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Abstract: Electric car-sharing (ECS) is an increasingly popular service in many European cities.
The management of an ECS fleet is more complex than its thermal engine counterpart due to the
longer ”refueling“ time and the limited autonomy of the vehicles. To ensure adequate autonomy,
the ECS provider needs high-capacity charging hubs located in urban areas where available peak
power is often limited by the system power rating. Lastly, electric vehicle (EV) charging is typically
entrusted to operators who retrieve discharged EVs in the city and connect them to the charging
hub. The timing of the whole charging process may strongly differ among the vehicles due to their
different states of charge on arrival at the hub. This makes it difficult to plan the charging events
and leads to non-optimal exploitation of charging points. This paper provides a smart charging
(SC) method that aims to support the ECS operators’ activity by optimizing the charging points’
utilization. The proposed SC promotes charging duration management by differently allocating
powers among vehicles as a function of their state of charge and the desired end-of-charge time. The
proposed method has been evaluated by considering a real case study. The results showed the ability
to decrease charging points downtime by 71.5% on average with better exploitation of the available
contracted power and an increase of 18.8% in the average number of EVs processed per day.

Keywords: electric vehicles; sustainable mobility; smart charging; electric car-sharing; charging
management system; battery model; power flows forecasting; operation modes

1. Introduction

As stated in the European Green Deal, the European Union aims to be climate-neutral
by 2050. This means achieving an economy with net-zero greenhouse gas emissions [1].
The massive adoption of renewable energy sources (RESs) and the passage to electric
mobility are seen as fundamental actions in this process. However, many researchers are
pointing out that an excessive penetration of RESs can lead to an intolerable decrease in the
flexibility and reliability of the electrical grid. This is mainly due to the non-schedulability
of RESs’ energy production [2,3]. Along with this, the charge of electric vehicles (EVs)
requires an increase in energy demand as well as the management of intermittent loads
characterized by high power peaks. Furthermore, this kind of load is often unlikely to
match the generation profile of RES.

Smart charging (SC) techniques are seen as a possible solution to address these issues.
The term smart charging identifies all those strategies that act on the regulation of power
flows required for EV charging to improve matching between the efficient electric grid
usage and the charging needs. Often, SC techniques deal also with the effective integration
of RESs. Several works on SC are available in the literature. In [4], the authors provide an
SC method capable of modulating the power consumption of each charging point (CP) of a
charging hub (CH) to optimize the integration with local photovoltaic production. This
SC aimed to maximize self-consumption by minimizing the power exchanges with the

Sustainability 2022, 14, 12077. https://doi.org/10.3390/su141912077 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su141912077
https://doi.org/10.3390/su141912077
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-2076-4254
https://orcid.org/0000-0003-1999-0107
https://orcid.org/0000-0002-7482-1173
https://orcid.org/0000-0001-6640-8955
https://orcid.org/0000-0001-9195-1239
https://orcid.org/0000-0002-4565-1064
https://doi.org/10.3390/su141912077
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su141912077?type=check_update&version=1


Sustainability 2022, 14, 12077 2 of 19

electrical grid. Similar purposes characterize the SC methods developed in [5,6]. These
works describe an SC management system capable of allocating power among the EVs
connected to the CPs of a CH. In addition to the self-consumption maximization, this SC
method aimed to ensure an overall good state of charge (SOC) at departure time for all the
vehicles in the CH. In [7], the developed SC method aimed at controlling EV consumption
in relation to the variations in electricity price. The target was the reduction of the impact of
EV charging on the electrical distribution network along with the minimization of charging
costs. More recent works, such as [8,9], investigate the use of SC methods in the presence
of bi-directional power flow exchange between the electrical grid and the vehicle batteries.
In this case, the energy stored in the vehicle battery is used to provide ancillary services
such as frequency regulation or can supply external load [10,11].

The use of smart charging is becoming more and more important in urban settings.
In such a context, the development of electric mobility makes it possible to drastically
reduce pollutant emissions with a significant positive social impact [12]. In large cities,
where private mobility is a major source of pollutants [13,14] and greenhouse gases emis-
sions [15], the introduction of alternative mobility solutions is becoming more common [16–
18]. Among these, electric car-sharing (ECS) services are becoming increasingly popular.
In particular, ECS adoption is growing in major European cities, where enforced regulations
such as low emission zones are becoming increasingly popular [19–21].

However, the management of an electric car fleet is much more complex than its
counterpart based on internal combustion engines. As is well known, this is due to the long
time required for recharging and the limited range currently offered by traction batteries.
To ensure adequate range for the whole fleet, the ECS provider needs large charging hubs
equipped with a high number of charging points. These CHs have to be located inside
the urban area, where the available peak power is often limited by the actual capabilities
of the distribution network. EV charging is typically entrusted to human operators who
retrieve the EVs within the city, transport them to charging hubs, and connect them to the
CPs. Hence, the timing of the charging process may strongly differ among the vehicles
due to their different state of charge (SOC) on arrival at the CH. This leads to non-optimal
exploitation of the charging points, as many EVs remain connected even after being fully
charged. This means that several CPs remain inactive for a long time.

The aforementioned issues have been addressed in some previous works. In [22],
the authors developed a method to model the operator-controlled charging operations and
customers’ EV picking behavior. This model was used to understand how to manage the
charge of the fleet to make electric car-sharing viable and profitable. Similar considerations
were made in [23,24] that focused on the optimization of the CHs layout and location.
However, none of these works address the adoption of SC methods. SCs for EV-shared
fleets are instead discussed in [25,26]. In [25], the SC works by shifting the electricity
demand for the recharge away from high-priced peak hours, attempting to match the
profile of RESs production. In [26], the SC operates by shifting the usage of shared EVs
through a designed dynamic pricing scheme, with the objective of maximizing the ECS
provider’s profit.

Although these works demonstrate how the adoption of SC techniques can reduce the
overall cost of charging operations, they do not address the issue of fleet management and
charging in relation to operators’ time schedules. In particular, no strategy is employed to
synchronize operators’ handover cycles to and from the CHs with the EVs’ charging time.
Indeed, this missing synchronization may introduce a slowdown in operator activities,
non-optimal exploitation of the available power, and a reduction in the number of EVs
charged per day.

This paper presents an SC method, specifically devoted to electric car-sharing charging
hubs, which aims to overcome the aforementioned limits. The developed method allows
for minimizing the uncertainty as to the duration of charging and synchronizing it with the
typical time schedule of ECS operators. This SC would lead to a contemporary increase in
the number of vehicles processed per day and improve the exploitation of the available CPs.



Sustainability 2022, 14, 12077 3 of 19

Differently from the other charging management systems, where all connected EVs
receive the same amount of power, the proposed SC method acts on the management
of charging duration by controlling the power required by each single charging point
according to the state of charge of the vehicle and the desired end-of-charge time. At the
same time, the proposed SC controls the total power consumption of the CH by preventing
the power demand from exceeding the power available at the grid connection point and
maximizing the exploitation of the available contracted power.

These goals are achieved by dynamically regulating the power consumption of each
connected EV by means of the power set-point modulation of each CP. The power set-
point results from a battery charging behavioral model (BCBM) that forecasts the value of
power that the CP has to deliver to the EV to complete the charging within a time interval
chosen by the ECS operator. The BCBM dynamically updates the forecast of the charging
power on the base of the evolution of the SOC and the charging rate (C-rate) during the
charging process.

The proposed SC stems from a real case study scenario and collaboration with the
ECS provider of the city of Bologna, Italy, named “Corrente” [27]. The effectiveness
of the developed SC is assessed by comparing it with the standard charging procedure
currently adopted for the management of the Corrente CHs. Results show performance
improvements in terms of the number of EVs reaching the full charge in the scheduled time,
more effective exploitation of the available contracted power level, reduction of the overall
fleet charging times, and increased number of EVs that operators can process during an
entire work cycle.

The paper is structured as follows: Section 2 analyzes the case study and the possible
issues arising from managing a large ECS fleet. Section 3 describes the EV battery charging
behavioral model and the algorithm used to simulate the power demand profiles of the CH.
Section 4 provides the SC method. The results and the comparison between the proposed
SC and the standard method are discussed in Section 5. Finally, conclusions are reported in
Section 6.

2. Description of the Reference Case Study

The car-sharing fleet of the cities of Bologna and Ferrara consists of 335 EVs displaced
over the whole metropolitan area. Users can book the vehicle through a dedicated mobile
app, drive, and park the vehicle within a specific perimeter. The covered area in the
municipality of Bologna is shown in Figure 1. The car-sharing fleet is entirely composed
of battery EVs. About 70% of the fleet is made by ZOE ZE50 R135 (2020) equipped with
a battery pack having a capacity of 52 kWh. The remaining vehicles are ZOE ZE40 R110
(2018) equipped with a 41 kWh battery pack.

The ECS provider remotely monitors the SOC and the location of each vehicle. When
the SOC of a vehicle drops below a certain level, an ECS operator drives it toward a
charging hub to recharge the EV’s battery. When the vehicle is fully charged, the operator
disconnects it from the charging station and returns it to one of the dedicated parking spots,
making it available for new users. It is essential to point out that this operation is not based
on rigid procedures. Indeed, an operator is left free to bring a vehicle to the charging hub
even if the vehicle’s battery does not strictly need to be recharged. This approach aims to
have the user find a vehicle as charged as possible so as to ensure the maximum possible
range and limit the so-called user range anxiety [12,25]. For each EV, the different phases of
the charging procedure can be summarized as follows: (a) the operator locates the vehicle
to be recharged and drives it toward the CH; (b) the operator connects the EV to a charging
station of the hub, starting the battery charging; (c) the SOC of the EV battery reaches a
satisfactory level (qualitatively around 100%), hence, the operator disconnects the vehicle
and brings it back to the closest free parking lot.
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Figure 1. Map of electric car-sharing fleet operation area within the municipality of Bologna. The blue
area represents the area allowed for vehicle use and parking. The red points indicate the location of
the charging hubs. The blue points represent real-time locations of the car-sharing EVs. Map adapted
from [28].

In the city of Bologna, there are two charging hubs, represented by the red markers in
Figure 1. A CH consists of a parking area equipped with AC charging stations. The CH
located in the city center, labeled as CH1, contains four charging stations, each with two
22 kW Type 2 connectors (i.e., a total of eight charging points of 22 kW each). The CH,
located in a more peripheral area of the city—namely, CH2—has six charging stations for a
total of twelve 22 kW charging points. In the continuation of the work, reference will be
made only to CH1 for the sake of simplicity and synthesis.

The blue points in the map depict the possible location of the EVs around the city.
As visible from Figure 1, the distance between a parked EV and the CH is practically
random and strongly differs among the vehicles. Consequently, the time corresponding
to completing the whole charging procedure, which includes phase (a), phase (b), and
phase (c), can be different from vehicle to vehicle. Equation (1) defines the duration of
the entire charging procedure, indicated as TCP, by discerning the contribution of the
three phases:

TCP = Ta + Tb + Tc (1)

The average value of Ta + Tc is 40 min; however, there is large variation around the
average as the duration of phase (a) (Ta) and the duration of phase (c) (Tc) for each vehicle
depend on the distance from the charging hub and the traffic conditions. Tb represents the
time interval during which the vehicle remains plugged to the charging point. It depends
on the EV battery capacity, the charging power, and the state of charge at the beginning of
the charging process SOC0. Since the vehicle model population is fairly homogeneous (it
includes only 41 kWh or 52 kWh batteries), and all charging points have a rated power of
22 kW, the variation of Tb among the different vehicles of the fleet mainly depends on the
values of SOC0 upon their arrival at the CH.

Clearly, SOC0 is generally different from vehicle to vehicle. This appears evident by
analyzing the data reported in Figure 2, which show the SOC0 distribution of the vehicles
arriving at CH1 over three months (i.e., about 1650 charging events). These data are
monitored and collected by the ECS provider for each charging event and made available
on a dedicated online platform. The scatter plot in Figure 2a reports the SOC0 value for
each charging event in relation to the vehicle model. The dark blue markers refer to the



Sustainability 2022, 14, 12077 5 of 19

ZOE ZE40, and the light blue markers to the ZOE ZE50. The black curve in the figure shows
the probability density function (pdf) obtained from Gaussian kernel density estimation
that is associated with the SOC0, whose value is readable on the right y-axis.

(a) (b)

Figure 2. State of charge data of the CH1 collected over a period of 3 months. (a) SOC0 values in
relation to the vehicle model: the dark blue markers refer to the ZOE ZE40, the light blue mark-
ers refer to the ZOE ZE50. The black line shows the related pdf, and the red line represents the
pdf estimation based on a Weibull function. (b) Boxplot of the error introduced by the Weibull
function approximation.

The average value of the registered initial SOC of the examined population is SOC0m = 27%
with standard deviation SOC0std = 16%. This distribution can be conveniently associated to
a Weibull distribution (red curve in Figure 2a having k = 1.8% and λ = 31%). The boxplot
of Figure 2b shows the error introduced by the Weibull function estimation via a root-mean-
square error (RMSE) that is equal to about 1.25%.

For each charging, the dataset made available to the ECS provider gives the follow-
ing information:

• The ID number of the EV;
• The EV model;
• The ID number of the charging point (CP) belonging to the CH;
• The state of charge SOC0 (pre-charging SOC);
• The state of charge at the end of the charging process, SOCend (post-charging SOC);
• The start timestamp of the charging process, tstart (when the vehicle is connected to

the charging point);
• The timestamp of the end-of-connection. tend (when the vehicle is disconnected from

the charging point).

Note that tend may not coincide with the end-of-charge time tech. In fact, the vehicle
may be disconnected even a long time after reaching the maximum SOC on the basis
of operator availability. An example of the provided data frame format is reported in
Table 1. By analyzing the main data frame, it is possible to extrapolate some noteworthy
characteristics related to the charging processes of the charging hubs. Figure 3a reports
the frequency distribution of the levels of SOC0 and SOCend. Differently from SOC0,
the SOCend values are more concentrated on their average value (i.e., 98%). The orange plot
in Figure 3a shows that almost all vehicles are disconnected when the SOC is higher than
90%. The violin plots of Figure 3b show the distribution of tstart, tend, and the connection
period Tb. The start-charging events occur in the 7:00 - 20:00 time range, which corresponds
to the working time of the ECS operators. On the other hand, the tend occurrences present
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two main clusters. The first cluster is related to vehicles that are disconnected on the same
day of tstart. The second cluster is related to vehicles disconnected the day after the tstart
(that is, vehicles charged overnight). These distributions reflect on the connection time,
which is calculated as the difference between tend and tstart. The average connection time of
the over-day (OD) charges is 3.2 h while the vehicles subjected to overnight (ON) charging
remain connected for 15 h on average.

Table 1. Example of the first three rows of the data frame provided by the ECS company.

EV ID EV Model CH ID CP ID SOC0 SOCend tstart tend

34 ZE40 CH1 3 13% 98% 13 December 2021
08:49:45

13 December 2021
10:06:51

107 ZE50 CH1 2 25% 100% 13 December 2021
09:12:45

13 December 2021
11:02:11

12 ZE50 CH1 1 8% 97% 13 December 2021
08:00:05

13 December 2021
09:01:22

(a) (b)

Figure 3. Statistical processing of the ECS data frame represented via violin plots. (a) Distribution
of SOC0 and SOCend; (b) tstart, tend, and Tb distribution. Markers in the figures represent the mean
value of quantities.

As shown in Table 1, the available data do not give a direct indication of charging time
and instantaneous power, while it is possible to extrapolate the energy supplied during
charging from the knowledge of the initial and final SOC.

3. EV Charging Power Modeling and Management System

This section analyzes the characteristics of the current charging hub power flow and
presents the models adopted to perform the comparative analysis against the charging
method proposed in this paper.

3.1. Current EV Charging Management System

The total power required by the charging hub (PCH) is

PCH(t) =
Nch

∑
i

PEVi(t) (2)
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where PEVi is the charging power provided to the i − th EV and Nch is the number of
vehicles connected to the charging stations at time t. According to the characteristics
of the electric distribution network supplying the CH, the available maximum power
PCHmax = 100 kW (i.e., the contracted power) is lower than the sum of the rated powers of
the charging stations PCPi installed in the hub. Hence,

∑
i

PCPi > PCHmax (3)

The actual management system acts by reducing the power consumption of each CP
in case the requested power of the whole CH exceeds PCHmax. In the CH under analysis,
the charging management system (CMS) operates according to the following equation set:

PCPi(t) =


22 kW if Nch ≤ 4

PCHmax
Nch

if Nch > 4
(4)

In short, the management system simply lowers the power supplied uniformly for
all charging vehicles when the required power exceeds the available power. Clearly, this
operation leads to highly non-homogeneous charging profiles among the vehicles.

The charging profile is required to calculate the evolution of PCH(t) during the day.
Unfortunately, the data about the charging profiles were not available to the ECS provider;
hence, the power flow associated with each charge was reconstructed using the forecasting
algorithm presented in [4] and discussed in this section.

3.2. Battery Charging Behavioral Model

In the case of AC charging stations, the power (referred to as POBCh) is controlled by
the onboard power electronic converter [29], which influences the duration of the charge
itself. The onboard chargers of the Renault ZOEs have a rating power of 22 kW equal
to the maximum power provided by the CPs. Along with the modulation due to the
management system, the charging profile of the vehicles is controlled to comply with the
Constant Current–Constant Voltage (CC-CV) charging protocol for lithium batteries [30,31].
According to this protocol, the charge starts with the CC phase, where a constant current is
provided to the battery. During this phase, the battery voltage increases, and the power
profile follows that of the voltage. When the battery voltage reaches the upper cut-off value,
the CV phase begins. During this phase, the onboard charger keeps the battery voltage
constant while the charging current decreases. Therefore, the power profile follows the
current drop. The CV phase continues until the end of the charge.

The CC-CV charging phases can be conveniently described through the power–SOC
curves [32]. Let us consider a whole EV charging process, starting from SOCmin = 0%
up to the full charge at SOCmax = 100%. In the beginning, the EV absorbs the power
PEV(SOCmin); then, the charging power increases as the SOC increases. This increase
continues until a threshold value SOCCV is reached. At this point, the power PEV(SOCCV)
becomes equal to the peak value PEVmax of the whole charging profile. The value of PEVmax
depends on both PCP and the onboard charger power capability POBCh and corresponds
to PEVmax = min[PCP, POBCh]. Once SOCCV is reached, PEV reduces until it goes to zero in
correspondence of SOCmax.

Knowing the PEVmax value, the charging power profile can be obtained as

PEV = k PEVmax (5)

where k ∈ [0, 1] is a normalization factor that varies during the charging process as a
function of the SOC according to the following equation set:
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k =


k0 +

(
1− k0

SOCCV

)
SOC if SOC ≤ SOCCV (6a)(

SOCmax − SOC
SOCmax − SOCCV

)α

if SOC > SOCCV (6b)

A linear dependence between the SOC and the power is assumed in the CC phase
(Equation (6a)) while a polynomial evolution, driven by the exponent α, is assumed for
the CV phase (Equation (6b)). It can be seen that k = k0 when SOC = SOCmin (i.e.,
PEV = PEV(SOCmin)), k = 1 when SOC = SOCCV (i.e., PEV = PEVmax), and k = 0 when
SOC = SOCmax (i.e., PEV = 0 ).

Along with the SOC, the PEV profile changes also as a function of the adopted charging
rate (C-rate, CR), i.e., the ratio between charging power and EV battery energy capacity CB
(expressed in kWh). In the referred charging process, the higher CR is, the lower SOCCV is.
This happens because a higher charging current causes a higher voltage drop across the
internal resistance of the battery. The cut-off voltage value is therefore reached faster and
in correspondence with a lower SOC. This behavior is described by Equation (7), which
provides the analytical expression of the SOCCV as a function of CR:

SOCCV(CR) = SOCCV(CR0) +
dSOCCV

dCR
CR (7)

where SOCCV(CR0) represents the value of SOCCV of a charging process having a quasi-zero
C-rate. In this condition, the battery voltage reaches the limit value at the end of the charg-
ing. In other terms, the charging process has only the CC phase; so, SOCCV(CR0) = SOCmax.

The term
dSOCCV

dCR
CR introduces a deviation from SOCCV(CR0) for CR 6= CR0, where the

derivative of SOCCV with respect to CR generally assumes negative values (i.e., SOCCV
decreases as CR increases).

The internal battery voltage increase also affects the parameter k0 in Equation (6a) as
it expresses the ratio of PEV(SOCmin) to PEVmax. The dependency of k0 on CR is described
by the following equation:

k0(CR) = k0(CR0) +
dk0

dCR
CR, (8)

where k0(CR0) is the value of k0 for a quasi-zero C-rate charging process that implies an
over-voltage on the battery’s internal resistance close to zero. The limit value of k0(CR) is
the ratio between the battery open-circuit voltage and the CV cut-off voltage for CR tending
to CR0.

As detailed in [33], different EV models may have different charging profiles. This is
due to the differences in EV hardware (battery, onboard charger, etc.), and firmware (mainly,
the battery management system) adopted by the different manufacturers. The charging
profile models adopted in the present work, whose parameters refer to the Renault-ZOE
EV, are retrieved from [34–37] for different C-rates. The different profiles are reported in
Figure 4a and show the measured charging power P∗EV as a function of the state of charge
considering three different charging ratings PCP of the CP: 7 kW, 22 kW, and 46 kW.

Starting from these real data, an optimal setting of the variables of Equations (6)–(9),
i.e., the elements of the vector ā =

[
α, k0(CR0), dSOC

dCR
, dk0

dCR

]
, are searched via an iterative

deterministic process that considers all possible combinations of the elements of ā within
pre-determined ranges of variation. The search aims at identifying the set of parameters
that minimize the RMS error between the reference P∗EV and the output power obtained by
the derived model. The obtained values of ā are reported in Table 2 together with the value
of the RMSE.
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(a) (b)

Figure 4. Sampled and predicted charging power profiles for the Renault-ZOE. (a) Comparison
between the field-measured data (colored markers) and the predictions of the obtained model (black
dashed lines). (b) Normalized charging power profile (k) as a function of the SOC and the C-rate.
The dashed black line shows the value of SOCCV and k0 relating to CR = 1.

Table 2. Obtained values of ā parameters that minimize the RMSE with respect to the sampled
Renault-ZOE charging profiles.

α k0(CR0) dSOC/dCR dk0/dCR RMSE

0.65 0.87 −42.85 0.02 0.88

The comparisons between the observed data and the model predictions are made
visible in the same Figure 4a, where the power profile for different increasing C-rates is
also depicted. Finally, Figure 4b shows the k(ā) profile as a function of SOC and CR.

3.3. Charging Hub Power Flow Calculation

The model obtained as described in Section 3.2 is part of an algorithm that, starting
from vehicle-specific data such as charging profile, state of charge, and starting and ending
time of the charging process, is able to construct the aggregate load profile of the entire
charging hub (Figure 5). The mentioned algorithm is based on the one presented in [4].
Its adapted version, which considers the battery charging behavioral model proposed in
this paper, is here briefly summarized by the flow chart in Figure 5. In short, the algorithm
calculates the charging power profile PEV(t) of each connected EV on the basis of the
EV data (i.e., CB and SOC0) and the CH data (i.e., PCP and Nch), with a 1-min resolution.
Having as input the time tstart, the algorithm is able to indicate if an EV is disconnected
before having reached SOCmax (i.e., before full charge is reached) or if the vehicle remains
connected for longer than necessary (i.e., tend higher than end-of-charging time tech). The
aggregate power of the whole CH is obtained as the sum of the power required by each
charging point.

The algorithm has been applied to evaluate the total power demand of the reference
scenario of the CH1 considering a typical day in December 2021. According to the results
of the data analysis summarized in Figure 3b, the simulation time starts at 7:00 am. The ob-
tained results are shown in Figure 6. Figure 6a shows the power provided by each charging
point of CH1 to the EVs as a function of time. The connection instant tstart of each EV to the
j-th CP and the disconnection instant tend are indicated with the circular and triangular
markers, respectively. The color of the markers indicate the EV’s state of charge at tstart and
tend, respectively. The bar marker indicates the end-of-charging time tech forecasted by the
developed model.
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Figure 5. Flowchart of the EVs charging power flow calculation algorithm. The red boxes and related
arrows represent the input data. The green arrows represent the collected output data.

It can be observed that, in addition to the overnight charges represented by the
group of connected vehicles in the evening hours (after 18:00), the non-optimal condition
(tend > tech) can often occur in over-day charging as well (from 7:00 to 18:00). This working
condition affects the performance of the whole charging hub. In fact, as can be seen in
Figure 6b, the whole CH power rarely reaches its maximum value and the number of
connected vehicles is always below its maximum capability. On the day considered, the CH
provides 737 kWh to the EVs and the average CH power is 55 kW, which is well below its
max availability.

The accuracy of the proposed model is assessed by comparing the information about
the energy supplied to each vehicle that is available in the data frame of the ECS provider.
By initializing the same SOC0i for a certain charge event, the accuracy of the algorithm
is evaluated by calculating the error between the SOC(tend) obtained by the model and
the one obtained by the measurements of the ECS provider. Simulations are carried out
considering the whole data collection and using the SOC0 values reported in Figure 2.
The model results have reproduced the actual data with an RMSE = 2.64%.
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(a)

(b)

Figure 6. Representation of the actual power flows of the studied charging hub. (a) Power provided
by each CP (indicated by the ID reported on y-axis) to the EVs. The round markers and triangular
markers indicate the tstart and tend instant of each connection, respectively. Their color represents the
corresponding value of SOC. The bar-markers indicate the tech values. The evolution of the power
flow during each charge is indicated through a colormap. (b) Power provided by the whole CH.
The red area is the delivered energy. The dashed black line indicates the number of vehicles connected
to the CPs of CH.

4. Smart Charging Method

The analysis carried out in Section 2 highlighted the high variability of the interval
Tb, during which a vehicle remains plugged. This makes it difficult to plan a schedule in
charging management, and often an EV remains connected for longer than necessary as the
end of charging occurs in periods when the ECS operator is not present. This also leads
to non-optimal exploitation of the charging hub as some charging points remain inactive
even when a vehicle is connected. As a result, the average power used by the CH remains
well below its maximum capability. Hence, the SC here proposed has been developed
with the aim to improve the exploitation of the CH’s available power and manage the
charging processes in such a way to respond to precise time scheduling based on the ECS
operator cycles of presence and absence in the CH. Differently from the starting scenario
(i.e., the power management based on Equation (4)), where all connected EVs receive the
same amount of power, the proposed SC promotes the management of charging duration
by differently allocating powers among the EVs as a function of their state of charge and
the desired end-of-charge time (t∗ech). This means the SC substantially controls the duration
of the time interval Tb, reducing the idle intervals of the CPs. As a side effect, this is also a
means to increase the average power output of the CH and improve the exploitation of the
available grid capabilities.

The proposed SC method modulates the power PEVi delivered to the i-th EV by setting
the j-th CP power to which the EVi is connected. This modulation is based on the following
equation set:



Sustainability 2022, 14, 12077 12 of 19

PCPj =


22 kW if Nch ≤ 4 (9a)(

SOCmax − SOC0i
100

)
CBi(

t∗ech,i − tstart,i

)
λi

if Nch > 4 (9b)

The numerator of Equation (9b) represents the energy that should be delivered to
the EVi to reach the full charge (i.e., SOCmax) starting from its SOC0i. The denominator
represents the desired duration of the charge. The parameter λ is a corrective coefficient
that considers the charging power variation due to the CC-CV protocol.

The role of λ can be conveniently described by referring to Figure 7a. This figure
shows two charging events, both starting at tstart = 0 h and referring to the same EV model
ZOE ZE50 and the same CP power rating PCP = 22 kW. The first vehicle starts charging
with an SOC of 60% and the second one with an SOC of 0%. Both EVs start the CV phase at
SOC = SOCCV = 80%. The CV phase lasts about 1 h up to the full charging of the vehicles.
According to the different starting SOCs, the CV phase for EV1, over the entire charging
duration, lasts longer than that for EV2. As a result, the average power P̄EV1 of EV1 is lower
than P̄EV2. Furthermore, the average power P̄EV provided to the vehicle depends on the CP
output power. Finally, considering the same EV model, we can conclude that the higher
PCP is, the larger the share of the CV phase over the whole charging period, and the lower
P̄EV is compared to PCP. All these correlations are summarized through the parameter λ,
which can be defined as

λ(SOC0, PCP) =
P̄EV(SOC0, PCP)

PCP
(10)

(a) (b)

Figure 7. Graphical explanation of the λ coefficient: (a) Two charging events starting with different
SOC0 with the same PCP (dashed red line). The colored dots show the EVs’ power profiles and
dashed black lines represent their respective average power. The green areas represent the energy
supplied to the EVs. (b) λ values as a function of SOC0 and PCP for the ZOE ZE50. The markers show
the λ value referring to the charging events of panel (a).

Figure 7b shows the values of λ as a function of SOC0 and PCP for the ZOE ZE50.
In conclusion, Equation (9) sets the power that the CP has to provide to the EV to fully
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charge it at the desired time (t∗ech) and the λ coefficient allows to take into account the
variation of PEV due to the onboard charger modulation.

In order to comply with the maximum CP power limit and the maximum power
available to the whole CH, the following constraints hold:

PCPj ≤ 22 kW

PCH =
Nch

∑
i=1

PEVi ≤ PCHmax

(11)

Attention has to be paid to the choice of t∗ech,i: an under-setting of the desired charging
period may lead to an overload of the charging hub, i.e., the violation of (11). To overcome
this issue, the CMS constantly measures the CH consumption and increases t∗ech,i (i.e.,
decreases PCPj), if constraints (11) are not met. Figure 8 shows the algorithm that calculates
PCH following the SC technique proposed in this section.

Figure 8. Flowchart of the proposed smart charging according to the equations described in this
section. The red boxes are the data required as input to obtain the CP power set-point (green box).
The gray box contains the initialization values of λ and t∗ech required by Equation (9b).

From a technical point of view, the CMS needs to communicate with the charging
stations of the CH, sending the value of PCP for each CP. Then, the on-board charger receives
the set-point of power from the CP connector and modulates the consumption accordingly.
This procedure can be performed via the control pilot pin of the AC Type 2 connector
(typical socket used in EU), which is responsible for the post-plug signaling. The control
pilot communicates to the on-board charger the maximum power available to the CP via
a PWM voltage signal, whose duty cycle is a function of the maximum current the CP
can supply [38]. By dynamically modulating the control pilot duty cycle, it is possible to
modulate the power of the on-board EV charger operating the SC.

5. Results

The comparison between the actual ECS provider charging management described
by Equation (4) (hereafter referred to as St. C) and the proposed smart charging method
based on Equation (9), has been performed by means of simulation starting from the same
reference scenario described in Section 2.

5.1. Simulations Settings

The considered CH is equipped with eight CPs. The connection instant (tstart) of EVs
to the CPs occurs only from 7:00 to 20:00, i.e., the working hours of the ECS operators.
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Hence, no EVs are plugged in after 20:00, and the EVs that are not yet fully charged at that
time are disconnected at 7:00 the following morning. The simulations considers two ECS
operators working simultaneously during the day. Based on the average times given in
Section 2, an operator is considered to arrive at the CH every 20 min. Hence, due to the
availability of the operators to connect new EVs, the simulation setting considers that the
time between two consecutive tstart cannot be less than 20 min. A two-minute interval is
assumed as the time between the disconnection of a charged vehicle and the connection of
a new vehicle to be recharged.

The activities of the two operators begin at 7:00, with all EVs left for overnight charging
assumed as fully charged. From 7:00 onward, the connection time tstart to the CPs of
subsequent EVs depends on the presence of the operators in the CH and the duration of
the charging of the EVs previously connected. Once the eight CPs are occupied, the tstart,i
from the ninth vehicle onward will depend on the SOC reached by the vehicles already
connected. Hence, starting from the ninth EV, the operator will directly connect it if at
least one of the already connected vehicles is fully charged; otherwise, the operator has
to wait until the full charge of one connected EV is reached. In summary, on the basis of
Equation (9), the proposed SC method allocates the power to the CPs as a function of the
connected EV SOC0 to reach SOCmax within a specific reference time t∗ech = 20 min that
coincides with the average availability of the operators in the CH.

To perform the comparison between St. C. and the proposed SC, the simulations of
both scenarios have the same initial conditions, i.e., the same EV models, the same tstart
as the first set of EVs, and the same SOC0. The SOC0 of the vehicles at tstart is randomly
selected among the samples of the data set shown in Figure 2.

5.2. Simulation Results

The results of the simulations comparing St. C and SC methods are summarized in
Figure 9. In particular, Figure 9a shows the power provided by each CP to the vehicles
as a function of the time referring to the St. C (figure on the left side) and SC (figure on
the right side). The heat-map represents the power intensity that the EVs require from
the CPs during the charge. The power variations depend on the modulation of both the
onboard charger and the operations of the charging management system. The smoother
power level variation that occurs near the end of the charging process of each EV is due
to the decrease in the power resulting from the passage to the CV phase. Conversely, the
more marked variation that occurs when another EV is connected or disconnected is due to
the CMS operation that reduces or increases the consumption according to the St. C and SC
operations. It is noteworthy that both CMSs start to modulate the power only if there are
more than four EVs simultaneously under charging. This clearly appears in Figure 9a, in
which the CMS operations become visible after the 5th EV is connected to CP5.

From Figure 9a (left), it can be seen that the St. C evenly distributes the power to each
vehicle. Since control of the tech is missing, the charging time depends on SOC0 and Nch;
hence, the charging duration can present extremely varied values. In this case, the end-of-
charging time occurs also when the operators are not available, causing the several visible
downtimes between two consecutive charging events. The downtime periods are instead
strongly reduced when the proposed SC is operated, as visible in Figure 9a (right).

By looking at Figure 9b it appears that, on average, the SC (right) provides the energy
required to fully charge the EVs in less time with respect to the St. C (left). The average
power PCH obtained with the St. C method is about 73 kW. This value increases to 87.5 kW
when the CH is managed by the SC method. As a result, the St. C takes about 16 h to charge
all EVs, while the SC takes about 13.5 h. Since operators’ work shifts end at 20:00, the SC
allows them to fully charge more EVs during the daytime. This also allows operators to
connect new EVs for overnight charging at the end of the working day. By observing the
last set of eight vehicles in Figure 9a (left), it appears that no EVs complete the charging
before 20:00. So, practically all of them go into overnight charging. On the other hand,
as Figure 9a (right) shows, the SC makes it possible to charge five more EVs before 20:00,
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allowing to connect five more EVs for overnight charging. Finally, considering the 24-h
time window, the results show that the operators can perform 32 EV charges with the St. C
method and can perform 37 charges with the SC method.

(a)

(b)

Figure 9. Power flow comparisons between the St.C (left) and the SC mode (right): (a) Heat-map
of the power provided by each charging point (CP) during the charging events. The black bar
markers indicate the end of charging, the round markers indicate the start of connection time, and the
triangular markers indicate the end of connection time. The white band between the end of a charging
process and a new connection to the same CP represents the downtimes. The markers on the bottom
indicate the tstart and tend of each charging process, whose color is a function of the vehicle’s SOC.
(b) Profile of the power required by the whole CH, the average value of which is indicated by the
dashed red line. The black line represents the number of EVs simultaneously under charge.

The comparison is then extended to a broader time front of 10 days by measuring the
following performance indicators:

1. Whole downtime of the CPs (Tdw).
2. CH power exploitation coefficient ηexp defined as P̄CH/PChmax, denoted as percentage.
3. The total number of charging events occurred within the 24-h period (i.e., the whole

number of EVs connected per day).

The resulting values of the three performance indicators related to the 10 simulation
days are reported in Figure 10.
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(a) (b) (c)

Figure 10. Comparison of the charging performances between St. C and SC considering 10 different
days. (a) Downtime of each charging event at the CH. (b) Exploitation coefficient of the maximum
power available at the CH. (c) Total number of charging events managed per day.

Figure 10a confirms the relevant reduction of the downtime obtained thanks to the
proposed SC method. On average, EVs charged via SC remain plugged without adsorbing
power for 8.7 min versus the 30.6 min of the St.C. 50% of EVs have a Tdw < 2 min when
the SC method is adopted versus the 12 min presented with St. C. Concerning the values
of the power exploitation coefficient, Figure 10b shows the increase in the average power
provided by the CH. The proposed SC allows better exploitation of the available maximum
power showing a value of ηexp = 87% versus the ηexp = 74% obtained with the St.C. Finally,
Figure 10c shows that the average number of charging events that occurred in the period of
24 h increased from 31 under St.C to 37 under SC. This number of charges becomes very
close to the ideal maximum capability of 40 charges per day that two operators can perform.

In summary, the results confirmed the effectiveness of the proposed smart charging
method for the ECS charging hub management that allowed us to obtain a decrease in Tdw
of 71.5%, an increase in the power exploitation ηexp of 15.4%, and an increase in the number
of charging events of 18.8%.

6. Conclusions

This paper addressed charging management for a car-sharing fleet based on battery
electric vehicles. The analysis carried out on a real-world scenario (i.e., the electric car-
sharing fleet of the city of Bologna) highlighted that the high variability of the charging
duration (due to different arrival SOC) makes it challenging to plan the charging manage-
ment entrusted to the operators. Often, an EV remains connected for longer than necessary
as the end of charging occurs in periods when the ECS operator is not present (i.e., he
is handling other vehicles). This leads to non-optimal exploitation of the charging hub
as some charging points remain inactive even when a vehicle is connected. This also
introduces a downtime. As a result, the average power used by the CH remains well below
its maximum capability.

This paper addressed this issue by developing a smart charging method capable of
minimizing the uncertainty of the duration of the charging and synchronizing it with
the typical time schedule of the ECS operators. The proposed SC method acts on the
management of the charging duration by controlling the power required by each single
charging point according to the EV SOC and the desired end-of-charge time. At the same
time, the proposed SC controls the total power consumption of the CH by preventing
the power demand from exceeding the power available at the grid connection point. To
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calculate the charging power set-point, a battery charging behavioral model was developed.
The behavioral model was implemented starting from the measured charging profiles of
the Renault ZOE. It forecasts the EV power demand as a function of the C-rate and SOC
evolution during the charging process.

Finally, simulations were carried out considering a real case study scenario and com-
paring the performance of the SC with the standard charging method. The results showed
that the proposed technique decreases the CPs downtime by 71.5% on average. This leads
to better exploitation of the available contracted power with an increase of the average
power from 74% to 87% of the maximum available level. The average number of vehicles
that the same number of operators can fully charge during a working cycle increases by
18.8% (from 31 to 37 EVs per day) by using the proposed SC method.

It is worth remarking that these results are limited to the case study under considera-
tion as described in Section 2. Different numbers of available CPs, a different level of power
manageable by the CP as well as the maximum contracted power available to the whole
CH, different EV models, more or fewer ECS operators, or a change in their work shifts
may lead to different results. However, the models presented in the paper, as well as the
proposed SC method, can be customized and adapted to different scenarios by opportunely
setting the parameters of the equations presented in Sections 3.2 and 4.
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Abbreviations

BCBM Battery Charging Behavioral Model
CC-CV Constant Current–Constant Voltage
CH Charging Hub
CMS Charging Management System
CP Charging Point
ECS Electric Car-Sharing
EV Electric Vehicle
ID Identification number
OD Over-Day
ON Over-Night
PWM Pulse-Width Modulation
RES Renewable Energy Sources
RMSE Root-Mean-Square Error
SC Smart Charging
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St. C Standard Charging
CB Battery energy capacity
CR Charging Rate
Nch Number of EV in charging
PCH Total power required by the CH
PEV Charging power of a single EV
SOC State of Charge
SOC0 Pre-charging SOC
SOCend Post-charging SOC
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