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Abstract: Spatiotemporal analysis of COVID-19 cases based on epidemiological characteristics leads
to more refined findings about health inequalities and better allocation of medical resources in a
spatially and timely fashion. While existing literature has explored the spatiotemporal clusters of
COVID-19 worldwide, little attention has been paid to investigate the space-time clusters based
on epidemiological features. This study aims to identify COVID-19 clusters by epidemiological
factors in Golestan province, one of the highly affected areas in Iran. This cross-sectional study
used GIS techniques, including local spatial autocorrelations, directional distribution statistics, and
retrospective space-time Poisson scan statistics. The results demonstrated that Golestan has been
facing an upward trend of epidemic waves, so the case fatality rate (CFR) of the province was roughly
2.5 times the CFR in Iran. Areas with a more proportion of young adults were more likely to generate
space-time clusters. Most high-risk clusters have emerged since early June 2020. The infection first
appeared in the west and southwest of the province and gradually spread to the center, east, and
northeast regions. The results also indicated that the detected clusters based on epidemiological
features varied across the province. This study provides an opportunity for health decision-makers to
prioritize disease-prone areas and more vulnerable populations when allocating medical resources.

Keywords: health inequality; COVID-19; epidemiological features; spatiotemporal dynamics; GIS

1. Introduction

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) first emerged in
December 2019 in Wuhan, Hubei Province, China. Immediately after the start of the
pandemic in China, Iran experienced an explosive surge in morbidity and mortality of
the disease. In mid-February 2020, Iran was identified as the second center of COVID-19
dissemination worldwide after China [1].

Although quarantine, early testing, and exploring the transmission trajectories are
urgently required to tackle the infection [2], rapid and perfect implementation of these
strategies by developing countries such as Iran in the early stages of the pandemic seems
complicated. A quick surveillance of disease dynamics provides meaningful findings
for health agencies to explore disease-prone areas, apply efficient and accurate spatial
interventions, and prioritize high-risk locations for resource allocation [3].

Geographical Information System (GIS) is a valuable tool in medical geography, which
sheds light on the spatiotemporal behavior of diseases [4–7]. Investigating only one aspect
of the spatial [8,9] and temporal [10,11] trend of COVID-19 cannot present the spatial
and temporal variations of the infection simultaneously. However, space-time clustering
analysis can identify both spatial and temporal clusters simultaneously, providing a more
accurate assessment of the outbreak by time and space [3]. Therefore, exploring the
spatiotemporal clusters of the COVID-19 outbreak, as unfolding in communities, is crucial

Sustainability 2022, 14, 12189. https://doi.org/10.3390/su141912189 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su141912189
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-1496-3206
https://orcid.org/0000-0001-9537-9401
https://orcid.org/0000-0003-1237-4467
https://doi.org/10.3390/su141912189
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su141912189?type=check_update&version=1


Sustainability 2022, 14, 12189 2 of 15

for timely targeted interventions [12]. While the space-time analysis of the pandemic
has been conducted in many countries, including the United States [13], China [14], Hong
Kong [15], Brazil [16], Japan [17], Bangladesh [18], and Sweden [19], relatively little attention
has been paid to elucidate the spatiotemporal clusters of COVID-19 in Iran, where it still
faces new waves of the pandemic [20].

There is a vast body of studies indicating that severe outcomes of the virus are associ-
ated with the epidemiological characteristics of patients, including age, sex, and comor-
bidities (e.g., diabetes and hypertension) [21,22]. Studying the disease behavior based on
epidemiological features can not only reveal health inequalities but also provide helpful
information for health policymakers to identify at-risk populations. Little attention has
been paid to exploring the spatiotemporal disparities of COVID-19 according to epidemio-
logical characteristics. In this regard, studies [18,19,23] only focused on the spatiotemporal
clustering of COVID-19 cases and deaths exclusively. For example, [14] explored the clus-
ters of COVID-19 cases in China using the retrospective space-time scan statistic. Their
results indicated that high-risk spatiotemporal clusters were mainly distributed in densely
populated provinces with developed transportation services. Another study [15] identified
the clusters of COVID-19 cases in Hong Kong. According to their results, high and dense
buildings, higher land use mix, and high access to transportation networks increase the
risk of contracting the virus. Besides, studies on the space-time detection of COVID-19
clusters have recommended that future works should investigate the disease clusters by
age, sex, and preexisting medical conditions [12,13,24]. Exploring the spatiotemporal
disparity of the cases according to epidemiological factors in developing countries with
limited medical resources at their disposal is empirically unknown, which will make a
substantial contribution.

Studying space-time clusters of diseases on a more detailed spatial scale allows au-
thorities to design more explicit prevention strategies. Due to the unavailability of data,
most of the existing studies have detected spatial, temporal, and spatiotemporal clusters
of COVID-19 on the administrative boundaries of countries [25], districts [18], and coun-
ties [13]. Therefore, identifying the disease clusters on a finer spatial scale is essential. Most
of the related works have studied the clusters of COVID-19 up to six months after the onset
of the epidemic [12,15,25]. It may impede a holistic view of the temporal evolution of the
virus over a long period.

This study addresses the research gap by using spatial analysis and space-time scan
statistics to visualize the temporal and spatial evolution of COVID-19 and to explore
candidate clusters of the disease cases by age, sex, urban/rural housing, comorbidities, and
patient outcome in northeast Iran, Golestan province, over a long-term period of 13 months
at the village level, which is the most minor administrative division in Iran. The study’s
findings generate critical insights for health authorities on how epidemiological features
may affect residents’ health in disease-prone areas and lead to the development of targeted
interventions in response to COVID-19 transmission.

2. Materials and Methods
2.1. Study Area

Golestan province geographically lies between 36◦30′ N–38◦08′ N latitude and 53◦57′

E–56◦22′ E longitude, as shown in Figure 1. This province has a population of 1.869 million
residents in its territory of 20,367 km2. The province has 14 counties divided into 60 rural
districts, which are further split into 32 cities and 992 villages, which is the study unit of
the analysis [26].
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Figure 1. Location of Golestan province and its counties.

2.2. Data Acquisition

COVID-19 data on 21,987 daily confirmed cases from the onset of the infection on
1 February 2020 to 28 February 2021 in the study area were gathered from the Center for
Disease Control and Prevention (CDC) of Golestan province [27]. This data includes age
(i.e., consisting of 8 age groups of 0–9 to 70 and above), sex (male/female), urban/rural
housing (rural/urban), diagnosis date, location, patient outcome (recovered at home,
hospital discharge, and death), and preexisting medical conditions (cancer, cardiovascular
disease, diabetes, hypertension, immunodeficiency, kidney disease, liver disease, lung
disease, and neurological disorders). This data consists of patients hospitalized due to the
virus and people who referred to COVID-19 test centers, and the result of their COVID-19
test was positive. The population of the villages’ and cities’ residents was collected from
the Statistical Center of Iran in 2016 (the last year of the census in Iran) [28]. Spatial data
(shapefiles) about villages’ and cities’ locations (point) was obtained from the Deputy
of Statistics and Information of Golestan Province [26]. To explore high-risk areas of
transmission, we calculated the incidence rate for each village/city. The incidence rate is
the number of new cases over a specified period divided by the population at risk over
that period multiplied by 100,000 [29]. We assumed that residents of villages/cities are the
exposed populations (population at risk) because COVID-19 threatens all age groups and
all genders during the pandemic. We also assume that the population of each village/city is
constant during the study period. We aggregated the COVID-19 dataset at the village/city
level (point layers). In this regard, we geo-coded all the patients based on their locations
(cities or villages) and assigned them latitude and longitude coordinates using ArcGIS 10.2
(ESRI, Redlands, CA, USA).

2.3. Methodology

This study was conducted in three steps. First, we demonstrated the temporal evo-
lution of COVID-19 cases using statistical graphs. Second, hot spot analysis was used
to explore high and low-risk areas of the disease across the Golestan province. We also
applied directional distribution analysis to identify the distributional trend of COVID-19
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throughout the province. Finally, a retrospective space-time Poisson scan statistic was used
to explore spatiotemporal clusters of COVID-19 cases based on epidemiological features.

2.3.1. Hot Spot Analysis

We used the Getis Ord Gi* statistic [30] to locally demonstrate hot spots and cold spots
(high and low-risk areas). This statistic is a proper choice chosen to identify the structure of
COVID-19 clusters locally [30], which is calculated based on Equations (1)–(3):

Gi∗ =
∑n

j=1 Wi, j Xj− X ∑n
j=1 W i, j

S

√ [
n ∑n

j=1 W i,j2−
(

∑n
j=1 W i,j

)
2
]

n−1

, (1)

X =
∑n

j=1 Xj

n
, (2)

S =

√
∑n

j=1 Xj2

n
− (X)2 , (3)

where xj reflects the incidence rate of feature j (village/city), n denotes the total number of
features, and wi,j is the spatial weight between features i and j. We used the fixed distance
band method as the conceptualization of spatial relationships among the features, which
ensures each feature has at least one neighbor. We used the projected data to accurately
measure distances based on Euclidean distances. This analysis returns three measures of
z-score (Gi*), p-value, and confidence level bin (Gi_Bin) for each feature. A high positive
z-score with a low p-value indicates a spatial clustering of high values. A low negative
z-score with a low p-value indicates a spatial clustering of low values. A z-score close to
zero indicates that there is no significant spatial clustering. The more intense clustering is
directly related to the higher or lower z-scores. The Gi_Bin between −3 and +3 indicates
statistical significance with a confidence level of 99%. The Gi_Bin between −2 and +2
indicates statistical significance with a confidence level of 95%. Gi_Bin between −1 and +1
indicates statistical significance with a confidence level of 90%. The Gi_Bin equal to zero
reflects no apparent spatial clustering.

2.3.2. Directional Distribution Analysis

To explore the distributional trend of the COVID-19 outbreak across the Golestan
province, we used the Directional distribution (Standard deviational ellipse) statistic [31].
Using the ellipse, it is possible to examine whether the spatial distribution of the disease is
elongated and therefore has a specific orientation [31]. We analyzed the ellipses based on the
weight (z-score) of features (villages/cities), which reflects the intensity of clustering. The
size of ellipses was calculated based on one standard deviation that covers approximately
68% of all the features [31]. To accurately measure distances, we used a projected coordinate
system for the input features.

2.3.3. Space-Time Analysis

For space-time analysis, COVID-19 cases were categorized by age, sex, urban/rural
housing urban/rural housing, patient outcome, and comorbidities. The retrospective space-
time scan statistic [32] was used to identify spatiotemporal clusters of COVID-19 cases
based on epidemiological factors. This statistic has been widely used to detect clusters
of infectious diseases [3,33]. The retrospective scan statistic identifies historical clusters
that emerged at any time during the study period [34], while the prospective scan statistic
scans the study area for active or emerging clusters that were still active by the end of the
study period [35]. Since the study period completely covers four waves of the pandemic
across the Golestan province (Figure 2), and no emerging clusters have been observed
until the end of the examined period, we leveraged this statistic instead of the prospective
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space-time analysis [36]. In this regard, the retrospective analysis is more compatible with
our data.
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Figure 2. Temporal evolution (daily and weekly) of the COVID-19 transmission by total new cases,
cases in test centers, and deaths in Golestan province between 1 February 2020 and 28 February
2021. The vertical axis represents the number of cases, and the horizontal axis corresponds to the
study period.

The space-time scan statistic identifies significant clusters of elevated risk using cylin-
ders (i.e., scanning windows) scanning the study area. The circular (or elliptic) base and
height of each cylinder capture the spatial and temporal dimensions of the clusters, respec-
tively [32]. As the scan progresses, each cylinder covers a different set of clusters that can
be identified as candidate clusters. The center of each candidate cluster is co-located with
the centroid of each village/city (point layer) in the study area. We identified space-time
clusters using a discrete Poisson model, which has been used in previous studies [12,13].
Accordingly, we assumed that the COVID-19 cases follow a Poisson distribution. Under
the null hypothesis (H0), the expected number of cases (E[c]) in each area is proportional to
the at-risk population in that area, as presented in Equation (4). A cluster is identified as
a candidate cluster when the number of observed cases exceeds the expected number of
cases in that cluster (alternative hypothesis, HA).

E[c] = p ∗ C
P

(4)

where p is the population of each village/city; C reflects the total number of COVID-19
cases in the study area; P represents the total population of the study area. We assumed
the population was static for each village/city across the study period. To detect clusters
with an elevated risk, a likelihood ratio test for each cylinder was calculated, as defined in
Equation (5).

L
L0

=

(
c

E[c]

)c( C−c
C−E[c]

)C−c

(
C

E[C]

)C , (5)
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where L is the likelihood function for a cylinder; L0 is the likelihood function for H0; c is the
number of cases in a cylinder; E[c] is the expected number of cases in a cylinder; C reflects
the total number of COVID-19 cases in the study area across the study period; E[C] is the
total number of expected cases in the study area across the study period. The risk for a
cylinder increases when its likelihood ratio reaches greater than 1. A cylinder with the
maximum likelihood ratio is identified as the most likely cluster. According to Equation (6),
a relative risk (RR) was calculated for each cluster, which is defined as the estimated risk in
a cluster divided by the risk outside of that cluster.

RR =

c
E[c]
C−c

C−E[c]

, (6)

where c is the number of cases in a cluster; E[c] is the expected number of cases in a cluster;
C is the total number of cases in the study area. For example, if a cluster has an RR of 3.5,
the population within this cluster is 3.5 times more likely to be exposed to the disease than
the population outside that cluster.

Similar to [12], candidate clusters should have at least five confirmed cases, and the
minimum duration of clusters is set to 2 days. We considered the circular spatial window,
which scans for areas with high rates. In the case of the actual operability of disease
surveillance and to avoid extremely large clusters which might not be useful for health
policymakers, the maximum spatial scanning window was set to 10% of the population
at risk. The temporal scanning window was set to 50% of the entire study period. A
total of 999 runs of Standard Monte Carlo simulations were used to assess the statistical
significance of the candidate clusters with a p-value ≤ 0.05. To demonstrate significant
space-time clusters across the Golestan province, we employed ArcGIS 10.2.

3. Results
3.1. Temporal Trend

From the first confirmed case to 28 February 2021, four epidemic peaks were observed
over Golestan province, as shown in Figure 2. The pandemic required just one month to
reach its first peak on 4 March 2020, with 116 daily new cases. The next two peaks emerged
at approximately four-month intervals, whereas the fourth peak appeared two months after
the tertiary peak. The highest peak in daily new cases (197) occurred on 24 November 2020
(Figure 2). Correlation analysis demonstrated a highly positive correlation of 0.88%
(p-value ≤ 0.05) between the weekly new case and weekly testing. There is also a sig-
nificant positive correlation between the weekly new case and weekly mortality (0.58%,
p-value ≤ 0.05).

3.2. Spatial Analysis

The distributional trend of the high and low-risk villages/cities for the monthly
incidence rate and its average across the Golestan province over the thirteen-month time
frame have been illustrated in Figure 3. These maps indicate that the occurrence of COVID-
19 varied geographically throughout the province during the investigation period. No
village or city was immune. The hot spots were aggregated in the southwestern, eastern,
and southeastern sectors of Golestan. By the end of February 2020, hot spots were mainly
located in Gorgan, the capital city of Golestan province, and its bordering cities and villages.
However, over the next two months, high-risk areas were elongated to the eastern parts of
the province. From the beginning of May 2020 to the end of July 2020, the high-risk areas
were moved to the central, eastern, and northeastern regions. From the beginning of August
to the end of November, no significant high-risk clusters were seen in the southern and
western parts. However, with the start of the third wave of the pandemic in late November
(Figure 2), clusters of high-risk areas emerged in the western regions and reached the
eastern regions by the end of February 2021. Generally, COVID-19 was progressing from
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the west and southwestern areas, having a higher incidence rate, towards the east and
southeastern areas, containing a lower disease outbreak.
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3.3. Spatiotemporal Analysis

A total of 12 statistically significant (p-value≤ 0.05) space-time clusters were identified
for all COVID-19 cases across the Golestan province during the study period. The most
likely cluster spans a small area with six villages and one city (Gonbad-e Kavus city) in the
east-central areas of the province (Figure 4 and Table S2, Supplementary Materials), which
lasted from early June 2020 to late July 2020. This cluster belongs to the second pandemic
wave in the study area (Figure 2). The 11 secondary clusters were detected in the north,
west, central, and east of the province. Most of them (9 clusters) appeared in the third and
fourth waves of the pandemic in the province, as summarized in Table S2.

As shown in Figure 5, spatiotemporal clusters by varying age groups did not follow
the same distribution over the province. Only one significant cluster was observed for
the age group of 0 to 9 years. Unlike other age groups, the most likely cluster related to
the age group of 60–69 appeared in the third wave of the pandemic and was located in
the northwest of Golestan. Except for the age group of 60–69, all the most likely clusters
were predominantly in the east-central regions of the province. They followed the same
temporal trend (the second wave of the pandemic) as the detected clusters for all confirmed
cases, albeit with a slight difference (Figures 4 and 5 and Table S2).
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With regard to gender, the clusters observed for the female class have closely mirrored
the clusters of all COVID-19 cases in size, location, and time (Figures 4 and 6 and Table S2).
For example, the most likely clusters for the female class and the overall cases were
approximately located in the same areas (the east-central sectors of the province). They also
had the same period (Early June 2020 to late July 2020). Among all the significant clusters,
the most likely cluster of the male class lasted the longest (194 days) (Table S2).

According to Figure 7 and Table S2, the most likely cluster of urban residents with
a high relative risk (RR = 6.179) was located in the southwest of the province, which
compromises only one city (Bandar-e Gaz). This cluster was related to the third and fourth
waves of the pandemic. On the other hand, the primary cluster of rural areas covered
42 villages in the eastern-central regions of the province and appeared in the second wave
of the pandemic.

The most likely clusters for all three classes of “Recovered at home”, “Hospital dis-
charge”, and “Death” were located almost in the eastern-central regions of Golestan and
emerged simultaneously in one month (June 2020), with the difference that the most likely
cluster corresponding to the “Hospital discharge” lasted longer than the most likely clusters
of “Death” and “Recovered at home” (196, 60, and 26 days, respectively) (Table S2 and
Figure S3, Supplementary Materials). The significant clusters related to “Death” mainly
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occurred in the first wave of the pandemic, while the significant clusters of the “Recovered
at home” were mainly observed in the third and fourth waves. On the other hand, the
significant clusters of “Hospital discharge” usually appeared throughout the studied period
(Table S2 and Figure 2).

The clusters of patients with comorbidities did not follow the same spatiotemporal dis-
tribution in Golestan over the investigation period, as shown in Figure S4 (Supplementary
Materials) and Table S2. The significant clusters of “Diabetes” and “Cardiovascular disease”
were mainly concentrated in the western, southwestern, and eastern-central areas of the
province, while clusters corresponding to “Hypertension” were observed throughout the
province. Two significant clusters were identified for “Liver disease” in the eastern-central
regions. In addition, only one most likely cluster was detected for “Neurological disorders”,
“kidney disease”, and “lung disease”, located in the northeast, southwest, and central areas,
respectively. No significant clusters were observed for “Cancer” and “Immunodeficiency”.
All the significant clusters of “Cardiovascular disease” were identified in the first and
second waves of the pandemic, while the significant clusters of “Hypertension” emerged
in the third and fourth waves (Table S2 and Figure 2).
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4. Discussion

In this retrospective study, temporal and spatial trends of COVID-19 along with
spatiotemporal patterns of COVID-19 cases according to the epidemiological characteristics
were explored using the space-time scan statistic and spatial analysis in the area of interest
from 1 February 2020 to 28 February 2021.

4.1. Main Findings

In terms of temporal trend, despite the public awareness of COVID-19 transmission
and considering strict measures against the infection (e.g., quarantining, physical distancing,
and using face masks), as the epidemic progressed, the epidemic peaks occurred at a higher
number of daily new cases than previous waves in this province (Figure 2), which can be
for some reasons. First, insufficient knowledge about the disease by the health officials
of the province at the start of the pandemic may lead to a failure in registering the actual
number of new cases, in turn, resulting in a smaller number of reported cases than the
actual cases. Second, the lack of attention by health authorities to residents of rural
areas with limited access to health facilities can explain this unexpected increase. Besides,
since proper arrangements had not yet been undertaken to test the suspected cases at the
beginning of the epidemic, many people with COVID-19 symptoms were not reported as
confirmed cases. However, as testing capacity was increased across the province in early
June 2020 (Figure 2), more people with the symptoms referred to the testing sites, causing
an increase in the number of daily new cases. In other words, the high positive correlation
(0.88%) between the weekly new cases and the weekly testing can explain the increase
in COVID-19 in the second wave and subsequent waves. On the other hand, regarding
this considerable increase, it seems that control strategies such as mask-wearing, physical
distancing, quarantining, and COVID-19 testing have not been sufficient and effective to
slow down the transmission in this province during the first year of the pandemic.

The analysis of the epidemiological characteristics in the study area demonstrated
that most of the confirmed cases were reported in young adults, supported by an earlier
study [18]. It should be noted that the asymptomatic individuals were usually more
observed in younger people [37]. Therefore, it is essential to pay close attention to the
quarantine of these groups during the pandemic. Most of the reported cases were residents
of urban settings, which parallels the previous studies [13,38]. As these areas have higher
population density, a more complex transportation system, and more economical and
urban facilities than rural areas, a large number of the province’s residents visit these
areas daily, which in turn increases interactions and social gatherings, intensifying the risk
of COVID-19 dissemination in these areas. During the period studied, the case fatality
rate (CFR) of COVID-19 in Golestan province was about 2.5 times the average CFR in
Iran [20] (9.06% vs. 3.68%). It could be associated with the lack of suitable access to medical
facilities for the residents of this province, a low level of adherence of the residents to
control measures, and insufficient implementation of preventive policies in this province
compared to other provinces of Iran. Based on the census data [39], Golestan province is the
fourth province in terms of income inequality (Gini index = 0.3695) among the 31 provinces
of Iran. Moreover, this province has a lower average life expectancy than the average life
expectancy in Iran, and in this respect, it is the 23rd province. Therefore, the mentioned
points could also explain the high CFR in this province. Therefore, policymakers should
pay special attention to the residents of this province. In line with prior studies [40,41],
diabetes, hypertension, and cardiovascular disease were the most common underlying
diseases among COVID-19 patients.

From a spatial perspective, the hot spot analysis revealed that as new waves of the
pandemic emerged, residents of the province experienced different outbreaks during the
study period. The high prevalence areas were also primarily aggregated in the west, east,
and southeast sectors of Golestan. Of 137 hot spots (high-risk villages/cities) identified
in the study area, 55 of them are located in Minodasht County, and 28 of them belong to
Bandar-e Gaz County. In addition, the directional distribution analysis demonstrated the
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route of COVID-19 progression throughout the study area, as shown in Figure 3. As of the
onset of the epidemic, the virus initially appeared in the western and southwestern regions
of the province and gradually propagated to the central, eastern, and southeastern regions.
Notably, the heterogeneous spatiotemporal distribution of COVID-19 across the study area
suggests that all areas of the province have not responded evenly to the pandemic. Based
on Figure 3, the western and southwestern areas of the province, which were the center of
COVID-19 transmission until three months after the onset of the epidemic, have become
low-risk areas from early May 2020 to the end of November 2020. It may be due to the
fact that the health authorities of these regions have taken effective control measures to
curb the pandemic. The high adherence of the residents of these areas to the restrictions
and quarantine measures can also explain a significant drop in COVID-19 transmission in
these regions.

In terms of spatiotemporal patterns, the primary clusters (clusters 1, 2, and 3) of overall
COVID-19 cases were mainly concentrated in the east-central and southwest regions
of the province, which is spatially consistent with the results of the hot spot analysis
(Figures 3 and 4). By the end of May, no significant clusters were observed across the study
area, while more dangerous clusters appeared by the beginning of June, confirming the
temporal evolution of COVID-19 cases (Table S2 and Figure 2). Among the 12 significant
clusters for all COVID-19 cases, clusters 1, 8, and 11 belonged to the second wave of the
epidemic, with the highest RR compared to other clusters. These clusters appeared in the
east-central areas of the province. The spatial and temporal proximity of these clusters
can cause the residents of these areas to have more communication activities with each
other, which leads to an increase in the risk of disease in these clusters. These clusters may
indicate the existence of health inequalities in these areas. Therefore, health authorities
should pay more attention to the residents of these clusters. To our surprise, although
most of Golestan’s population was mainly distributed in the age group of 0 to 9 years [28],
only one significant cluster was detected for this group (Figure 5). This could be due
to the lower number of reported cases in this age group (426 cases) compared to other
age groups (see S1, Supplementary Materials). On the contrary, the highest number of
significant clusters was observed for the age group of 30 to 39 years, which could be
due to the higher number of patients in this age group (4624 cases) than in other age
groups (see S1, Supplementary Materials). Except for the age group of 60–69, all the most
likely clusters for different age groups had almost similar spatial and temporal trends to
the most likely cluster identified for all confirmed cases (Figures 4 and 5 and Table S2).
Therefore, designing control measures tailored to different age groups in society can be a
beneficial guideline to better manage this pandemic. Based on the spatiotemporal clusters
by gender, only one significant cluster of the female class has emerged from the onset of
the epidemic to the end of the second wave of the epidemic, whereas males have recorded
three clusters of the disease in this time frame (Table S2 and Figure 2). It indicates that
men were more exposed to the virus than women at the beginning of the pandemic. Since
the employment rate of men is higher than that of women in the study area [39], it is
expected that men will be more exposed to the virus than women in the communities
at the beginning of the epidemic. Unlike the significant clusters of “Hospital discharge”
and “Recovered at home”, the significant clusters of “Death” mostly happened in the first
wave of the epidemic (Table S2 and Figure 2). This could be attributed to the insufficient
knowledge of health authorities about the treatment and ways to prevent the virus at the
onset of the epidemic. Space-time clusters of comorbidities demonstrate a heterogeneous
distribution of underlying diseases across the province, which could result from improper
allocation of health facilities to the residents of this province. Yet, there is no clear reason
for the observed pattern, and additional work could address this issue. Generally, the
identified spatiotemporal clusters describe a story of the space-time COVID-19 propagation
throughout the province.
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4.2. Strengths

Previous studies recommend that identifying the distribution of COVID-19 cases with
regard to epidemiological features provides insights for health policymakers to identify
high-risk populations and make a more equitable allocation of medical resources during
the outbreak [12,13,24]. To contribute to the literature, this is the first epidemiological
study that systematically highlights the spatiotemporal variations of COVID-19 based on
epidemiological features in a detailed geographical unit in a region of Iran in the first year
of the pandemic. This study not only provides meaningful findings on the time trend of
the disease and location of disease aggregation but also identifies more vulnerable groups.

4.3. Limitations

Regardless of the strengths of this research, there are notable limitations that may alter
the actual magnitude of the disease propagation. First, the high number of asymptomatic
cases in communities increases the number of unreported cases in this study. Secondly,
the disease surveillance system in Golestan province is different by county, subjecting
the disease data to error. Another significant drawback is related to the spatial window
shape in the satscan software. The detected clusters in the Poisson model are circular,
which questions the heterogeneous changes in the COVID-19 propagation in the study
area. Besides, COVID-19 spread is related to various determinants such as environmental
factors, socioeconomic conditions, health capacities, and efficiency of control measures.
Exploring them provides a more realistic view of the disease transmission and more
targeted interventions in the study area. Although this analysis is beyond the scope of
this work, the authors will evaluate the effects of the contributing variables on the disease
outbreak across the study area.

5. Conclusions

This explanatory study provides an insight to inform health planners about the issues
“When?”, “Where?”, and “Who?”, to explore health inequalities, and to enhance the
efficiency of control interventions. Based on the results, it can be concluded that the detected
space-time clusters according to epidemiological characteristics were varied throughout
Golestan, which can be attributed to different socio-environmental contexts and control
interventions implemented across the province. However, additional studies are required to
fully understand the reasons behind the observed patterns. In terms of policy implications,
this study provides an opportunity for health policymakers to reveal high-risk locations
that may have deficient health resource allocation. The results can also be applied to
improve early warning systems at the early stages of the pandemic. Another key takeaway
of this research is identifying more vulnerable groups, which can be used to optimize the
allocation of medical resources.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/su141912189/s1, S1: The COVID-19 dataset. Table S2: The main
characteristics of statistically significant space-time clusters of COVID-19 cases with regard to age,
gender, urban/rural housing, patient outcome, and comorbidities across Golestan province from
1 February 2020 to 28 February 2021. Figure S3: Spatiotemporal clusters of COVID-19 cases with
regard to patient outcome along with their relative risk across the villages/cities of Golestan province
between 1 February 2020 and 28 February 2021. Figure S4: Spatiotemporal clusters of COVID-19
cases with regard to comorbidities along with their relative risk across the villages/cities of Golestan
province between 1 February 2020 and 28 February 2021.
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