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Ivan Plaščak 1 and Mateo Gašparović 5
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Abstract: With the emergence of machine learning methods during the past decade, alternatives to
conventional geostatistical methods for soil mapping are becoming increasingly more sophisticated.
To provide a complete overview of their performance, this study performed cost–benefit analysis of
four soil mapping methods based on five criteria: accuracy, processing time, robustness, scalability
and applicability. The evaluated methods were ordinary kriging (OK), regression kriging (RK),
random forest (RF) and ensemble machine learning (EML) for the prediction of total soil carbon and
nitrogen. The results of these mechanisms were objectively standardized using the linear scaling
method, and their relative importance was quantified using the analytic hierarchy process (AHP).
EML resulted in the highest cost–benefit score of the tested methods, with maximum values of accu-
racy, robustness and scalability, achieving a 55.6% higher score than the second-ranked RF method.
The two geostatistical methods ranked last in the cost–benefit analysis. Despite that, OK could
retain its place as the most frequent method for soil mapping in recent studies due to its widespread,
user-friendly implementation in GIS software and its univariate character. Further improvement of
machine learning methods with regards to computational efficiency could additionally improve their
cost–benefit advantage and establish them as the universal standard for soil mapping.

Keywords: kriging; random forest; analytic hierarchy process (AHP); environmental covariates;
prediction accuracy; land management

1. Introduction

Knowledge of the continuous distribution of soil properties is mandatory for deci-
sion making in land management, and it has widespread applications in agriculture [1],
forestry [2], wildfire management [3] and urban planning [4]. The spatial component of
soil mapping is its fundamental component, building up discrete sample point data by
predicting the distribution of physical and chemical soil properties over an entire area
of interest [5,6]. Modeling in a geographic information system (GIS) is crucial in land
management to establish a relationship between soil properties and environmental com-
ponents, such as climate, topography and living organisms [7]. Total soil carbon (TC) and
nitrogen (TN) are particularly noted as fundamental soil properties in land management
for adaptation to climate changes [8], recovery of areas affected by wildfire [9] and long-
term, sustainable agriculture [10,11]. Their accurate distribution over the area of interest is
important, which is the reason for the continuous research relating to spatial prediction
methods during the past decades [12,13].

Sustainability 2022, 14, 12170. https://doi.org/10.3390/su141912170 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su141912170
https://doi.org/10.3390/su141912170
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-7151-7862
https://orcid.org/0000-0002-8105-6983
https://orcid.org/0000-0001-6332-174X
https://orcid.org/0000-0003-3920-6703
https://orcid.org/0000-0001-8700-4773
https://orcid.org/0000-0003-2345-7882
https://doi.org/10.3390/su141912170
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su141912170?type=check_update&version=2


Sustainability 2022, 14, 12170 2 of 18

Geostatistics has long been considered as the state-of-the-art approach to spatial
interpolation in soil mapping studies, with ordinary kriging (OK) and regression kriging
(RK) being the most frequently applied kriging variations in the past decades [14]. These
methods are based on the assumption of spatial autocorrelation, which is modeled using
an empirical variogram fitted using various mathematical models defined by nugget
(n), sill (s) and range (r) values [15]. Previous studies over the past several decades
have traditionally achieved satisfactory results for the interpolation of soil properties
using this approach [16,17]. Out of univariate methods, OK commonly outperforms
deterministic interpolation methods, except in severe cases of skewed and sparse data,
as can commonly be the case in studies in small areas [18]. These methods are also
mutually complementary, with univariate OK being applied in more generalized cases
and multivariate RK being the primary choice in cases with available environmental
covariates relevant to the soil property of interest [19]. While OK is generally a suitable
method for the prediction of soil properties without knowledge of the correlation with other
soil and environmental factors, the wider availability of global spatial data representing
environmental covariates and the need for a universally applicable and accurate solution
for soil mapping encourages the use of multivariate methods. Among them, RK is a
highly proficient, geostatistical multivariate method, building upon the foundations of OK
and using environmental covariates to perform regression [12,20]. While OK is the most
frequently applied interpolation method [14], and RK is considered as the universal solution
for soil mapping [12], the specific requirements of input data properties for both OK and RK
prevent their optimal use in some common cases. These include cases with normality and
stationarity of input soil sampling data [21], omitted extreme values and positive spatial
autocorrelation [15]. Due to the rigid requirements of kriging for specific properties of input
values, there is a lack of a universal solution for accurate and computationally effective
soil mapping. Despite these drawbacks, geostatistical methods dominantly outperform
contemporary, deterministic interpolation methods in the context of prediction accuracy
and the quantification of its uncertainty [22].

With the emergence of machine learning algorithms and their implementation in
packages compatible with major programming languages during the past decade [23,24],
potentially superior alternatives to geostatistics in soil mapping have become widely
available. As these non-parametric methods have proven resistant to kriging’s major
requirements of input data properties, as well as computationally effective and highly
accurate, machine learning has become the backbone for a universal approach to soil
mapping [25,26]. The increasing number of global open-data sources in the past decade
has enabled the widespread availability of the environmental covariates necessary for the
multivariate approach of machine learning regression. In addition to well-established,
global, open-data, multispectral (Sentinel-2 [27], Landsat 8 [28]) and radar (Sentinel-1 [29])
satellite missions, the emergence of new, complementary satellite missions (Sentinel-3 [30],
Landsat 9 [31]), improved climate datasets (CHELSA [32], WorldClim [33]) and digital
elevation models (EU-DEM [34]) has further improved the prospects of soil mapping in
the future due to their global accessibility and higher temporal resolution enabled by their
fusion [32,35,36].

The properties of computational efficiency and resistance to overfitting enable the
smooth integration of these large and complex data into machine learning models for
soil mapping. With the development of machine learning methods and their implemen-
tations in widely available software packages in recent years, the advantages of RK can
be retained in soil mapping, achieving high computational efficiency and robustness at
the same time. Among them, RF ensures these properties and resistance to overfitting by
combining individual trees based on random, independent sampling vectors [37]. Ran-
dom forest (RF) has particularly proven efficient in this regard, with many authors noting
its flexibility, consistency and higher prediction accuracy compared to similar machine
learning methods in soil mapping [20,38,39]. However, RF tends to perform poorly in
specific, common situations, such as in the extrapolation of predicted values, and requires
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memory for the output objects [40]. The assessment of the individual importance of input
environmental covariates quantified by permutation feature importance values is also
performed to identify the most relevant environmental impacts [41]. RF frequently pro-
duces superior prediction accuracy in soil mapping compared to similar machine learning
methods, such as support vector machines (SVM) and artificial neural networks (ANN).
However, to address its disadvantages, its demand for a relatively large amount of input
soil samples and sensitivity to its quality [40], the EML approach has emerged as a solution
which comprises complementary machine learning methods and minimizes the disad-
vantages of individual methods. To include the advantages of multiple complementary
individual machine learning methods in a versatile and highly accurate model, ensemble
machine learning (EML) approaches were developed. They commonly incorporate several
frequently used machine learning methods, including RF, and calculate the final result
using the weighted combination proportional to its prediction accuracy [38]. While EML
enables superior prediction accuracy compared to individual geostatistical and machine
learning prediction methods [20], the cost–benefit relationship between computational effi-
ciency and processing time, and, therefore, availability to a wide range of potential users,
remains ambiguous.

The main study aim was to propose a framework for determining the optimal
cost–benefit relationship between prediction accuracy and the processing time, robustness,
scalability and applicability of soil mapping. Four of the most popular prediction methods
for soil mapping, OK, RK, RF and EML, were evaluated. In addition to evaluating their
capabilities according to the properties of presently available soil sample sets, this study
highlighted the main pros and cons of each method. The scientific contribution of this
approach is two-fold: (1) enabling land management experts to select the optimal soil
prediction approach based on their needs and available datasets; and (2) highlighting
the room for improvement of evaluated software packages, potentially leading to higher
computational efficiency during their upgrades. The study was focused on the county
scale, which is a fundamental scale for land management planning in agriculture and
environment protection in the majority of the world. To address this issue, a multiscale
evaluation approach, including the most available spatial resolutions based on input
environmental covariates on three scales, was used.

2. Materials and Methods

All spatial calculations were performed in the Croatian Terrestrial Reference System
(HTRS96/TM) on three scales, which is official for the majority of scales in Croatia, includ-
ing county level. Statistical, geostatistical and machine learning methods were performed
using open-source software, including R x64 v4.0.3 in RStudio v2021.09.2 (Boston, MA,
USA) for soil mapping and accuracy assessment, SAGA GIS v7.9.0 (Göttingen, Germany)
for preprocessing of environmental covariates and QGIS v3.10 (Grüt, Switzerland) for
visualization of spatial data. The workflow of the study is represented in Figure 1.

As a part of the cost–benefit analysis, soil mapping and accuracy assessment were
performed independently using hardware with different computational possibilities. The
first one was a custom GIS workstation with high potential computational efficiency, having
the specifications of an Intel i9-9900X 3.50 GHz processor, 64.00 GB RAM and NVIDIA
Quadro P4000 8.00 GB graphics processing unit. The second piece of hardware consisted of
a serial-production laptop with an Intel i5-10300H 2.50 GHz processor, 8.00 GB RAM and
NVIDIA GeForce GTX 1650 4.00 GB graphics processing unit. These options represented a
more expensive (workstation) and a cheaper, widely available solution (laptop) to evaluate
cost efficiency as a segment of the cost–benefit approach to digital soil mapping in addition
to prediction accuracy assessment and computational efficiency.

2.1. Study Area and Soil Sampling Data

The study area was the Osijek-Baranja county, a 4155 km2 area located in eastern
Croatia (Figure 2). The agricultural area is the dominant land cover class per Coordinate
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Information on the Environment (CORINE) 2012 land cover data [42], covering 62.8% of
the study area. It dominantly consists of arable cropland, which is mainly utilized for
cereal production. Despite the traditionally agricultural character of the county, forests
with seminatural areas (27.9%) and the wetland area of the Nature Park Kopački rit (3.7%)
cause notable heterogeneity of land cover. These properties give it significance from the
perspectives of agricultural production and nature protection, not only on a national but
also on a regional scale [11]. A moist, subhumid climate, classified as “Cfwbx” on the
Köppen scale, is present in the entire study area.

Figure 1. Workflow of the multiscale cost–benefit analysis for digital soil mapping.

The 178 soil samples used in the study were collected using a regular grid sampling
system. Soil samples were received from the results of the national scientific project
performed between 2014 and 2017, available using the Web Feature Service (WFS) service
of the former Croatian Agency for the Environment and Nature [43]. The fieldwork of the
soil sampling was finished in the year 2013, consisting of total soil carbon (TC) and total
soil nitrogen values (TN) at the 0–30 cm soil depth. With the exception of water bodies, all
four primary land cover classes were represented in the soil sampling.
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Figure 2. Study area coverage with the CORINE Land Cover 2012 classes.

2.2. Spatial Interpolation and Prediction Methods

According to their frequency of use in previous studies in the scientific journals
indexed in the Web of Science Core Collection over the past decade [14], and the rela-
tive superiority of prediction accuracy compared to contemporary methods [13,17,44],
four prediction methods were evaluated in this study. These were two geostatistical (OK,
RK) and two machine learning methods (RF, EML). Three R programming language pack-
ages were used for soil mapping using these methods: “gstat” for OK and RK [45], ”ranger”
for RF [24] and “landmap” for EML [46].

OK is considered as the best linear, unbiased spatial predictor [47] and has been
the most frequently used spatial interpolation method for the prediction of soil proper-
ties during the past decade in general [14]. Exponential, spherical, Gaussian and Bessel
mathematical models were evaluated in the study, and the optimal one was determined
with the criterion of the highest prediction accuracy in each individual instance. Pre-
dicted value using OK interpolation method at unknown location x0 was determined by
Equation (1) [15]:

z(x0) =

n

∑
I=1

I × z(Ii), (1)
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where λi is weight at the sampled location xi based on the variogram, and z(xi) is sampled
soil TC and TN value. Its performance is conditioned by the properties of input soil
samples, requiring the presence of positive spatial autocorrelation, normal distribution
and stationarity of data [11]. Predicted values using the RK method were determined by
Equation (2) [48]:

z(x0) =

p

∑
k=0

β̂k × qk(x0) +

n

∑
i=1

λi × e(xi), (2)

where β̂k is drift model coefficients, qk is values of environmental covariates and e(xi) is the
residual at the sampled location (xi). This approach enabled more accurate prediction of soil
properties than OK, and these two methods are generally fundamental in the conventional
approach to soil mapping [49]. While RK consistently provided high prediction accuracy in
previous studies and was successfully evaluated as a universal approach to soil mapping,
its disadvantages, lower computational efficiency than OK and unstable performance in
cases with a small number of input soil samples, remain a challenge [48].

The applied “landmap” package incorporated RF, SVM, extreme gradient boosting
(“xgboost” package), feed-forward neural networks (“nnet” package) and generalized
linear models with elastic net regularization regression methods (“cvglmnet” package) [46].
The early studies which incorporated this state-of-the-art approach noted its robustness
and superior prediction accuracy compared to individual machine learning methods,
but these were achieved at the expense of computational efficiency and the need for
powerful hardware [6]. While they did not allow maximum computational efficiency, RF
and EML prediction were performed in a single block, making the process of preprocessing
straightforward and ensuring the suitability for the automation of the prediction.

2.3. Environmental Covariates

Relevant environmental covariates for prediction of soil TC and TN included a variety
of satellite remote sensing, climate, topography, land cover and auxiliary soil data. The
individual layers used for environmental covariates for soil mapping in this study are
displayed in Table 1, chosen according to the specifications of Hengl et al. [6,25,50] and
Poggio et al. [51]. All environmental covariates were time-referenced to the soil sampling
period, which was the year 2013. These environmental covariates are visualized in Figure 3.

Table 1. The list of environmental covariates and data sources used for digital soil mapping of TC
and TN.

Covariates Description (Abbreviations) Data Source (Native
Spatial Resolution) Reference

satellite multispectral bands blue, green, red, near-infrared, shortwave infrared and thermal
satellite multispectral bands (B, G, R, NIR, SWIR1, SWIR2, TH)

Landsat 8
(30 m) [52]

satellite multispectral indices vegetation (NDVI, EVI), soil (NDSI, BSI) and water (MNDWI,
NDMI) spectral indices

Landsat 8
(30 m) [52]

topographic indicators
digital elevation model (DEM), terrain morphometric (slope,
aspect), hydrological (TWI, flow accumulation) and lightning

parameters (insolation)

SRTM 1 arc-second DEM
(30 m) [53]

climate indicators bioclimatic variables derived from the monthly air temperature
and precipitation values (bio01–bio19) CHELSA (1000 m) [32]

land-cover data CORINE Land Cover 2012 classes (CLC) CORINE 2012
(vector) [54]

soil-type data soil-type classes based on the basic pedologic map
of Croatia (soil map) CAEN (vector) [43]

B: blue band, G: green band, R: red band, NIR: near-infrared band, SWIR1: shortwave infrared band 1, SWIR2:
shortwave infrared band 2, TH: thermal band, NDVI: normalized difference vegetation index, EVI: enhanced
vegetation index, NDSI: normalized difference soil index, BSI: bare soil index, MNDWI: modified normalized
difference water index, NMDI: normalized difference moisture index, DEM: digital elevation model, TWI:
topographic wetness index, CLC: CORINE land cover, SRTM: Shuttle Radar Topography Mission, CAEN: Croatian
Agency for the Environment and Nature.
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Figure 3. A visual representation of environmental covariates used for digital soil mapping of
TC and TN.

Input environmental covariates were resampled to three datasets according to three
spatial resolutions: (1) maximum of 30 m, according to the highest native spatial resolution
of Landsat 8 multispectral imagery and SRTM 1 arc-second DEM; (2) optimum of 250 m,
according to the inspection density method proposed by Hengl [55], with finest legible
resolution from Equation (3); (3) minimum of 1000 m, according to the coarsest input spatial
resolution of the CHELSA climate dataset.

optimal resolution = 0.05 ×
√

A
N

(3)

where A is the study area, and N is the number of soil samples. Downscaling of the
CHELSA climate dataset from the native 1000 m spatial resolution was performed using
the B-spline interpolation method, which was determined as optimal for the same dataset
and study area coverage [56]. For the environmental covariates with higher native spatial
resolution, such as those from Landsat 8 (30 m) and SRTM 1 arc-second DEM (30 m) data,
upscaling was performed with a weighted mean value calculation based on relative pixel
area. A comparative display of Landsat 8 and SRTM 1 arc-second DEM data in native and
upscaled spatial resolutions in the three created datasets is presented in Figure 4.

2.4. Cost–Benefit Analysis of Evaluated Soil Prediction Methods

As one of the most frequently used methods for multicriteria decision analysis, the
analytical hierarchy process (AHP) is noted for its flexibility and straightforwardness in
decision making [57,58]. The selected criteria included all major components of the soil
prediction process, summarized in Table 2. The process of weight determination for indi-
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vidual criteria was based on the pairwise comparison matrix, which quantifies the relative
importance of all possible combinations of selected criteria [59]. Relative importance was
assessed by designating a number in the range between 1 and 9, proportionally quantifying
importance from equally important to significantly more important. Consistency of the
pairwise comparison was performed using the consistency ratio (CR) as a ratio of study-
specific consistency index (CI) and predetermined random index (RI) [60]. CR values below
0.10 indicate consistent pairwise comparison. As the process of pairwise comparison is
specific for each study area and dataset, observations from previous studies regarding land
management and decision making related to digital soil mapping were used to reduce the
subjectivity of the process [1,5,26,61].

Figure 4. Comparative display of Landsat 8 natural composite and SRTM digital elevation model in
three scales used in the study.

Table 2. Cost–benefit components used for the evaluation of soil prediction methods in AHP.

Criterion Name Description

“accuracy” prediction accuracy of soil parameters at unknown locations
“time” processing time required for computing of predicted soil parameters after preprocessing

“robustness” resistance to properties of input soil sample data, including data normality, stationarity, sample
count and spatial autocorrelation

“scalability” ability of prediction method to improve accuracy and retain local heterogeneity on larger scales

“applicability” the number of necessary steps in the preprocessing, including downloading, reprojection and
resampling of environmental covariates

To further reduce the subjectivity of the AHP process, a fully objective linear scaling
method was adopted for the standardization of input values in the (0,1) number interval [62].
All input values per individual criterion were transformed to match 0 for the least favorable
value xmin and 1 for the most favorable value xmax, while intermediate values x were
calculated using Equation (4):

standardized value =
x − xmin

xmax − xmin
. (4)
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The final cost–benefit suitability values were calculated using the weighted linear
combination from the standardized values and respective weights from individual criteria.
The possible value range matched those of the standardized values, ranging from 0 for the
lowest to 1 for the highest.

The accuracy assessment from the geostatistical methods (OK, RK) was performed
using cross-validation with the leave-one-out method, while machine learning (RF, EML)
was evaluated using the out-of-bag (OOB) values. The statistical metrics used for the
accuracy assessment were the coefficient of determination (R2) (Equation (5)), root-mean-
square error (RMSE) (Equation (6)) and normalized RMSE (NRMSE) (Equation (7)). R2

and RMSE were traditionally used for the accuracy assessment of both geostatistical and
machine learning methods in previous studies, enabling complementary evaluation of the
average prediction accuracy [11,40]. By dividing RMSE by the mean of sampled values
z(x 0) , NRMSE provided a base for the mutual comparative assessment of TC and TN
prediction due to their difference in value ranges.

R2= 1 − ∑n
1 ( z(x 0) − z(x i))

2

∑n
1

(
z(x 0) − z(x 0)

)2 , (5)

RMSE =

√
∑n

1 (z(x 0) − z(x i))
2

n
, (6)

NRMSE =
RMSE

z(x 0)
, (7)

Measurements for processing times were performed under equal conditions for all
instances of soil prediction. Total processing times were measured in ms, with the starting
and ending point of the measurement being set right before and after the processed code
of the particular prediction method, respectively. In addition to structuring the R script
to include the minimal required amount of intermediate data for prediction, minor opti-
mization steps were performed, including removal of obsolete intermediate data from the
environment and minimization of memory usage by the garbage collection function.

Robustness and scalability were derived from the accuracy assessment results prior
to the standardization. Robustness was quantified by deducting the top R2 values for the
TC and TN of each prediction method, while scalability was determined by deducting
the top R2 values of the 30 m/250 m results from those in 1000 m spatial resolution. The
applicability criterion was subjectively estimated, with a value of 1 being designated for
the univariate method with no covariates needed, 0.5 for the direct input of covariates and
0 in cases where covariates required additional analysis.

3. Results

Both sampled datasets were similar in that they did not possess normal distribution
and had a moderate level of dispersion from their respective mean values (Table 3). The
sole and highly notable difference between the TC and TN input sample sets was the degree
of spatial autocorrelation expressed with Moran’s I. TC had a moderately high positive
spatial autocorrelation, whereas TN indicated a very low degree. This is displayed in more
detail in Figure 5, revealing the presence of positive autocorrelation for TC values up to
31,200 m distance, while autocorrelation values of TN remained consistently low in the
entire search radius.

Predicted Soil TC and TN Values with Accuracy Assessment

Variogram parameters for TC (n = 0.666, s = 1.191, r = 9076 m) and TN (n = 0.003,
s = 0.005, r = 4672 m) were equal for all three evaluated spatial resolutions of OK and RK
interpolation. The Bessel mathematical model was determined as the most suitable for
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geostatistical prediction, achieving the highest prediction accuracy based on the iterative
assessment of the mathematical models.

Table 3. Descriptive statistics of soil TC and TN from soil sampling data.

Soil Property n
Mean

(mg 100 g–1) CV
Shapiro–Wilk Test

Moran’s IW-Value p-Value

TC 178 2.161 0.671 0.878 <0.001 0.536
TN 178 0.164 0.563 0.871 <0.001 0.041

TC: total soil carbon, TN: total soil nitrogen, CV: coefficient of variation.

Figure 5. Autocorrelogram of TC and TN values within the study area.

Accuracy assessment indicators for OK and RK were equal for all evaluated spatial
resolutions and their respective soil parameters (Table 4). Machine learning methods
achieved superior prediction accuracy compared to geostatistical methods in all evaluated
instances. While OK and RK prediction accuracy noticeably dropped for low spatial
autocorrelation TN data, RF and EML were more resistant to this property. RF produced
very similar results between the spatial resolutions of respective soil parameters caused
by randomness of the algorithm. EML benefited from the increased heterogeneity of
environmental covariates and achieved higher spatial resolution. It produced the highest
prediction accuracy for both soil TC and TN and was particularly superior to all evaluated
methods, including RF for TN values.

Table 4. Prediction accuracy of soil TC and TN prediction using geostatistics and machine learning.

Soil Property Spatial Resolution Value OK RK RF EML

TC

1000 m
R2 0.537 0.527 0.718 0.748

RMSE 0.984 0.994 0.768 0.521
NRMSE 0.455 0.460 0.355 0.241

250 m
R2 0.537 0.527 0.722 0.848

RMSE 0.984 0.994 0.763 0.319
NRMSE 0.455 0.460 0.353 0.148

30 m
R2 0.537 0.527 0.719 -

RMSE 0.984 0.994 0.767 -
NRMSE 0.455 0.460 0.355 -

TN

1000 m
R2 0.189 0.174 0.331 0.498

RMSE 0.079 0.080 0.072 0.062
NRMSE 0.480 0.486 0.437 0.381

250 m
R2 0.189 0.174 0.327 0.626

RMSE 0.079 0.080 0.072 0.054
NRMSE 0.480 0.486 0.438 0.328

30 m
R2 0.189 0.174 0.318 -

RMSE 0.079 0.080 0.072 -
NRMSE 0.480 0.486 0.441 -

TC: total soil carbon, TN: total soil nitrogen, R2: coefficient of determination, RMSE: root-mean-square error,
NRMSE: normalized root-mean-square error.
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Based on the statistical significance of environmental covariates from the multiple
linear regression, insolation, bio12, bio17 and bio18, representing precipitation bioclimatic
variables, had a 0.001 level of significance (Figure 6). Two other bioclimatic variables related
to air temperature, bio5 and bio7, were significant to soil TN values with a 0.05 level. Top
feature importance values for TC were in line with those from the multiple linear regression,
with the precipitation covariates being the most impactful ones. The same values for TN
adopted a notably lower value range, with spectral bands and indices derived from Landsat
8 data having the highest importance.

Figure 6. Relative importance of input environmental covariates in multivariate prediction methods.

While RF was a part of EML, it did not produce statistically significant results for
either soil property. For TC, cvglmnet and SVM resulted in statistically significant results,
while nnet produced the same for TN. EML prediction of both soil TC and TN could not
be performed due to hardware limitations. A multiscale comparative visual display of
predicted soil TC and TN for the subset of study area is presented in Figure 7.



Sustainability 2022, 14, 12170 12 of 18

Figure 7. A multiscale comparative visual display of predicted total soil carbon and nitrogen on the
subset of study area.

Resulting processing times showed the same exponential grow for both the worksta-
tion and laptop proportional to the number of pixels for prediction, resulting in notably
higher values for the 30 m spatial resolution (Table 5). RF was the most computationally
efficient prediction method of all the evaluated iterations. The workstation required 8.1%
less processing time for OK prediction, 4.0% less for RK, 15.5% less for RF and 1.8% less for
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EML than the laptop. In addition to the minor computational superiority of the workstation,
it also enabled RF prediction at 30 m spatial resolution, which could not be processed using
the laptop due to memory shortage.

Table 5. Processing time required for soil TC and TN prediction using geostatistics and
machine learning.

Hardware Soil Property Spatial Resolution Processing Time (ms)
OK RK RF EML

Workstation

TC
1000 m 5329 5241 983 11,856
250 m 10,919 9213 6947 40,276
30 m 363,380 368,729 780,941 -

TN
1000 m 4932 5120 1000 11,897
250 m 11,121 10,992 6672 40,574
30 m 361,700 364,715 739,155 -

Laptop

TC
1000 m 6127 5690 957 11,441
250 m 11,322 10,607 8720 40,085
30 m 381,159 379,951 - -

TN
1000 m 5715 5537 1054 14,739
250 m 11,430 9842 10,606 36,431
30 m 378,083 376,846 - -

TC: total soil carbon, TN: total soil nitrogen, OK: ordinary kriging, RK: regression kriging, RF: random forest,
EML: ensemble machine learning.

The pairwise comparison matrix within the cost–benefit analysis using AHP is dis-
played in Table 6. The prediction accuracy resulted in the highest individual criteria weight,
representing almost half of the impact on cost–benefit score, followed by processing time
and robustness (Table 7). With the maximum standardized values in accuracy, robustness
and scalability, EML resulted in the highest cost–benefit score. RF was the second-ranked
method, having a 36% lower cost–benefit score than EML despite being the superior method
regarding computational efficiency. Both geostatistical methods (OK and RK) ranked below
machine learning methods and had similar standardized values, with the main difference
in the applicability values being due to the univariate property of OK.

Table 6. Pairwise comparison table for the weighting of cost–benefit components in AHP.

Criterion Name Accuracy Time Robustness Scalability Applicability Weight

accuracy 1 3 4 6 8 0.493
time 1 2 4 5 0.232

robustness 1 3 4 0.153
scalability 1 3 0.079

applicability 1 0.042

n = 5, CI = 0.064, RI = 1.120, CR = 0.057.

Table 7. Calculation of cost–benefit scores for evaluated soil prediction methods.

Method
Standardized Values Cost–Benefit

ScoreAccuracy Time Robustness Scalability Applicability

OK 0.032 0.898 0.272 0.000 1.000 0.308
RK 0.000 0.936 0.243 0.000 0.000 0.255
RF 0.455 1.000 0.000 0.026 0.500 0.480

EML 1.000 0.000 1.000 1.000 0.500 0.747

OK: ordinary kriging, RK: regression kriging, RF: random forest, EML: ensemble machine learning.

4. Discussion

While previous research focused primarily on the prediction accuracy component of
soil mapping, this study additionally integrated an evaluation of processing time, robust-
ness, scalability and applicability into a cost–benefit analysis. Based on the value range and
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distribution, evaluated TC and TN soil sample data represented two very distinct cases
of input values for soil mapping. While the absence of input data normality is usually
negated by introducing the logarithmic transformation [63], as was the case for TC, the
additional lack of spatial autocorrelation for TN disabled the accurate kriging interpolation.
This property was also a frequent occurrence in previous studies [64–66], indicating the
necessity of a framework that does not require such prerequisites. Since value distributions
of TC and TN represent a highly common case, a universal approach to soil prediction
should be resistant to these properties, a criterion which was not met by the OK and RK
geostatistical approaches in this study. In addition to its superior prediction accuracy
compared to other evaluated methods, EML proved resistant to the properties of input
values, as well as the scalability of prediction. Mishra et al. [20] confirmed the superior
prediction accuracy of EML compared to individual machine learning methods and RK for
the prediction of soil organic carbon at the 250 m spatial resolution. This also proved the
robustness of both EML and individual machine learning methods regarding the level of
generalization of input environmental covariates. The same authors adopted broad and
generalized covariates, contrary to more numerous, specific monthly and bioclimatic data
related to air temperature and precipitation in this study. By comparing the R2 and RMSE
of this study, EML and RF likely benefited from the more specific covariates, achieving
higher accuracy relative to the geostatistical approach. Additionally, Baltensweiler et al. [38]
successfully integrated multiple data sources of a single environmental component in the
case of unknown adequacy for soil mapping. Gavilán-Acuña et al. [67] reached similar
conclusions regarding EML’s superiority to individual geostatistical and machine learning
methods in forestry, with a larger relative accuracy of OK and RK methods. Despite con-
vincingly achieving the highest cost–benefit score, the very high computational demand of
EML currently prevents its automation within soil mapping frameworks and widespread
application on a larger scale. In such cases, RF performs as a solid alternative, ensuring high
prediction accuracy with a moderate cost–benefit score. Moreover, Nussbaum et al. [39]
noted that, while EML mainly ensures higher prediction accuracy, RF can produce superior
results for some soil parameters, achieving the lowest cost–benefit score of the geostatistical
OK and RK methods, which indicates their obsoleteness in the face of machine learning
methods. Despite relatively subpar performance, OK remains the most represented soil
prediction method in scientific studies [14], ensuring high applicability and simplicity due
to its univariate property, as well as user-friendly implementation in widely used GIS
software, such as ArcGIS and SAGA GIS [68]. In cases of missing, adequate environmental
covariates, a univariate approach based on RF was developed by Hengl et al. [40], which
resolves the single disadvantage of the machine learning approach in geostatistics, which
relates to its applicability.

Further improvement of the cost–benefit evaluation approach regarding the methods
used for prediction of soil properties should be directed towards the three disadvantages
of the proposed approach:

• As was the case in various applications of AHP in previous suitability and decision-
making studies [69], the process of pairwise comparison was almost entirely subjective.
While this property can be mitigated by the application of the objective, deterministic
approach of the linear scaling standardization method, final cost–benefit values are
still, to some degree, affected by the subjectivity of the user. An unsupervised classifi-
cation of the cost–benefit components might be a more suitable solution for objective
assessment, but the ranking of classes still has to be performed according to arbitrary,
subjective criteria [11]. Nevertheless, the subjective component of the AHP could also
be an advantage due to its flexibility relating to the needs of the specific study area
and demands from a decision-making standpoint;

• Further optimization of the prediction process for the soil mapping in 30 m spatial reso-
lution can be performed. This was successfully solved by prediction in blocks [46], but
this approach prevents full automation of the procedure or includes further complexity
of the prediction. In addition to RF, SVM, xgboost, nnet and cvglmnet implemented in
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the “landmap” package for EML, the addition of methods, such as RK [20] or geoad-
ditive modeling and cubist [38], could ensure additional accuracy and robustness
of the EML;

• Downscaling of the environmental covariates with lower native spatial resolution than
30 m inevitably includes a degree of data interpolation. While this approach could
reduce the reliability of input data, downscaled data might actually be slightly more
accurate when compared to the ground-truth data than those in native resolution [56].
For a more robust approach, negating the effects of downscaling, a two-scale EML
approach is potentially more suitable [46]. In addition to soil mapping, this approach
could enable accurate prediction of similar spatial components of the environment,
such as erosion susceptibility [58], cropland suitability [56] and habitats of endangered
flora species, in high spatial resolution.

5. Conclusions

This study added an additional perspective on the specific properties of the most fre-
quently used geostatistical and machine learning methods, building on the emphasis given
to prediction accuracy in previous studies. This comprehensive approach to the evaluation
of soil prediction methods included five cost–benefit criteria in AHP evaluation: accuracy,
processing time, robustness, scalability and applicability. In addition to conventional, strict
focus on prediction accuracy, this approach provided an in-depth performance evaluation,
considering the time consumption and applicability of soil mapping methods for land
management experts. With respect to previous studies and the native spatial resolutions
of main data sources for environmental covariates, the multiscale approach of this study
consisted of soil prediction at 1000 m, 250 m and 30 m.

The cost–benefit analysis suggested that EML is a superior prediction method com-
pared to geostatistics and individual machine learning methods regarding prediction accu-
racy, robustness and scalability. While computational efficiency impaired its cost–benefit
value, further optimization of EML algorithms and improved computer hardware could
ensure its wider applicability in the future. The prediction of soil properties using EML
presently supports spatial resolutions up to about a few hundred meters over a county-
level area using a widely available hardware for land management experts. This indicates
that the primary focus of upgrading EML packages should be increasing computational
efficiency. While this can be resolved by prediction in blocks, at this point, the required pro-
cessing time remains its largest disadvantage and prevents widespread use. RF performed
as its best alternative, especially as it has the lowest necessary processing time, while
retaining high prediction accuracy. With only a slightly lower prediction accuracy than
EML, RF could presently be the optimal prediction method for soil mapping at about 30 m
spatial resolution for a large number of study areas and datasets. Geostatistical methods,
OK and RK, were obsolete in most of the evaluated cost–benefit components in the face
of machine learning methods, despite their popularity in recent scientific studies. Accord-
ing to the criteria for the cost–benefit analysis in this study, machine learning prediction
methods for soil mapping overtook the performance of conventional methods, with the
sole disadvantage being a lack of environmental covariates for the prediction. A paradigm
shift towards the machine learning approach in soil mapping has emerged in recent years
largely for this reason, and its further propagation is expected in the near future, primar-
ily in relation to increasing the computational efficiency of available software packages
for prediction.
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56. Radočaj, D.; Jurišić, M.; Gašparović, M.; Plaščak, I.; Antonić, O. Cropland Suitability Assessment Using Satellite-Based Biophysical

Vegetation Properties and Machine Learning. Agronomy 2021, 11, 1620. [CrossRef]
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