
Citation: Geng, L.; Dong, S.; Qian, W.;

Peng, D. Image Classification Method

Based on Improved Deep

Convolutional Neural Networks for

the Magnetic Flux Leakage (MFL)

Signal of Girth Welds in

Long-Distance Pipelines.

Sustainability 2022, 14, 12102.

https://doi.org/10.3390/

su141912102

Academic Editor: Gwanggil Jeon

Received: 27 July 2022

Accepted: 22 September 2022

Published: 24 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Image Classification Method Based on Improved Deep
Convolutional Neural Networks for the Magnetic Flux Leakage
(MFL) Signal of Girth Welds in Long-Distance Pipelines
Liyuan Geng 1,2,*, Shaohua Dong 1, Weichao Qian 1 and Donghua Peng 2

1 College of Safety and Ocean Engineering, China University of Petroleum (Beijing), Beijing 102200, China
2 PipeChina Company, Beijing 100020, China
* Correspondence: gengly@pipechina.com.cn

Abstract: Girth weld defects in long-distance oil and gas pipelines are one of the main causes of
pipeline leakage failure and serious accidents. Magnetic flux leakage (MFL) is one of the most widely
used inline inspection methods for long-distance pipelines. However, it is impossible to determine
the type of girth weld defect via traditional manual analysis due to the complexity of the MFL signal.
Therefore, an automatic image classification method based on deep convolutional neural networks
was proposed to effectively classify girth weld defects via MFL signals. Firstly, the image data set
of girth welds MFL signal was established with the radiographic testing results as labels. Then, the
deep convolutional generative adversarial network (DCGAN) data enhancement algorithm was
proposed to enhance the data set, and the residual network (ResNet-50) was proposed to address
the challenge presented by the automatic classification of the image sets. The data set after data
enhancement was randomly selected to train and test the improved residual network (ResNet-50),
with the ten validation results exhibiting an accuracy of over 80%. The results indicated that the
improved network model displayed a strong generalization ability and robustness and could achieve
a more accurate MFL image classification of the pipeline girth welds.

Keywords: pipeline girth weld; magnetic flux leakage (MFL) inline inspection; convolutional neural
network (CNN); data enhancement; image classification; deep convolutional generative adversarial
network (DCGAN); residual network (ResNet)

1. Introduction

Long-distance oil and gas pipelines represent the primary routes for oil and gas
transportation, playing a vital role in economic development [1,2]. Recent years have seen
frequent pipeline leakage failures caused by girth weld cracking in oil and gas pipelines,
resulting in significant economic losses, environmental pollution, and even casualties. The
timely discovery and repair of girth weld defects can effectively avoid accidents and ensure
pipeline safety [3,4]. Since long-distance oil and gas pipelines are installed underground,
pipeline operators must perform the following procedure to check for girth weld defects:
(1) Excavate the pipeline. (2) Strip the pipeline anti-corrosion layer. (3) Polish the girth weld
to be tested. (4) Conduct non-destructive testing on the girth welds to check for defects.
Radiographic testing is typically used in gas pipelines, while the defects can include circular
defects, strip defects, incomplete fusion, incomplete penetration, crack, pits, and undercuts.
According to the type of defect and other factors, the pipeline operators decide how to deal
with them, and make sure the pipeline girth welds avoid cracking. However, there is a risk
of pipeline damage during excavation, and subsequent non-destructive testing takes a long
time. The number of girth welds in each pipeline is extensive, with more than 8000 girth
welds per 100 km, making it impossible to excavate all of them. MFL in-line inspection is
the most widely used trenchless in-line inspection method for long-distance oil and gas
pipelines, and the obtained MFL in-line inspection signals can represent the information of
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the pipeline body and all the girth welds. However, it is impossible to determine the girth
weld defect type via traditional manual analysis due to the complexity of the MFL signal.
Therefore, it is necessary to intelligently recognize and classify the MFL in-line inspection
images of the girth weld. The type of weld defects can be known without excavation using
this method, which can help judge whether the girth weld has cracking risk in advance.
This can assist pipeline operators in the safety management of girth weld. Therefore, this
work is critical for long-distance oil and gas pipeline safety management.

A convolutional neural network (CNN) can extract higher-dimensional features and
prevent the limitation presented by manual feature recognition and performance in im-
age processing and is widely used in industry, agriculture, medicine, food, and other
fields [5–15]. Especially in the field of face recognition, audio retrieval, and clinical diagnos-
tic features of cardiovascular diseases, in-depth research is abundant; the classification and
recognition performance of the international open data set of the above areas is excellent.
For example, the recognition accuracy of the Labeled Faces in the Wild (LFW) database
is 97.35%, which is comparable to the recognition accuracy of human eyes of 97.53% [16];
the error rate of the standard TIMIT speech database is reduced by 10% compared to
other neural network models [17,18] and the accuracy of ECG classification in the MIT-BIH
database, an internationally recognized arrhythmia database, was 99.2% [19]. CNNs have
three advantages: weight sharing, multi-layer structure and pooling operation. Weight
sharing reduces the training parameters in the network, decreases the complexity of the
network model, and reduces overfitting, consequently improving the generalization ability
of the model. CNNs with a deep structure have strong learning abilities and can handle
more complex problems. Pooling operations reduce the number of neurons of the network,
improving its robustness. Based on all these characters of CNNs and complexity of the
girth weld image, a deep convolutional neural network is selected for image classification
in this paper.

However, minimal research is currently available regarding the classification of girth
weld defect images using a deep convolutional neural network. Yang et al. [20] proposed
a magnetic flux leakage (MFL) image classification method based on sparse auto-coding
to classify girth weld and spiral weld images. Wang et al. [21] used the Hidden Markov
Random Field (HMRF) model and the Bayesian model to perform cluster analyses of
pipeline corrosion defects. Chen et al. [22] used a radial basis neural network as a prediction
model for defects detected by MFL in-line inspection and combined it with the gradient
descent method to update the defect profile. Khodahari [23] identified pipeline body
defects in MFL in-line inspection images via machine learning. The reasons why minimal
research is available are: (1) It is challenging to obtain data set labels. After the excavation
of the girth weld, nondestructive testing determined the label of the girth weld MFL signal.
According to the first paragraph description, the excavation and detection of the girth
weld is a time-consuming and labor-intensive process that requires a significant amount of
workforce and material resources to complete. (2) It is difficult to guarantee the number
of data sets. The data set is limited to selecting the MFL signal images of the girth weld
within the same in-line inspection segment. Under the influence of medium velocity and
more, the set parameters of the MFL in-line inspection of different segments are different,
so the girth-weld MFL signal images in different detection sections cannot be used in the
same data set. As for the data set for this paper, the girth weld MFL signal images in a
natural gas pipeline section are selected. In this segment, girth weld defects caused severe
accidents. Therefore, the pipeline operator conducted over 1000 girth weld excavations and
obtained the data set. This data set has not been made public by the pipeline operator.

CNN involves the AlexNet model, the GoogleNet model, the VGG model, the ResNet
model, and many more, all of which performed exceptionally well in the ImageNet compe-
tition. Krizhevsky et al. [24] used the AlexNet model, containing five convolutional layers
and two fully connected layers in the LSVRC-12 image classification competition. The
model achieved a good classification effect. However, this model depth was relatively shal-
low compared to other network models. Szegedy et al. [25] proposed a GoogLeNet model
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with over 20 layers and three types of convolution operations (1 × 1, 3 × 3, and 5 × 5).
This structure won first place in the “Specified Data” category of the LSVRC-14 image
classification competition for its improved utilization of computing resources and increased
accuracy. Simonyan et al. [26] replaced a convolution layer with a large convolution kernel
with multiple convolution layers with small convolution kernels (e.g., three convolution
layers with all sizes of 3 × 3 convolution kernels replaced one convolution layer with
7 × 7 convolution kernels). The VGG model depth increased while parameter count was
reduced by increasing the convolution layers of 3 × 3 convolution kernels. When the
number of weight layers reaches 16–19, the model performance can be effectively improved.
This model won second place at the LSVRC-14 image classification competition in the
“Specified Data” category. Due to the extensive depth and complex structure of the VGG
and GoogLeNet networks, the training period is lengthy, and VGG must repeatedly adjust
the network parameters. Deep network models are prone to degradation, which means
that as the network depth increases, so does training error, causing the network accuracy to
reach saturation and then rapidly decline. In 2015, K.He et al. proposed Residual Network
(ResNet) to address the degradation issue [27]. The model features cross-layer joining,
in which the input is passed across layers and added to the convolution result through
shortcut connections. The model has only one pooling layer, which is connected to the
final convolutional layer. These features enable the ResNet underlying network to be fully
trained, which improves accuracy significantly as depth increases. This model won first
place at the LSVRC-15 image classification competition. The network structures of the
AlexNet and VGG models are both linear, and their inputs are transmitted directly from
the first convolutional layer to the final layer along a single path, making it challenging to
optimize the underlying network parameters [28]. GoogleNet augments multiple middle
tiers with supervisory signals. ResNet, in contrast to these other three network models, uses
shortcut connections technology to pass the input across layers to the bottom layer, greatly
simplifying the training process for deep network models and improving their classification
accuracy. Therefore, this paper improves the deep residual network (ResNet-50) image
classification model to classify MFL in-line inspection images of girth welds.

The data set in this paper contains over 1000 images of girth welds MFL signals,
displaying few data and unbalanced classification, and these easily cause unstable network
training, over-fitting, and poor generalization ability [29,30]. Jun et al. [31] used tailor-
ing to increase the data set size and achieve category balance. Ukil et al. [32] combined
oversampling with semi-supervised feedback control to obtain an intelligent enhancement
algorithm. Shaker et al. [29] used a generative adversarial network (GAN) for data enhance-
ment, confirming that this method was superior to other traditional data enhancement
techniques. However, the GAN presents challenges, such as pattern collapse, discriminator
victory, instability, and slow convergence [33,34]. Recent studies have shown that GAN
with gradient punishment can overcome these challenges and reduce training time [35–37].
This paper applies the gradient descent method to the GAN to optimize the network
performance and enhance the data sets, which addresses the challenge of few data in the
original data set. In order to focus on effective key features and improve the recognition
rate and robustness of the classification model, CBAM is embedded into the ResNet-50
network. The improved ResNet-50 network is trained with the enhanced data set, display-
ing classification accuracy of over 80% with the ten validation results. The results show
that the improved model exhibits a strong generalization ability and can accurately classify
pipeline girth weld MFL images.

2. Principle
2.1. MFL In-Line Inspection

MFL in-line inspection technology refers to the use of strong magnets mounted on
the MFL in-line inspection tool to conduct saturation magnetization on the pipe wall, and
magnetic flux leakage occurs due to the low permeability at the defect sites in the presence
of defects, such as metal loss. The MFL in-line inspection tool probe detects changes in the
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magnetic field, leading to corresponding modifications in the MFL signal image [38,39].
Then, a data analyst interprets the data to determine the pipe wall defects. Figure 1 shows a
schematic diagram of the MFL inline inspection technology, Figure 2 illustrates a schematic
diagram of the defects detected via the magnetic leakage field, and Figure 3 presents an
image of the MFL signal including base metal signal, spiral weld signal and girth weld
signal. Since the girth welds of long-distance oil and gas pipelines are mainly produced via
manual welding, the MFL in-line inspection signals at these locations are highly irregular.
Therefore, it is impossible to determine the presence or type of defect in a girth weld via
traditional data analysis.
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2.2. Convolutional Neural Network (CNN)

In recent years, CNNs have been widely applied in image processing. Image classifica-
tion using deep CNNs represents an integrated method for image feature extraction and
classification recognition [40]. A CNN mainly comprises a convolutional layer, a pooling
layer, and a full connection layer. The convolutional layer consists of multiple convolutional
units, while different input layer features are extracted via operation. Figure 4 shows a
schematic diagram of the convolutional process. The pooling layer can further filter the
image features, determine important feature information, reduce the number of parameters,
simplify the calculation procedure, and improve the training speed. The full connection
layer analyzes the data extracted from the convolutional and pooling layers and classifies
them. Feature extraction models can extract higher-dimensional features and prevent
the limitation presented by manual feature recognition. All these models are capable of
excellent classification in international open data sets. This paper mainly uses ResNet-50 to
classify the MFL in-line inspection images of girth welds. Effective CNN development can
be attributed to a large number of samples in the data set, while the classification capability
of the model is poor when the sample size of the data set is small. The deep convolutional
generative adversarial network (DCGAN) proposed in recent years is capable of image
generation, which can effectively increase the number of samples in the data set. This paper
uses the improved DCGAN model for data set enhancement.
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2.3. The Attention Mechanism

This refers to the human visual attention mechanism in the internal structure of
the neural network. By assigning weights, the neural network can focus on important
information, restrict unimportant information, reduce noise data, decrease the targeted
learning of key features by the neural network, reduce computation, enhance feature
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expression ability, and improve the signal-to-noise ratio, consequently improving the
generalization ability of the model [41]. The Convolutional Block Attention Module (CBAM)
is a classic mixed attention module that integrates spatial and channel attention. It is
simple and efficient, benefits from the universality and lightness of CBAM, and does not
consider the computational cost of the module. It can be integrated into the CNN of any
structure or with a traditional CNN for training and is responsible for feature optimization
during the forward and backward propagation of CNN. Figure 5 presents a schematic
diagram of CBAM. In this paper, the CBAM is embedded into the ResNet-50 network,
focusing on effective key features and improving the recognition rate and robustness of the
network model.
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2.4. Deep Convolutional Generative Adversarial Network (DCGAN)

In 2014, Goodfellow et al. [42] from the University of Montreal proposed the Gen-
erative Adversarial Network (GAN), representing a network model with an excellent
generative effect. The GAN is mainly composed of generators and discriminators, the
specific execution process of which is shown in Figure 6.
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First, an input noise Z is set, which conforms to a random distribution, after which
the generator generates new data. The calculation formula of Generator G is shown in
Equation (1):

minV
(D, G)

G
= EZ∼PZ (Z)[log(1−D(G(Z)))] (1)

Here, E is the mathematical expectation, PZ (Z) is the Gaussian noise distribution,
and D(G(Z)) is the output probability of the discriminator for the forged input sample.
The goal of the training is to make G as small as possible. The new data generated by the
generator and the original data Pdata(x) are sent to discriminator D, which distinguishes the
authenticity of the generated data. The calculation formula of discriminator D is shown in
Equation (2):

maxV
(D, G)

D
EX∼Pdata(x)

[log(D(X ))] + EZ∼pZ (Z)[log(1−D(G(Z)))] (2)
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Here, D(X ) is the output probability of the discriminator for the real input sample.
The larger the value of discriminator D, the more realistic the generated data. GAN is
trained to make the generated data “fool” the discriminator as much as possible. If the
discriminator cannot distinguish the original from the generated data, the generated data is
confirmed as authentic. At the same time, the discriminator adjusts its discriminant ability
to form an adverbial game relationship with the generator. Its theoretical formula is shown
in Equation (3):

min
G

max
D

V(D, G) = EX∼Pdata(x)
[log(D(X ))] + Ez∼Pz(z)

[log(1−D(G(Z)))] (3)

Equation (3) shows that V(D, G) must be maximized for the discriminator, requiring
the maximization of D(X ) and minimization of (G(Z)). For a generator, V(D, G) must be
minimized and is consequently only related to the second term on the right, which is the
maximization of D(G(Z)).

Although GAN can expand the data set, it presents some challenges, such as vanishing
gradient and collapse mode. In 2016, Radford et al. [43] proposed a deep convolutional
generative adversarial network (DCGAN). Instead of a multi-layer perceptron MLP, a CNN
replaces it, rendering the overall network model differentiable and improving the quality
of data generation. The main structures of the DCGAN discriminator and generator are
shown in Figure 7.

Sustainability 2022, 14, x FOR PEER REVIEW 7 of 22 
 

 

the authenticity of the generated data. The calculation formula of discriminator D is 
shown in Equation (2): maxV (D, G)D E𝒳~ ( )[log(D(𝒳))] + E𝒵~ 𝒵(𝒵)[log(1 − D(G(𝒵)))] (2) 

Here, D(𝒳) is the output probability of the discriminator for the real input sample. 
The larger the value of discriminator D, the more realistic the generated data. GAN is 
trained to make the generated data “fool” the discriminator as much as possible. If the 
discriminator cannot distinguish the original from the generated data, the generated data 
is confirmed as authentic. At the same time, the discriminator adjusts its discriminant 
ability to form an adverbial game relationship with the generator. Its theoretical formula 
is shown in Equation (3): min G maxD V(D, G) = E𝒳~ ( )[log(D(𝒳))] + E ~ ( )[log(1 − D(G(𝒵)))] (3) 

Equation (3) shows that V(D, G) must be maximized for the discriminator, requiring 
the maximization of D(𝒳) and minimization of (G(𝒵)). For a generator, V(D, G) must be 
minimized and is consequently only related to the second term on the right, which is the 
maximization of D(G(𝒵)). 

Although GAN can expand the data set, it presents some challenges, such as vanish-
ing gradient and collapse mode. In 2016, Radford et al. [43] proposed a deep convolutional 
generative adversarial network (DCGAN). Instead of a multi-layer perceptron MLP, a 
CNN replaces it, rendering the overall network model differentiable and improving the 
quality of data generation. The main structures of the DCGAN discriminator and genera-
tor are shown in Figure 7. 

 

 
(a) (b) 

Figure 7. A flow chart of DCGAN. (a) The structure of the discriminator; (b) The structure of
the generator.

Since DCGAN continues to use the loss function of GAN, it is necessary to carefully
balance the optimization of generator and discriminator during the training process to
avoid training instability and even gradient explosion. This paper proposes an improved
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DCGAN_GP method with gradient punishment based on DCGAN. This method adopts the
generator and discriminator structure of DCGAN and adds an additional gradient penalty
to the discriminator loss function. Firstly, samples xr and xg are obtained from the real
sample space pr and generated sample pg, respectively, after which the value is randomly
inserted between the real sample pr and generated sample pg, as shown in Equations (4):

xr ∼ pr , xg ∼ pg , ε ∼ U[0, 1], xt = εxr + (1− ε)xg (4)

where U [0, 1] means that the distribution probability of the same interval on [0, 1] is equally
possible. The original loss function of the discriminator is shown in Equation (5):

Loriginal = Ex∼Pg [D(x)]− Ex∼Pr [D(x)] (5)

where Ex∼Pg [D(x)] represents the mathematical expectation of the sample generation as
the input of the discriminator. Ex∼Pr [D(x)] represents the mathematical expectation when
the input of the discriminator is a real sample. The gradient penalty term is shown in
Equation (6):

GP = Ex∼xt

[
(‖ ∇xD(x) ‖2 −1)2

]
(6)

where ∇xD(x) represents the gradient in the x direction of the output value of the discrim-
inator and Ex∼xt represents the mathematical expectation when the discriminator input
denotes random interpolation sampling xt. The discriminator loss function of DCGAN-GP
is shown in Equation (7):

L(D) = Loriginal + GP (7)

GP introduced in the original DCGAN, solves the problems of gradient disappearance
and gradient explosion in the original DCGAN. The improved DCGAN_GP network
model for data set enhancement addresses the challenge of few data samples in the original
data set.

2.5. Residual Network (ResNet)

In 2016, Kaiming He et al. [27] proposed the ResNet model at the computer vision
and pattern recognition (CVPR) conference to address the degradation caused by gradient
dispersion and other challenges presented by deep-seated networks during training via
identity mapping and enhancing the learning ability and computing performance of the
complex feature extraction mode. The core idea of residual learning is to fit the neural
network to the identity mapping x = H(x) and introduce the short-circuit mechanism and
identity mapping into its network model to design the residual unit, as shown in Figure 8,
where (a) is the standard residual unit, and (b) is the bottleneck residual unit.
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Here, xn represents the input of the residual unit at the nth layer, while its final output
yn is shown in Equation (8); Wn is the input of the residual unit at the nth layer, and the
objective function F is the residual function that the neural network needs to learn. Due to
identity mapping, the residual function F is the residual yn − xn between the output and
the input.

yn = F(xn, Wn)+xn (8)

The ResNet neural network model has different implementation models according to
the number of convolutional layers in its internal structure. Shallow neural networks, such
as ResNet-18 and ResNet-34, use standard residual units for the feature layer, while deep
neural networks, such as ResNet-50, ResNet-101, and ResNet-152, use bottleneck residual
units. Each ResNet model is shown in Table 1. According to Table 1, the ResNet-50 model
displays both a feature learning ability and computing performance. This paper uses this
neural network model to classify the MFL in-line inspection images of girth.

Table 1. The structure, number of parameters, computation of the characteristic layer of each ResNet.

Model
Number of Residual Unit Layers Number of

Parameters
Computation/

GMACs64 d 128 d 256 d 512 d

ResNet-18 2 2 2 2 11.7 1.8
ResNet-34 3 4 6 3 21.8 3.7
ResNet-50 3 4 6 3 25.6 4.1

ResNet-101 3 4 23 3 44.6 7.9
ResNet-152 3 8 36 3 60.2 11.6

Since the data set contains a substantial amount of invalid information, a CBAM is
added to ResNet-50, allowing the improved deep learning network model to pay more
attention to the effective key features while reducing or ignoring some invalid feature
information and improving its recognition rate and robustness. According to Section 2.3,
CBAM is a lightweight attention model that can be embedded into the bottleneck residual
unit, as shown in Figure 9. The improved ResNet-50 with an embedded CBAM is shown in
Figure 10, showing the network parameters.
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Figure 9. CBAM added to the bottleneck residual unit.

There are 174 layers in total in the improved ResNet-50 network. As shown in Figure 10,
the improved network mainly includes the Convolutional layer, MaxPool layer, Residual
unit embedded with CBAM, AvgPool layer, etc. (marked with serial number). The size of
the input picture is 64 × 64, after the AvgPool layer, becoming 1 × 1. Detailed parameters
for network structure and MFL image are shown in Table 2.

Image classification using the deep learning method requires balanced distribution
among various types of data sets. Therefore, it avoids the deep learning network model,
focusing on a large number of samples or samples with more easily identifiable features,
which may affect the overall identification accuracy of the model and cause poor perfor-
mance. Loss functions are usually introduced into network models to solve the problem of
unbalanced data sets.
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Table 2. The parameters for network structure and MFL images.

No. Layers The Size of Output Image

The size of the input picture is 64 × 64
1 Conv 7 × 764 + MaxPool 3 × 3 32 × 32
2 ResNet-Unit_CBAM (Conv 1 ×1, 1, 256)×3 16 × 16
3 ResNet-Unit_CBAM (Conv 1 ×1, 1, 512)×4 8 × 8
4 ResNet-Unit_CBAM (Conv 1 × 1, 1024)×6 4 × 4
5 ResNet-Unit_CBAM (Conv 1 × 1, 2048)×3 2 × 2
6 AvgPool 1 × 1

In this paper, the Focal Loss function proposed by Lin et al. [44] is introduced into the
improved ResNet50_CBAM network model. This function designs the weight according
to the prediction probability of samples, in which samples with a higher probability of
prediction are regarded as easily identifiable samples and given a lower weight, while
those with a low probability of prediction are regarded as samples difficult to learn and
given higher weights. Compared with the commonly used cross entropy (CE) loss function,
the Focal Loss function can dynamically adjust the weight during network model training,
which is more flexible. With dichotomies as an example, the relevant comparison is shown
in Equations (9)–(11):

The CE loss function of a single sample (x, y) is:

CE(x, y) = −(y log p + (1− y) log(1− p)) (9)

where y ∈ {0, 1} is the category label, and p ∈ [0, 1] is the prediction probability of the
sample belonging to category 1.

Regarding the classification problem of unbalanced data sets, the model can improve
the classification of minority samples by adjusting the weight of majority and minority
samples, which can be expressed as follows:

α_balanced_CE(x, y) = −(αylogp + (1− y)log(1− p)) (10)
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The Focal Loss function is expressed as:

FL(x, y) = −
(
y(1− p)γlogp + (1− y)pγlog(1− p)

)
(11)

where γ is the adjusting coefficient.
Therefore, compared with the CE loss function, the Focal Loss function is more flexible

for weight adjustment. This paper uses the improved ResNet-50_CBAM deep learning
network model with Focal Loss for data set classification.

ResNet-50_CBAM, an improved ResNet-50 network model, whose robustness is
improved by using CBAM to pay more attention to the effective feature and ignoring some
invalid features of the data set, is used to classify the data set after enhancement. At the
same time, the Focal Loss function, introduced into the ResNet-50_CBAM, helps the model
dynamically adjust the weight during training and avoids the model from focusing on
a large number of samples or samples with more easily identifiable features. Thus, the
improved ResNet-50_CBAM network model performs better than the original model.

3. Methods

This paper used a CNN to classify data sets, a process that was mainly divided into
the following three steps: (1) The original data set was established. (2) The improved deep
convolutional generative adversarial network DCGAN_GP_CBAM was used to enhance
the data sets. (3) The enhanced data set was used to iteratively train the improved residual
network ResNet-50_CBAM.

3.1. Establishment of the Original Data Set

The radiographic testing results of 1462 girth welds excavated from a long-distance
natural gas pipeline were collected and aligned with the girth welds recognized via MFL
in-line inspection. Screenshots were taken of the MFL in-line inspection signals of the girth
welds and labeled with radiographic testing results, such as circular defect, strip defect,
incomplete fusion, incomplete penetration, crack, pit, and undercut. The number of labels
in the data set is shown in Table 3.

Table 3. Data sets.

No. Label Amount Proportion

1 Circular defects 1057 72.3%
2 Strip defects 345 23.6%

3 Defects, such as incomplete fusion,
incomplete penetration, crack, pit, and undercut 60 4.1%

Total 1462

The sum of incomplete fusion, incomplete penetration, crack, pit, and undercut was 60,
with a 4.1% ratio. For such a small proportion, this paper only selected samples containing
two kinds of labels, which are circular defects and strip defects, to establish the original
sample set, using a total of 1402 samples; 60 circular defects and 36 strip defects were
selected as the testing set from this original data, and the remainders were enhanced.

3.2. Data Set Enhancement

As described in Section 2.4, a DCGAN was used to enhance the original data set
(without testing set). This paper used Pytorch to build the deep learning framework and
Python version 3.6.4 as the programming language. The hardware platform included an
Intel ® Core (TM) i7-10750H with 16 GB CPU memory and NVIDIA GeForce RTX 3060
Laptop with 6 GB GPU memory. The data set (without testing set) was expanded to a total
of 2670 samples, including 1660 circular defects and 1010 strip defects. Compared with
the original data set (without testing set), the number of samples in the enhanced data set
increased, as shown in Table 4. Figures 11 and 12 show the “pseudo circular defects data
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set” and “pseudo strip defects data set” after data enhancement, indicating that the newly
generated data had a good effect.

Table 4. The number & proportion of samples in the original data set, original data set (without
testing set) and the data set after enhancement.

No. Label Amount
(Original)

Proportion
(Original)

Amount
(Without

Testing Set)

Proportion
(Without

Testing Set)

Amount
(After

Enhancement)

Proportion
(After

Enhancement)

1 Circular defects 1057 75.4% 997 76.3% 1660 62.2%
2 Strip defects 345 24.6% 309 23.7% 1010 37.8%

Total 1402 1306 2670
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3.3. Data Set Classification

As described in Section 2.5, this paper selected the improved ResNet-50_CBAM
network as the classifier. Pytorch was employed for the deep learning framework, while
Python version 3.6.4 was used as the programming language. The hardware platform was
an Intel (R) Core (TM) i7-10750H with 16 GB CPU memory and NVIDIA GeForce RTX 3060
Laptop with 6 GB GPU memory.

For the remaining data set (without testing set) after enhancement, it was divided into
a training set and a validation set in the ratio of 9:1; the data selection process is shown
in Figure 13, and cross-validation was carried out 10 times. In every fold, the network
was trained and validated for 500 iterations. The accuracy and loss curve for 10-fold-cross
validation is shown in Figures 14–23. The results showed that the loss of the improved
ResNet-50_CBAM network model tends toward 0, and the accuracy rate is greater than
80%. After calculation, the average accuracy is 87.2% and the average loss rate is 0.013. All
these results indicate that the improved model displayed strong generalization ability and
robustness and has a good classification effect.



Sustainability 2022, 14, 12102 13 of 21

Sustainability 2022, 14, x FOR PEER REVIEW 13 of 22 
 

 

  
(a) (b) 

Figure 11. The data enhancement of the original data set (strip defects) using the improved 
DCGAN_GP_CBAM. (a) Original data set; (b) The data set after enhancement. 

  
(a) (b) 

Figure 12. The data enhancement of the original data set (circular defects) using the improved 
DCGAN_GP_CBAM. (a) Original data set; (b) The data set after enhancement. 

3.3. Data Set Classification 
As described in Section 2.5, this paper selected the improved ResNet-50_CBAM net-

work as the classifier. Pytorch was employed for the deep learning framework, while Py-
thon version 3.6.4 was used as the programming language. The hardware platform was 

Figure 12. The data enhancement of the original data set (circular defects) using the improved
DCGAN_GP_CBAM. (a) Original data set; (b) The data set after enhancement.

Sustainability 2022, 14, x FOR PEER REVIEW 14 of 22 
 

 

an Intel (R) Core (TM) i7-10750H with 16 GB CPU memory and NVIDIA GeForce RTX 
3060 Laptop with 6 GB GPU memory. 

For the remaining data set (without testing set) after enhancement, it was divided 
into a training set and a validation set in the ratio of 9:1; the data selection process is shown 
in Figure 13, and cross-validation was carried out 10 times. In every fold, the network was 
trained and validated for 500 iterations. The accuracy and loss curve for 10-fold-cross val-
idation is shown in Figures 14–23. The results showed that the loss of the improved Res-
Net-50_CBAM network model tends toward 0, and the accuracy rate is greater than 80%. 
After calculation, the average accuracy is 87.2% and the average loss rate is 0.013. All these 
results indicate that the improved model displayed strong generalization ability and ro-
bustness and has a good classification effect. 

 
Figure 13. The schematic diagram of the data selection process. 

  
(a) (b) 

Figure 13. The schematic diagram of the data selection process.



Sustainability 2022, 14, 12102 14 of 21

Sustainability 2022, 14, x FOR PEER REVIEW 14 of 22 
 

 

an Intel (R) Core (TM) i7-10750H with 16 GB CPU memory and NVIDIA GeForce RTX 
3060 Laptop with 6 GB GPU memory. 

For the remaining data set (without testing set) after enhancement, it was divided 
into a training set and a validation set in the ratio of 9:1; the data selection process is shown 
in Figure 13, and cross-validation was carried out 10 times. In every fold, the network was 
trained and validated for 500 iterations. The accuracy and loss curve for 10-fold-cross val-
idation is shown in Figures 14–23. The results showed that the loss of the improved Res-
Net-50_CBAM network model tends toward 0, and the accuracy rate is greater than 80%. 
After calculation, the average accuracy is 87.2% and the average loss rate is 0.013. All these 
results indicate that the improved model displayed strong generalization ability and ro-
bustness and has a good classification effect. 

 
Figure 13. The schematic diagram of the data selection process. 

  
(a) (b) 

Figure 14. The test results using the improved ResNet-50_CBAM (the first time). (a) Accuracy;
(b) Loss.

Sustainability 2022, 14, x FOR PEER REVIEW 15 of 22 
 

 

Figure 14. The test results using the improved ResNet-50_CBAM (the first time). (a) Accuracy; (b) 
Loss. 

  
(a) (b) 

Figure 15. The test results using the improved ResNet-50_CBAM (the second time). (a) Accuracy; 
(b) Loss. 

  
(a) (b) 

Figure 16. The test results using the improved ResNet-50_CBAM (the third time). (a) Accuracy; (b) 
Loss. 

  
(a) (b) 

Figure 17. The test results using the improved ResNet-50_CBAM (the fourth time). (a) Accuracy; (b) 
Loss. 

Figure 15. The test results using the improved ResNet-50_CBAM (the second time). (a) Accuracy;
(b) Loss.

Sustainability 2022, 14, x FOR PEER REVIEW 15 of 22 
 

 

Figure 14. The test results using the improved ResNet-50_CBAM (the first time). (a) Accuracy; (b) 
Loss. 

  
(a) (b) 

Figure 15. The test results using the improved ResNet-50_CBAM (the second time). (a) Accuracy; 
(b) Loss. 

  
(a) (b) 

Figure 16. The test results using the improved ResNet-50_CBAM (the third time). (a) Accuracy; (b) 
Loss. 

  
(a) (b) 

Figure 17. The test results using the improved ResNet-50_CBAM (the fourth time). (a) Accuracy; (b) 
Loss. 

Figure 16. The test results using the improved ResNet-50_CBAM (the third time). (a) Accuracy;
(b) Loss.



Sustainability 2022, 14, 12102 15 of 21

Sustainability 2022, 14, x FOR PEER REVIEW 15 of 22 
 

 

Figure 14. The test results using the improved ResNet-50_CBAM (the first time). (a) Accuracy; (b) 
Loss. 

  
(a) (b) 

Figure 15. The test results using the improved ResNet-50_CBAM (the second time). (a) Accuracy; 
(b) Loss. 

  
(a) (b) 

Figure 16. The test results using the improved ResNet-50_CBAM (the third time). (a) Accuracy; (b) 
Loss. 

  
(a) (b) 

Figure 17. The test results using the improved ResNet-50_CBAM (the fourth time). (a) Accuracy; (b) 
Loss. 

Figure 17. The test results using the improved ResNet-50_CBAM (the fourth time). (a) Accuracy;
(b) Loss.

Sustainability 2022, 14, x FOR PEER REVIEW 16 of 22 
 

 

  
(a) (b) 

Figure 18. The test results using the improved ResNet-50_CBAM (the fifth time). (a) Accuracy; (b) 
Loss. 

  
(a) (b) 

Figure 19. The test results using the improved ResNet-50_CBAM (the sixth time). (a) Accuracy; (b) 
Loss. 

  
(a) (b) 

Figure 20. The test results using the improved ResNet-50_CBAM (the seventh time). (a) Accuracy; 
(b) Loss. 

Figure 18. The test results using the improved ResNet-50_CBAM (the fifth time). (a) Accuracy;
(b) Loss.

Sustainability 2022, 14, x FOR PEER REVIEW 16 of 22 
 

 

  
(a) (b) 

Figure 18. The test results using the improved ResNet-50_CBAM (the fifth time). (a) Accuracy; (b) 
Loss. 

  
(a) (b) 

Figure 19. The test results using the improved ResNet-50_CBAM (the sixth time). (a) Accuracy; (b) 
Loss. 

  
(a) (b) 

Figure 20. The test results using the improved ResNet-50_CBAM (the seventh time). (a) Accuracy; 
(b) Loss. 

Figure 19. The test results using the improved ResNet-50_CBAM (the sixth time). (a) Accuracy;
(b) Loss.



Sustainability 2022, 14, 12102 16 of 21

Sustainability 2022, 14, x FOR PEER REVIEW 16 of 22 
 

 

  
(a) (b) 

Figure 18. The test results using the improved ResNet-50_CBAM (the fifth time). (a) Accuracy; (b) 
Loss. 

  
(a) (b) 

Figure 19. The test results using the improved ResNet-50_CBAM (the sixth time). (a) Accuracy; (b) 
Loss. 

  
(a) (b) 

Figure 20. The test results using the improved ResNet-50_CBAM (the seventh time). (a) Accuracy; 
(b) Loss. 
Figure 20. The test results using the improved ResNet-50_CBAM (the seventh time). (a) Accuracy;
(b) Loss.

Sustainability 2022, 14, x FOR PEER REVIEW 17 of 22 
 

 

  
(a) (b) 

Figure 21. The test results using the improved ResNet-50_CBAM (the eighth time). (a) Accuracy; (b) 
Loss. 

  
(a) (b) 

Figure 22. The test results using the improved ResNet-50_CBAM (the ninth time): (a) Accuracy; (b) 
Loss. 

  
(a) (b) 

Figure 23. The test results using the improved ResNet-50_CBAM (the tenth time). (a) Accuracy; (b) 
Loss. 

Then, the training result was tested in the testing set. In this paper, multiple indica-
tors were used as the evaluation basis for the classification effect. The accuracy rate, the 
recall rate, and the F1-score are shown in Table 5; the confusion matrix is shown in Figure 
24. 

  

Figure 21. The test results using the improved ResNet-50_CBAM (the eighth time). (a) Accuracy;
(b) Loss.

Sustainability 2022, 14, x FOR PEER REVIEW 17 of 22 
 

 

  
(a) (b) 

Figure 21. The test results using the improved ResNet-50_CBAM (the eighth time). (a) Accuracy; (b) 
Loss. 

  
(a) (b) 

Figure 22. The test results using the improved ResNet-50_CBAM (the ninth time): (a) Accuracy; (b) 
Loss. 

  
(a) (b) 

Figure 23. The test results using the improved ResNet-50_CBAM (the tenth time). (a) Accuracy; (b) 
Loss. 

Then, the training result was tested in the testing set. In this paper, multiple indica-
tors were used as the evaluation basis for the classification effect. The accuracy rate, the 
recall rate, and the F1-score are shown in Table 5; the confusion matrix is shown in Figure 
24. 

  

Figure 22. The test results using the improved ResNet-50_CBAM (the ninth time): (a) Accuracy;
(b) Loss.



Sustainability 2022, 14, 12102 17 of 21

Sustainability 2022, 14, x FOR PEER REVIEW 17 of 22 
 

 

  
(a) (b) 

Figure 21. The test results using the improved ResNet-50_CBAM (the eighth time). (a) Accuracy; (b) 
Loss. 

  
(a) (b) 

Figure 22. The test results using the improved ResNet-50_CBAM (the ninth time): (a) Accuracy; (b) 
Loss. 

  
(a) (b) 

Figure 23. The test results using the improved ResNet-50_CBAM (the tenth time). (a) Accuracy; (b) 
Loss. 

Then, the training result was tested in the testing set. In this paper, multiple indica-
tors were used as the evaluation basis for the classification effect. The accuracy rate, the 
recall rate, and the F1-score are shown in Table 5; the confusion matrix is shown in Figure 
24. 

  

Figure 23. The test results using the improved ResNet-50_CBAM (the tenth time). (a) Accuracy;
(b) Loss.

Then, the training result was tested in the testing set. In this paper, multiple indicators
were used as the evaluation basis for the classification effect. The accuracy rate, the recall
rate, and the F1-score are shown in Table 5; the confusion matrix is shown in Figure 24.

Table 5. Classification results.

Fold Precision Recall F1-Score

0
Strip defects are missing 1.00 0.67 0.80

Circular defects are missing 0.83 1.00 0.91
Accuracy 0.88

1
Strip defects are missing 1.00 0.64 0.78

Circular defects are missing 0.82 1.00 0.90
Accuracy 0.86

2
Strip defects are missing 1.00 0.67 0.80

Circular defects are missing 0.83 1.00 0.91
Accuracy 0.88

3
Strip defects are missing 1.00 0.67 0.80

Circular defects are missing 0.83 1.00 0.91
Accuracy 0.88

4
Strip defects are missing 0.96 0.64 0.77

Circular defects are missing 0.82 0.98 0.89
Accuracy 0.85

5
Strip defects are missing 0.96 0.67 0.79

Circular defects are missing 0.83 0.98 0.90
Accuracy 0.86

6
Strip defects are missing 0.92 0.67 0.77

Circular defects are missing 0.83 0.97 0.89
Accuracy 0.85

7
Strip defects are missing 0.96 0.67 0.79

Circular defects are missing 0.83 0.98 0.90
Accuracy 0.86

8
Strip defects are missing 1.00 0.56 0.71

Circular defects are missing 0.79 1.00 0.88
Accuracy 0.83

9
Strip defects are missing 0.92 0.67 0.77

Circular defects are missing 0.83 0.97 0.89
Accuracy 0.85
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All the results above show that the improved ResNet-50_CBAM network has a good
classification effect. The improved model confuses strip defects to a high degree, with
an accuracy of 67%, indicating that the recognition method of strip defects by this model
needs to be improved. The model has a low level of confusion with circular defects, with
an accuracy of nearly 100%, indicating that the improved model has a very strong ability to
identify circular defects.

Therefore, the improved ResNet-50_CBAM network model is capable of accurately
classifying the MFL images of the pipeline girth welds.

4. Conclusions and Discussion

(1) The DCGAN_GP can enhance the data set of girth weld signal images obtained via
MFL in-line inspection. The improved ResNet-50_CBAM displays a strong general-
ization ability and robustness and can effectively classify with the data set of girth
weld signal images obtained via MFL in-line inspection with an accuracy rate of over
80%. However, the improved model confuses strip defects to a high degree with an
accuracy of 67%, so the recognition method of strip defects by this model needs to be
improved in the following study.

(2) The incomplete fusion, incomplete penetration, cracks, pits, and undercuts pose
greater threats to the safety of girth welds. However, these types were not selected
as test objects for this study because they represent an insufficient proportion of the
data set. Future efforts should focus more on challenging expanding the data set and
realizing multi-classification for the data set.

(3) In the next study, the GoogleNet model, VGG model, and other models should be
improved to classify the database. The classification results should be compared to
those of this paper to select a better classification method.

(4) This pipeline section will soon complete the second round of MFL in-line inspection.
The new data set should be classified using the improved model. Pipeline operators
can make comprehensive judgments based on both classification results, thereby
assisting pipeline operators in strengthening the safety management of girth welds.

(5) It is also possible to use other nondestructive testing results, such as ultrasonic and
TOFD as labels for girth weld MFL signal images to establish new data sets. The
classification results are of significance to pipeline safety management.
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