are different, although both are significantly decreased, and the
negative trend in the eastern is greater.

(2) Within about 2000 gpm from the ground, the visibility has a strong correlation with
the air pressure and most of them are negative. The visibility is negatively correlated
with the relative humidity within 400 gpm from the ground. At 8:00 a.m., the visibility
is positively correlated with the wind speed within 2000 gpm from the ground at most
airports, while at 20:00 p.m., the positive correlation mainly appear within 400 gpm
from the ground.

(3) There is a certain gap between the dispersion of the airport visibility prediction results
obtained with the PAR- and IST-based models and the observations. Comparing the
dispersion degree of the prediction and the observation, the dispersion degree of the
visibility simulation results obtained by HBR- and RANSAC-based models is relatively
consistent with the observations. For the airports located in Shijiazhuang (SJW), Hefei
(HFE), Zhengzhou (CGO), Xuzhou (XUZ), Xianyang (XIY), Nanjing (NKG), and
Hangzhou (HGH), the visibility can be accurately predicted by the algorithm models,
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while for the airport located in Lhasa (LXA), Lanzhou (LHW), Manzhouli (NZH),
Hohhot (HET), and Shenyang (SHE), the visibility prediction performance are poor.

Both meteorological element prediction and climate prediction are extremely com-
plicated. The improvement of forecast accuracy depends on modern observation and
advanced methods. In this context, this study conducts airport visibility forecast based
on the current relatively foreword AI method and the current relatively complete and
comprehensive meteorological observation. In order to carry out targeted research on
47 airports, the visibility prediction model most suitable for each airport is found through
the performance of nine different algorithms in different airports. This study can provide
support for the climate prediction around the airport in the following aspects: (1) By es-
tablishing a visibility prediction system, the climate over selected airport in 2018–2020 has
been combed and analyzed in a targeted way, and the meteorological change patterns of
airports in different climate zones have been strengthened. (2) Although machine learning
methods are widely used at present, they still have limitations. Based on this study, subse-
quent studies can add interpretable factors such as aerodynamics to improve the ability of
prediction and early warning.
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