
Citation: Zhang, S.; Wang, Y.; Yu, K.

Steady-State Data Baseline Model for

Nonstationary Monitoring Data of

Urban Girder Bridges. Sustainability

2022, 14, 12134. https://doi.org/

10.3390/su141912134

Academic Editors: Yang Liu,

Hongye Gou and Wanshui Han

Received: 28 August 2022

Accepted: 21 September 2022

Published: 25 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Steady-State Data Baseline Model for Nonstationary
Monitoring Data of Urban Girder Bridges
Shaoyi Zhang 1,2,* , Yongliang Wang 3 and Kaiping Yu 2

1 School of Transportation Science and Engineering, Harbin Institute of Technology, 73 Huanghe Road,
Harbin 150090, China

2 Department of Astronautic Science and Mechanics, Harbin Institute of Technology, No. 92 West Dazhi Street,
Harbin 150001, China

3 Jinan Huanghe Luqiao Construction Group Co., Ltd., 5111 Aoti Middle Road, Jinan 250000, China
* Correspondence: zhangshaoyi@hit.edu.cn

Abstract: In bridge structural health monitoring systems, an accurate baseline model is particularly
important for identifying subsequent structural damage. Environmental and operational loads cause
nonstationarity in the strain monitoring data of urban girder bridges. Such nonstationary monitoring
data can mask damage and reduce the accuracy of the established baseline model. To address this
problem, a steady-state data baseline model for bridges is proposed. First, for observable effects such
as ambient temperature, a directional projection decoupling method for strain monitoring data is
proposed, which can reduce the nonstationary effect of ambient temperature, and the effectiveness
of this method is proven using equations. Second, for unobservable effects such as traffic load, a
k-means clustering method for steady state of traffic loads is proposed; using this method, which
can divide the steady and nonsteady states of traffic loads and reduce the nonstationary effect of
traffic loads on strain monitoring data, a steady-state baseline model is established. Finally, the
effectiveness of the steady-state baseline model is verified using an actual bridge. The results show
that the proposed baseline model can reduce the error caused by nonstationary effects, improve the
modelling accuracy, and provide useful information for subsequent damage identification.

Keywords: structural health monitoring; baseline model; nonstationary environmental effects;
principal component analysis; cluster analysis

1. Introduction

Structural health monitoring (SHM) systems [1–5] can collect structural response mon-
itoring data from bridges in real time online and accurately diagnose the operation status
of a bridge structure through in-depth analysis of the monitoring data; this approach has
become an effective means to ensure the safe operation of bridge structures [6,7]. In damage
diagnosis, a baseline model is usually compared with a test model, so an accurate baseline
model is particularly important [8,9]. According to the model category, baseline models can be
divided into finite element (FE) or data baseline models. FE baseline models [10–12] require a
complex finite element model (FEM) of a bridge and then perform model updating through
many iterative operations to obtain the real modal parameters of the bridge. This process is
very time-consuming. Due to the high computational cost of FE baseline models, they cannot
meet the requirements of online real-time monitoring systems [13]. Different from FE baseline
models, data baseline models [14,15] directly use the structural response data or extracted
damage features and statistical methods to identify damage. Data baseline models do not
require a complex FEM, so they have a high computational efficiency and are widely used in
online real-time bridge monitoring systems [16,17].

However, operating bridge structures are inevitably affected by environmental factors,
and the monitoring data obtained are nonstationary [18]. Mosavi et al. [19] found that
when the top flange temperature increased by 8.1 ◦C in one day, the frequency of the first
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five orders of magnitude of a two-span steel—concrete composite bridge in North Carolina
changed by 0.9% to 2.18%. Catbas et al. [20] found that when the ambient temperature
increased by 41.6 ◦C, the bending strains of the hanger bar of the Commodore Barry Bridge
in the United States changed by approximately 400 microstrain, and the maximum traffic
load in the year caused the bending strain of the hanger bar to change by 40 microstrain.
Peeters et al. [21] found that the frequency of the first four orders of the Z24 bridge changed
by approximately 14% to 16% in a 10-month period. When the Z24 bridge suffered major
damage, the change in the first four orders of magnitude was still less than 10%. The
influence of environmental factors on the monitoring response data of bridges cannot be
ignored, and the environmental effects usually mask changes in monitoring data caused
by damage [22,23], which brings great challenges to the diagnosis and evaluation of the
service performance of bridges [24,25]. Therefore, if the environmental effects cannot be
reduced, accurately diagnosing the state of a bridge based on a large amount of monitoring
data is difficult.

Two main data-driven solutions, supervised and unsupervised solutions, are used
to assess the influence of environmental factors. Supervised methods [26] develop a
relationship model between the environmental factors and the damage features of a bridge
to reduce the environmental effects. However, accurately establishing a relationship model
is often difficult. Unsupervised methods [27–30] consider environmental factors as latent
variables and use projection or variance analysis to determine damage features that are
not sensitive to environmental factors to reduce the environmental effects. However,
these algorithms lose some information in the process of projective transformation of
damage features. If damage information is lost, the effectiveness of the algorithm decreases.
Therefore, the effect of these two methods alone is not ideal.

Compared with the traffic load of existing bridges, the traffic load of new bridges is
not stable at the beginning of operation, but it gradually becomes stable as the operation
time increases. Therefore, the monitoring data collected by SMH systems contain both
nonsteady-state data and steady-state data. To address this problem, a steady-state data
baseline model is proposed. For observable nonstationary effects such as the ambient
temperature, a directional projection decoupling method for strain monitoring data with
ambient temperature effects is developed. For unobservable nonstationary effects such as
traffic loads, a clustering method of nonsteady- and steady-state traffic loads is studied. The
establishment of a high-accuracy data baseline model for urban girder bridges is realized.

2. Theory of Steady-State Data Baseline Model for Nonstationary Monitoring Data
2.1. The Directional Projection Decoupling Method for Strain Monitoring Data under
Ambient Temperature

Assuming that a bridge structure is not damaged in the reference state, the nonstation-
ary change in the bridge strain is mainly influenced by coupling effects such as the ambient
temperature and traffic load. According to whether the nonstationary effect can be obtained
through sensor observation, these nonstationary effects can be divided into observable
nonstationary effects (such as the ambient temperature) and unobservable nonstationary
effects (such as the traffic load). The strain ε can be obtained using the following equation:

ε = εO + εN (1)

where εO is the strain caused by observable nonstationary effects, and εN is the strain
caused by unobservable nonstationary effects.

The observable nonstationary effects can be obtained through sensor observation,
such as the ambient temperature load, which can be obtained using temperature sensors.
Through principal component analysis (PCA) directional projection, the observable and
unobservable nonstationary effects in the strain data of a bridge can be separated. The
strain data processed by the directional projection can eliminate the influence of the observ-
able nonstationary effects, which is the strain caused by the unobservable nonstationary
effects. The proposed PCA directional projection decoupling method is different from PCA
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projection. The first difference is that PCA directional projection uses different types of data,
such as strain data and ambient temperature data, to construct a covariance matrix. The
second difference is that PCA directional projection can artificially control the projection
direction by giving weights, and the obtained projection data are the direction of the strain
data. For observable nonstationary effects, taking the ambient temperature as an example,
a directional projection method is proposed to weaken the influence of the observable
nonstationary effects. The specific description of the proposed method is as follows.

The strain monitoring dataset collected by the bridge SHM system is assumed to be
a matrix X. For n strain measurement points in the monitoring system and m sampling
points over time for each measurement point, the strain monitoring dataset X ∈ Rm×n is
defined as follows:

X = [ω1,ω2, · · · ,ωi, · · · ,ωn] (2)

where i is an arbitrary strain measurement point, i ∈ (1, 2, · · · , n), and ωi is the strain
monitoring dataset at the ith measurement point,ωi ∈ Rm×1, which is defined as follows:

ωi = {X1i, X2i, · · · , Xki, · · · , Xmi}T (3)

In the equation, (·)T represents the transpose of the matrix; k is an arbitrary sampling
point at time k ∈ (1, 2, · · · , m); and Xki is the strain monitoring data at the kth sampling
point of the ith measurement point.

Using the calculation steps from Equation (1) to Equation (11) in reference [31],
the denoised strain monitoring dataset at the ith measurement point is obtained as ω′ i
(ω′ i ∈ Rm×1). The set εi is obtained by centralization ofω′ i, (εi ∈ Rm×1), which is defined
as follows:

εi =ω
′
i −ω′i (4)

where εi is the strain at the ith measurement point after centralization; ω′ i is the recon-
struction matrix ofωi after denoising;ω′i is the mean vector of the reconstruction matrix
ω′ i,ω′i ∈ Rm×1, and the elements ofω′i are ω′i, the expression of which is as follows:

ω′i =
1
m

m

∑
k=1

X′ki (5)

where ω′i is the mean value of the strain monitoring data from the ith sensor after denoising,
and X′ki is the reconstruction matrix of Xki after denoising.

Similarly, the monitoring dataset at the ith measurement point is denoted as Ti
(Ti ∈ Rm×1), and the dataset Ti after centralization is denoted as ξi (ξi ∈ Rm×1), which is
defined as follows:

ξi = Ti − Ti (6)

where ξi is the ambient temperature dataset at the ith measurement point after centraliza-
tion, and Ti is the mean vector of the dataset Ti, Ti ∈ Rm×1.

Equations (4) and (6) are used to centralize the monitoring data and construct a matrix
B (B ∈ Rm×2), which is defined as follows:

B =
[

αξi εi
]

(7)

where α is the weight value of ξi. The role of α is to make the standard deviation of
ξi magnified by α times much larger than the standard deviation of εi. After the PCA
decomposition, the main axis direction represents the ambient temperature, and the minor
axis direction represents the strain. Therefore, the value of α usually needs to take a
relatively large value to satisfy the following equation:

ασξ � σε (8)

where σξ is the standard deviation of ξi, and σε is the standard deviation of εi.
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According to PCA theory, the covariance matrix of the construction matrix B is calcu-
lated as follows:

Γ =
1

m− 1
BTB (9)

where Γ is the covariance matrix of the construction matrix B, Γ ∈ R2×2. After the eigen-
value decomposition of the covariance matrix Γ, the following equation can be obtained:

Γ = ΨΛΨT (10)

where Λ is the eigenvalue matrix of Γ, which is a diagonal matrix Λ ∈ R2×2, and Ψ is the
eigenvector matrix of Γ.

The eigenvector matrix Ψ is also the projection vector matrix of the construction
matrix B. Using the PCA principle, the pth principal direction Yp (Yp ∈ Rm×1) of the
construction matrix B can be obtained. The calculation equation is as follows:

Yp = BΨp (11)

where Ψp is the pth column vector of the eigenvector matrix Ψ, Ψp ∈ Rm×1, and p ∈ (1, 2).
The column vector Y1 is the first principal component of the construction matrix B,

which represents the ambient temperature monitoring data expanded by α times. The
column vector Y2 is the second principal component of the construction matrix B, which
represents the strain after removing the ambient temperature trend, which is also the strain
εN caused by the unobservable nonstationary effects.

2.2. Theoretical Proof of the Effectiveness of the Directional Projection Decoupling Method for
Strain Monitoring Data

In the proposed PCA directional projection decoupling method, the theoretical basis for
constructing the second principal component Y2 of the construction matrix B to represent
the strain εN caused by unobservable nonstationary effects is as follows.

Equation (7) shows that the covariance matrix Γ of the constructed matrix B can be
expressed by the following equation:

Γ =

[
α2σ2

ξ ασξε
ασξε σ2

ε

]
(12)

where σ2
ξ is the variance of ξi; σ2

ε is the variance of εi; and σξε is the covariance of ξi and εi.
The expressions of σ2

ξ, σ2
ε and σξε are as follows:

σ2
ξ =

1
m− 1

ξT
i ξi (13)

σ2
ε =

1
m− 1

εT
i εi (14)

σξε =
1

m− 1
ξT

i εi (15)

The covariance σξε has the following relationship with the variance σ2
ξ and the

variance σ2
ε:

σ2
ξε = ρ2σ2

ξσ2
ε (16)

where ρ is the correlation coefficient between ξi and εi.
Suppose the expression of the eigenvalue matrix Λ of the covariance matrix Γ is

Λ =

[
λ1 0
0 λ2

]
(17)

In the equation, λ1 is the first eigenvalue of Γ, and λ2 is the second eigenvalue of Γ.
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From the covariance matrix Γ in Equation (12) and the eigenvalue matrix Λ in Equation (17),
the following relationship can be obtained, and the eigenvalue matrix Λ is solved:

|Γ−ΛI| = 0 (18)

In the equation, | · | represents the determinant; I is a unit matrix, I ∈ R2×2; and 0 is a
zero matrix.

By solving the problem in Equation (18) and using the relationship in Equation (16),
the expression for the eigenvalue λ1 can be obtained as

λ1 =
α2σ2

ξ+σ2
ε+
√
(α2σ2

ξ+σ2
ε)

2−4(α2σ2
ξσ2
ε−α2σ2

ξε)
2

=
α2σ2

ξ+σ2
ε+
√
(α2σ2

ξ)
2
+2α2(2ρ2−1)σ2

ξσ2
ε+(σ2

ε)
2

2

(19)

The relationship in Equation (8) shows that in the calculation of the square root of
Equation (19), σ2

ε relative to α2σ2
ξ is a negligible minimum term, and adjusting the coefficient

of the minimal term σ2
ε by

(
2ρ2 − 1

)2 ∈ (−1, 1) times can also be ignored. Finally, the
following approximate expression can be obtained:

λ1 ≈
α2σ2

ξ+σ2
ε+
√
(α2σ2

ξ)
2
+2α2(2ρ2−1)σ2

ξσ2
ε+(2ρ2−1)2

(σ2
ε)

2

2

= α2σ2
ξ + ρ2σ2

ε

(20)

Similarly, the eigenvalue λ2 is obtained as

λ2 =
α2σ2

ξ+σ2
ε−
√
(α2σ2

ξ+σ2
ε)

2−4(α2σ2
ξσ2
ε−α2σ2

ξε)
2

=
(
1− ρ2)σ2

ε

(21)

Substituting Equations (20) and (21) into Equation (17), the expression of the eigen-
value matrix Λ is as follows:

Λ =

[
α2σ2

ξ + ρ2σ2
ε 0

0
(
1− ρ2)σ2

ε

]
(22)

Furthermore, the eigenvector matrix Ψ of the covariance matrix Γ is assumed to have
the following expression:

Ψ =

[
ψ11 ψ12
ψ21 ψ22

]
(23)

In the equation, {ψ11 ψ21}T is an eigenvector of Γ, and {ψ12 ψ22}T is another eigen-
vector of Γ.

From Equation (10), the following relationship can be deduced:

ΓΨ = ΨΛ (24)

Substituting the covariance matrix Γ in Equation (12), the eigenvalue matrix Λ in
Equation (22) and the eigenvector matrix Ψ in Equation (23) into Equation (24), the eigenvec-
tor {ψ11 ψ21}T can be solved, and the elements ψ11 and ψ21 satisfy the following expressions:

α2σ2
ξψ11 + ασξεψ21 =

(
α2σ2

ξ + ρ2σ2
ε

)
ψ11 (25)

ψ11

ψ21
=

ασξε
ρ2σ2

ε

=
ασξεσ2

ξ

ρ2σ2
εσ2
ξ

=
ασ2
ξ

σξε
(26)

In the same way, using Equation (24) to solve the eigenvector {ψ12 ψ22}T, the follow-
ing relationship between ψ12 and ψ22 can be obtained:

ασξεψ12 + σ2
εψ22 =

((
1− ρ2

)
σ2
ε

)
ψ22 (27)
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ψ12

ψ22
=
−ρ2σ2

ε

ασξε
=
−σξε
ασ2
ξ

(28)

Because the covariance matrix Γ is a symmetric matrix, the eigenvector matrix Ψ is
also a symmetric matrix, and the following relationship exists:

ψ12 = ψ21 (29)

Substituting Equations (26), (28) and (29) into Equation (23), the expression of the
eigenvector matrix Ψ is obtained as follows:

Ψ =

 ψ11
σξε
ασ2
ξ

ψ11
σξε
ασ2
ξ

ψ11 −ψ11

 (30)

Substituting covariance matrix Γ from Equation (12), eigenvalue matrix Λ from
Equation (22) and eigenvector matrix Ψ from Equation (30) into Equation (10), the
coefficient ψ11 can be obtained to satisfy the following relationship:

σξε
ασ2
ξ

ψ2
11

(
α2σ2

ξ + ρ2σ2
ε

)
− σξε

ασ2
ξ

ψ2
11

(
1− ρ2

)
σ2
ε = ασξε (31)

From the above equation,

ψ2
11 =

α2σ2
ξ

α2σ2
ξ + (2ρ2 − 1)σ2

ε

≈ 1 (32)

Substituting the coefficient ψ11 obtained in Equation (32) into Equation (30), the
expression of the eigenvector matrix Ψ can be obtained as follows:

Ψ =

 −1 − σξε
ασ2
ξ

− σξε
ασ2
ξ

1

 (33)

Substituting Equations (1) and (33) into Equation (11), the second component Y2 of
the constructed matrix B is expressed as follows:

Y2 = BΨ2 = −ξi
σξε
σ2
ξ

+ εi = −ξi
ξT

i εi
ξT

i ξi
+ εi

= −ξi
ξT

i εi
√
εT

i εi√
ξT

i ξi
√
ξT

i ξi
√
εT

i εi
+ εi

= −ξi cos(β) ‖εi‖
‖ξi‖

+ εi = −εO
i + εi = ε

N
i

(34)

where cos(β) is the cosine of the angle between ξi and εi.
Equation (34) shows that the second principal component column vector Y2 is also

the strain εN caused by the unobservable nonstationary effects. Additionally, the weight α
used in the constructed matrix B is eliminated in the solution calculation, and the weight α
does not affect the calculation results of the second principal component Y2.

2.3. Classification of the Strain Monitoring Steady-State Data under Traffic Load

The unobservable nonstationary effects cannot be obtained through sensor observa-
tions. For example, the traffic load is not easily obtained using a sensor. A special matrix B
must be constructed, and the previously proposed PCA directional projection decoupling
method must be used to obtain the second principal component Y2, that is, the strain εN

caused by the unobservable nonstationary effects. The state of the strain εN includes the
nonsteady state and the steady state. Taking the traffic load as an example, a classification
method is proposed to weaken the influence of the unobservable nonstationary effects. The
specific description of the proposed method is as follows.

Equation (11) shows that the first principal component Y1 and the second principal
component Y2 are obtained by performing PCA directional projection on the construction
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matrix B. The two principal components dataset Y (Y ∈ Rm×2) contains m samples, which
are defined as follows:

Y = [y1, y2, · · · , yk, · · · , ym]
T (35)

where yk is the kth sample of the dataset Y, yk ∈ R1×2, which is defined as follows:

yk =
{

Y1,k, Y2,k
}

(36)

where Yk1 is the kth sample of the vector Y1, and Yk2 is the kth sample of the vector Y2.
Using the K-means cluster analysis algorithm, the m samples of dataset Y are randomly

divided into two categories, the first cluster group Ω1 and the second cluster group Ω2.
Taking the first cluster group Ω1 as an example, its definition is as follows:

Ω1 =
[
y1, y2, · · · , yj, · · · , yv

]T
(37)

where Ω1 is the first clustering group in the K-means cluster analysis algorithm; v is the
total number of samples in the first clustering group Ω1; j is an arbitrary sample in the first
clustering group Ω1, j ∈ (1, 2, · · · , v); and yj is the jth sample in the first clustering group
Ω1, yj ∈ R1×2.

Then, the centre point dataset c1 of the first cluster group Ω1 can be solved as follows:

c1 =
1
v ∑

yj∈Ω1

yj (38)

Similarly, the centre point dataset c2 of the second cluster group Ω2 can be obtained.
After determining c1 and c2, the m samples in dataset Y are reclustered according to the
distance from the centre point, and the centre point datasets c1 and c2 are updated according
to Equation (38). The above update process adopts the method of optimization and solution,
and the constructed optimization objectives are as follows:

minimize

 ∑
yk∈Ωq

dist
(
yk, cq

) (39)

where q is an arbitrary category in the K-means cluster analysis algorithm, q ∈ (1, 2);
cq is the centre point dataset of the qth clustering group; Ωq is the qth clustering group;
and dist

(
yk, cq

)
represents the distance from sample yk to the centre point dataset cq, which

usually adopts the Euclidean distance, and the expression is as follows:

dist
(
yk, cq

)
= ‖yk − cq‖ (40)

where ‖ · ‖ represents the norm.
When solving the objective function of Equation (39), to improve the efficiency of

finding the objective function, David Arthur proposed a method for selecting the centre
point dataset. In principle, if the centre point dataset c1 is known, select the sample yk with
the highest probability of becoming another centre point dataset. The probability P(yk) of
becoming the centre point is calculated using the following equation:

P(yk) =
D(yk)

∑yk∈Y D(yk)
(41)

where D(yk) is the distance from sample yk to the nearest centre point, and the expression
is as follows:

D(yk) = min
{

dist
(
yk, cq

)}
(42)

where min{·} represents the minimum value of the set.
The process of solving the above optimization problem is realized through MATLAB

programming. By solving the objective function Equation (39), the first cluster group Ω1
and the second cluster group Ω2 can be obtained. The steady state is discriminated by
comparing the variance of cluster group Ω1 and cluster group Ω2.
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2.4. Construction of a Steady-State Data Baseline Model

The strain monitoring data in the traffic load steady state are extracted to establish a
steady-state data baseline model. If the cluster group Ω1 is the steady state, the expression
for the bridge steady-state dataset X

.
is as follows:

X
.
=



Y
. 2,11

Y
. 2,12

· · · Y
. 2,1i

· · · Y
. 2,1n

Y
. 2,21

Y
. 2,22

· · · Y
. 2,2i

· · · Y
. 2,2n

...
...

. . .
...

...
Y
. 2,j1

Y
. 2,j2

· · · Y
. 2,ji

· · · Y
. 2,jn

...
...

...
. . .

...
Y
. 2,v1

Y
. 2,v2

· · · Y
. 2,vi

· · · Y
. 2,vn


(43)

where X
.

is the steady-state data, X
.
∈ Rv×n; v is the total number of samples in the first

cluster group Ω1; j is an arbitrary sampling point at time in the first cluster group Ω1,
j ∈ (1, 2, · · · , v); and Y

. 2,ji
is the second principal component Y2 of the jth sampling point

in the ith measurement point in steady state.
Equation (43) shows that the steady-state dataset of the jth sampling point is recorded

as X
. j

(X
. j
∈ R1×n), which is defined as follows:

X
. j
=

{
Y
. 2,j1

, Y
. 2,j2

, · · · , Y
. 2,ji

, · · · , Y
. 2,jn

}
(44)

The baseline model of steady-state data X
.

is constructed using statistical methods, and

the expression of its mean value, X
.
∈ R1×n, is as follows:

X
.
=

1
v

v

∑
j=1

X
. j

(45)

Then, the covariance of the steady-state data X
.

is recorded as Γ
.
∈ Rn×n, and the

following equation is used:

Γ
.
=

1
v− 1

v

∑
j=1

(
X
. j
− X

.

)T(
X
. j
− X

.

)
(46)

The mean X
.

and covariance Γ
.

of the steady-state data together construct a baseline

model for the steady-state data.
The overall calculation steps of the proposed algorithm are as follows:
Step 1: Use Equation (2) to establish the strain monitoring dataset X for all measure-

ment points of the bridge with monitoring systems.
Step 2: Select the ith measurement point and obtain the strain monitoring datasetωi

and the ambient temperature monitoring dataset Ti.
Step 3: Centralize the dataset to obtain the strain dataset εi and the ambient tempera-

ture dataset ξi based on Equations (4) and (6).
Step 4: Use the weight value α to ensure that the standard deviation of ξi is magni-

fied by α times, which is much larger than the standard deviation of εi, and establish a
construction matrix B based on Equation (7).

Step 5: Obtain the first principal component Y1 and the second principal component
Y2 of the construction matrix B based on Equation (11) and then construct the projection
matrix Y shown in Equation (35).

Step 6: Solve the optimization problem in Equation (39) to perform a cluster analysis
of dataset Y to find the steady-state clustering group Ω1.
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Step 7: Repeat steps 2 to 5 to calculate Y2 for each measurement point and then
construct the steady-state data X

.
in clustering group Ω1 based on Equation (43).

Step 8: Use Equations (45) and (46) to obtain the mean value X
.

and covariance Γ
.

of

the steady-state strain monitoring data; that is, construct a baseline model for the strain
monitoring data in a steady state.

3. Example with an Actual Bridge
3.1. Brief Introduction to the Actual Bridge with a Monitoring System

The Yingxiongshan interchange bridge is in Jinan, China, and a photograph of this
interchange bridge is shown in Figure 1. Three medium- and small-span beam bridges
in this interchange bridge were selected to establish an SHM system. The entire SHM
system includes 36 displacement sensors, 18 acceleration sensors, 64 strain and temperature
sensors. In this section, one three-span prestressed continuous box girder bridge in the
SHM system is selected as an example. The span combination of the selected bridge #1 is
30 m + 30 m + 30 m, the main beam is a variable-width beam, and its width varies from
26.3 m to 28.3 m. The bridge is made of prestressed concrete with a strength of C50, and the
cross-section adopts the structure of a single box with six chambers. In this SHM system,
there are totally 25 strain and temperature sensors on the main beam of bridge #1, and the
layout of the measurement points of bridge #1 is shown in Figure 2. The measurement
points #1~#5, #11~#15, and #21~#25 are located on the bottom flange of the main beam of
the bridge, and measurement points #6~#10 and #16~#20 are located on the top flange of
the main beam of the bridge. The field installation of pre-embedded strain and temperature
sensors is shown in Figure 3.
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Figure 3. Field installation of the SHM system: (a) pre-embedded strain and temperature sensors;
(b) data acquisition instrument.

The SHM system of the Yingxiongshan interchange bridge completed commissioning
and verification work on 1 October 2016 and entered the trial operation stage. The strain
and temperature were sampled once every 10 min. Due to the limitations of the actual
site conditions, the system did not achieve continuous 24 h data collection during the trial
operation stage. The SHM system of the Yingxiongshan interchange bridge entered the
formal operation stage on 1 April 2017. The interchange bridge was opened to traffic on
27 April 2017. The traffic load flow in the initial operation phase of this interchange bridge
was small and unstable, sometimes in an empty state. As time went on, the traffic load
began to increase gradually and tended to be saturated and stable. To establish an accurate
data baseline model, the traffic load in the early stage of opening to traffic belongs to the
nonsteady stage and should be eliminated, and the traffic load after reaching saturation
belongs to the steady state and should be used to establish a steady-state data baseline
model. To establish and verify the steady-state data baseline model, the strain monitoring
data selected in this section start from the trial operation stage, using 1 October 2016, as the
starting point for monitoring data analysis, and 19 months of continuous monitoring data
are used to establish the steady-state data baseline model. The strain monitoring data of all
measurement points of bridge #1 are shown in Figure 4.
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3.2. Construction of the Steady-State Data Baseline Model

The construction of the steady-state data baseline model of the Yingxiongshan in-
terchange bridge is divided into three steps. First, the observable effects and the strain
monitoring data are decoupled to obtain the strain response caused by the unobservable
effects. Second, the strain response caused by the unobservable effects is divided into
two categories: nonsteady-state data and steady-state data. Finally, the data baseline
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model is constructed for the steady-state data. Taking measurement point #8 on the top
flange as an example, to correctly evaluate the fluctuation variance of the monitoring data,
Equations (4) and (6) are used to centrally process the structural temperature monitoring
data and the denoised strain monitoring data, respectively. The result is shown in Figure 5,
which shows that the fluctuation range of the centralized temperature monitoring data is
±30 ◦C, and the fluctuation range of the centralized strain monitoring data is ±100 µε. The
fluctuation of the strain data is greater than that of the temperature data. Therefore, when
building the construction matrix B using Equation (7), a weight w must be assigned to the
temperature monitoring data so that the fluctuation of the temperature data is greater than
that of the strain data. In this way, the first principal component Y1 of the construction
matrix B is the temperature data magnified w times. The second principal component Y2 of
the construction matrix B is the strain caused by the unobservable effects. According to
the actual condition, the weight w is set to 1000. The second principal component Y2 of the
construction matrix B calculated by Equation (11) is shown in Figure 6a, and the K-means
clustering results of the scatter distribution of Y1 and Y2 of the construction matrix B are
shown in Figure 6b.
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Figure 6a shows that the Y2 axial projection of the construction matrix B, that is, the
strain caused by unobservable effects, such as traffic loads, presents three stages. The
first stage is from 1 October 2016 to 27 April 2017, which is a temporary steady state of
approximately no load before opening to traffic. The second stage is from 27 April 2017 to
3 October 2017, which is the gradual increasing trend of the traffic load in the early stage of
opening to traffic. The third stage is from 3 October 2017 to 1 May 2018, which is a steady
state of traffic saturation after opening to traffic. This shows that the extracted Y2 axial
projection can correctly reflect the change in the traffic load. As shown in Figure 6b, in
the K-means clustering results of the scatter distribution of Y1 and Y2 of the construction
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matrix B, the red part is the nonsteady-state data (no-load state and traffic flow increase
stage), and the black part is the steady-state data (flow saturation state). The red and black
parts along the Y2 axis are clearly distinguished due to the different traffic load effects
between the nonsteady-state data and the steady-state data. The data can be easily divided
into two cluster groups by solving the objective function in Equation (38), thus obtaining
the steady-state data of the black part. The results in Figure 6 show that the proposed
method can effectively find the traffic load trend of the data on the top flange and extract
the steady-state monitoring data.

To compare the effectiveness of the algorithm, the scatter plot obtained from the
original strain monitoring data X and the temperature monitoring data is directly used, as
shown in Figure 7. For a more obvious comparison, the classification results obtained in
Figure 6b are marked in Figure 7.
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Figure 7. Original data of the strain and temperature of measurement point #8: (a) strain monitoring
data; (b) results of cluster analysis.

Figure 7b shows that separating the steady-state data in the black part from the
nonsteady-state data in the red part by directly using the original strain monitoring data
is difficult. The black data are offset from the red data but are not completely separated
from them. The reason for the offset of the black data is that the effect of the traffic load has
changed. In Figure 7b, the direction of action of the traffic load is not a translation along
the coordinate axis but an oblique translation, and the translation effect is not obvious.
In addition, the influence of other factors in the data also obscures the effect of the traffic
load. Performing K-means clustering using the original strain monitoring data is not
feasible. Comparing Figures 6b and 7b shows that the proposed method has a good effect
in reducing the influence of environmental factors on the strain monitoring data on the top
flange. Due to the limited space, only measurement point #8 on the top flange is selected
for a detailed description. Figures 6 and 7 show the second principal component Y2 and
the results of the K-means cluster analysis of the other representative measurement points.

Figure 8 shows that the variation law of the Y2 axis projection obtained using
Equation (11) is consistent, indicating that the effect of the traffic load on each measurement
point is consistent. This conclusion is also consistent with the actual situation. The selected
representative measurement points are from the same bridge, so the temperature and traffic
loads are basically the same.

Figure 9 shows that the steady-state data in the black part of each measurement point
are completely separated from the nonsteady-state data in the red part along the Y2 axis
direction, indicating that the proposed method can successfully extract the steady-state
data of all measurement points. Table 1 shows the results of selecting the starting sampling
point k of the steady-state data of all measurement points.
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Figure 8. Data of the strain of all measurement points located at the midspan of the bridge, which
reduces the effect of environmental temperature: (a) measurement point #3; (b) measurement point
#13; (c) measurement point #18; (d) measurement point #23.

Sustainability 2022, 14, 12134 14 of 19 
 

  
(c) (d) 

Figure 8. Data of the strain of all measurement points located at the midspan of the bridge, which 
reduces the effect of environmental temperature: (a) measurement point #3; (b) measurement 
point #13; (c) measurement point #18; (d) measurement point #23. 

Figure 9 shows that the steady-state data in the black part of each measurement point 
are completely separated from the nonsteady-state data in the red part along the 2Y  axis 
direction, indicating that the proposed method can successfully extract the steady-state 
data of all measurement points. Table 1 shows the results of selecting the starting sam-
pling point k  of the steady-state data of all measurement points. 

  
(a) (b) 

  
(c) (d) 

Figure 9. Results of cluster analysis of strain data of all measurement points located at the mid-
span of the bridge: (a) measurement point #3; (b) measurement point #13; (c) measurement point 
#18; (d) measurement point #23. 

Table 1. Results of starting point selection of steady-state data of all measurement points. 

Measurement 
Point 

Monitoring 
Time 

Starting 
Point 

Measurement 
Point 

Monitoring 
Time 

Starting 
Point 

Measurement 
Point 

Monitoring 
Time 

Starting 
Point 

#1 2018.10.2 39165 #10 2018.10.2 39298 #19 2018.10.3 39301 
#2 2018.10.2 39170 #11 2018.10.2 39172 #20 2018.10.3 39303 
#3 2018.10.2 39160 #12 2018.10.2 39163 #21 2018.10.2 39178 
#4 2018.10.2 39168 #13 2018.10.2 39175 #22 2018.10.2 39171 
#5 2018.10.1 39150 #14 2018.10.2 39165 #23 2018.10.2 39170 

Figure 9. Results of cluster analysis of strain data of all measurement points located at the midspan
of the bridge: (a) measurement point #3; (b) measurement point #13; (c) measurement point #18;
(d) measurement point #23.



Sustainability 2022, 14, 12134 14 of 18

Table 1. Results of starting point selection of steady-state data of all measurement points.

Measurement
Point

Monitoring
Time

Starting
Point

Measurement
Point

Monitoring
Time

Starting
Point

Measurement
Point

Monitoring
Time

Starting
Point

#1 2018.10.2 39165 #10 2018.10.2 39298 #19 2018.10.3 39301
#2 2018.10.2 39170 #11 2018.10.2 39172 #20 2018.10.3 39303
#3 2018.10.2 39160 #12 2018.10.2 39163 #21 2018.10.2 39178
#4 2018.10.2 39168 #13 2018.10.2 39175 #22 2018.10.2 39171
#5 2018.10.1 39150 #14 2018.10.2 39165 #23 2018.10.2 39170
#6 2018.10.3 39300 #15 2018.10.2 39174 #24 2018.10.2 39175
#7 2018.10.2 39283 #16 2018.10.3 39301 #25 2018.10.1 39120
#8 2018.10.2 39292 #17 2018.10.2 39284
#9 2018.10.3 39304 #18 2018.10.2 39291

Table 1 shows that the results of the steady-state data of all measurement points
are extracted independently, but the starting point results of the steady-state data of all
measurement points are basically the same. The earliest starting point of steady-state data is
located at measurement point #25, which is the 39,120th sampling point. The latest starting
point of the steady-state data is located at measurement point #9, which is the 39,304th
sampling point. The results of the earliest and latest starting points differ by approximately
31 h. Each measurement point is calculated independently, the maximum error between all
measurement points is approximately 31 h, and the total selected research objects are up
to 19 months. In contrast, the error of 31 h accounts for 0.23% of the overall sample. The
size of the error does not affect the calculation process and accuracy of the algorithm, and
all measurement points yield similar results, which also demonstrates the accuracy of the
method. Based on the above results, the starting point of the steady-state data is selected as
the result of measurement point #9; that is, the period from 3 October 2017, to 1 May 2018,
is the steady-state data period of the bridge. The steady-state data baseline model obtained
by Equations (45) and (46) and some results are shown in Table 2.

Table 2. Results of the steady-state data baseline model.

Parameter Baseline Model Healthy Model Error

Y
.

#7

2
−15.1530 −16.8612 1.7081

Y
.

#8

2
−15.0544 −17.6427 2.5882

Y
.

#9

2
−14.6999 −16.6824 1.9825

Y
.

#10

2
−14.5927 −15.7925 1.1998

Var(Y
.

#7

2
) * 39.4604 27.0709

Var(Y
.

#8

2
) 43.4576 29.1966

Var(Y
.

#9

2
) 49.5208 35.6062

Var(Y
.

#10

2
) 43.5048 29.2437

Cov(Y
.

#7

2
, Y

.
#8

2
) 41.2107 27.8485

Cov(Y
.

#7

2
, Y

.
#9

2
) 43.6631 30.1595

Cov(Y
.

#7

2
, Y

.
#10

2
) 41.1291 27.4678

Cov(Y
.

#8

2
, Y

.
#9

2
) 46.0370 31.6078

Cov(Y
.

#8

2
, Y

.
#10

2
) 43.1732 28.4656

Cov(Y
.

#9

2
, Y

.
#10

2
) 46.1945 31.7308

ρ 1.0000 0.9748 2.52%

* Y
.

#7

2
represents the second principal component Y2 at measurement point #7 in steady state.
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3.3. Performance Comparison between the Proposed Method and a Conventional Method

The K-means cluster analysis indicates that the period from 3 October 2017 to
1 May 2018 is the steady state of this interchange bridge. The strain monitoring data
during the steady state are projected onto the Y2 axis using Equation (11). The data of
measurement points #7 to #10 are arranged in the form of Equation (43). The steady-state
data baseline model is obtained using Equations (45) and (46). The period from 1 May 2018,
to 1 September 2018, is selected as the healthy state of this interchange bridge. Similarly,
the mean and covariance of the healthy model are obtained to test the effectiveness of the
proposed method. The results are shown in Table 2.

Table 2 shows that the error of the covariance between the healthy model and the
baseline model of the proposed method is 2.52%, the maximum mean error is 2.5882 for
measurement point #8, and the minimum is 1.1998 for measurement point #10. To visually
represent the difference between the healthy model and the baseline model of the proposed
method, scatter plots of measurement points #7 and #8 and scatter plots of measurement
points #9 and #10 are drawn in Figure 10. In this figure, the baseline model is represented
by the black part, and the healthy model is represented by the blue part. Although the
environment of the healthy model using summer data is quite different from that of the
baseline model using winter data, the outlines of the scatter plots between the two are in
good agreement, indicating that the proposed baseline model can effectively weaken the
environmental effects.
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To compare the modelling accuracy of the proposed method, the conventional method [32]
is used to establish a baseline model, and the period from 1 October 2016 to 1 May 2018,
after the monitoring system was in operation is used as the reference state. The strain
monitoring data from measurement points #7 to #10 are used directly to build the baseline
model. Similarly, the period from 1 May to 1 September 2018 is selected as the healthy state
of this interchange bridge. The mean and covariance of the healthy model are obtained to
test the effectiveness of the conventional method. The results are shown in Table 3.

Table 3 shows that the covariance error of the conventional method is 82.65%, the
maximum mean error is 83.7621 for measurement point #10, and the minimum is 71.7821 for
measurement point #8. To visually represent the difference between the healthy model and
the baseline model of the conventional method, scatter plots of measurement points #7 and
#8 and scatter plots of measurement points #9 and #10 are drawn in Figure 11. In this figure,
the black part is the baseline model, and the blue part is the healthy model. The outline
of the scatter plots of the healthy model is much smaller than that of the baseline model
due to the different environmental conditions of the two. The healthy model uses summer
data, while the baseline model uses the data for the entire year. Conventional methods
cannot exclude environmental effects, and the monitoring data are impacted by these
effects, which can cover up part of the damage. Therefore, large errors may be introduced
when establishing a baseline model by directly using monitoring data, making damage
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detection difficult. Comparing Tables 2 and 3 and Figures 8 and 9 shows that compared
with the conventional method, the proposed method can greatly improve the modelling
accuracy of the baseline model, from the 82.65% error in the conventional method to the
2.52% error in the proposed method, which greatly reduces the environmental effects.

Table 3. Results of the baseline model using the conventional method.

Parameter Baseline Model Healthy Model Error

ω7 −23.8281 −97.7235 73.8953
ω8 −29.0736 −100.8557 71.7821
ω9 −21.1149 −94.4568 73.3419
ω10 −30.4165 −114.1785 83.7621

Var(ω7) * 1.8985 × 103 796.34
Var(ω8) 2.2287 × 103 879.16
Var(ω9) 2.1399 × 103 691.16
Var(ω10) 2.2441 × 103 779.63

Cov(ω7,ω8) 2.0409 × 103 830.61
Cov(ω7,ω9) 1.9582 × 103 717.96
Cov(ω7,ω10) 2.0333 × 103 778.62
Cov(ω8,ω9) 2.1194 × 103 743.16
Cov(ω8,ω10) 2.1940 × 103 808.27
Cov(ω9,ω10) 2.1663 × 103 726.59

ρ 1.0000 0.1735 82.65%
*ω7 represents the strain monitoring dataset at measurement point #7.
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4. Conclusions

Aiming at the problem of developing accurate nonstationary monitoring data baseline
models for urban girder bridges, a steady-state data baseline model of bridges is proposed.
This model is suitable for damage diagnosis of urban bridge structures under the influence
of the environment. The main conclusions of this study are summarized as follows.

1. The weight α is proven to only control the projection direction of the construction
matrix B; it does not participate in the calculation of the second principal component Y2.
The physical meaning of Y2 is clarified as the strain εN caused by unobservable non-
stationary effects.

2. The proposed directional projection decoupling method can effectively reduce ob-
servable effects such as the temperature from the projection data and weaken the
influence of the observable effects on the monitoring data. The results obtained from
a case study of an actual bridge show that after reducing the temperature effect, the
obtained Y2 is consistent with the actual traffic conditions of the bridge.
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3. K-means cluster analysis can be used to effectively divide unobservable effects such as
the traffic load into steady- and nonsteady-state data, thereby reducing the influence
of unobservable effects on the monitoring data. The independent operation results
of each measurement point show that the error of the steady state starting points of
different measurement points is only 0.23%, which shows that the proposed steady-
state segmentation method has a good robustness.

4. An actual bridge example is used to compare the proposed baseline model using
steady-state data to a conventional baseline model using strain monitoring data. This
comparative analysis shows that the proposed steady-state data baseline model can
effectively improve the accuracy of the baseline model, and the error is reduced from
82.65% to 2.52%, which greatly reduces the influence of environmental effects on the
strain monitoring data.

Given the limitations of the proposed method, the steady-state data baseline model is
only applicable to new constructed bridge with SHM systems installed.
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