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Abstract: This work addresses the loop closure detection issue by matching the local pose graphs
for semantic visual SLAM. We propose a deep feature matching-based keyframe retrieval approach.
The proposed method treats the local navigational maps as images. Thus, the keyframes may be
considered keypoints of the map image. The descriptors of the keyframes are extracted using a
convolutional neural network. As a result, we convert the loop closure detection problem to a
feature matching problem so that we can solve the keyframe retrieval and pose graph matching
concurrently. This process in our work is carried out by modified deep feature matching (DFM).
The experimental results on the KITTI and Oxford RobotCar benchmarks show the feasibility and
capabilities of accurate loop closure detection and the potential to extend to multiagent applications.

Keywords: pose graph; loop closure detection; semantic VSLAM; deep feature matching

1. Introduction

Loop closure detection or subsequent relocalization is a critical process for the visual
simultaneous localization and mapping (SLAM) system [1]. This is an event-triggered
process [2–4] that can eliminate the cumulative error of navigation trajectory estimation
by detecting the locations visited by the robot and correcting the estimated odometry. For
intelligent autonomous mobile robots, vision-based mapping, navigation, and localization
are fundamental tasks, and the VSLAM system integrates all of them. VLSAM is an active
research topic in the field of computer vision and robotics, especially for GNSS-denied
environments, such as urban areas, indoor rooms, or underground spaces [5]. The most
common solution to the visual navigation system is the VSLAM [6–10]. We illustrate
a general VSLAM system in Figure 1. A modern VSLAM system consists of two major
modules. Incremental estimation of the motion by visual odometry is usually the task of
what is called the frontend. Quick elimination of the cumulative error by optimization is
usually the responsibility of the backend of the system [11,12]. There are two problems to
be solved in the frontend: reconstructing 3D scenes and estimating the camera pose in the
current frame [13]; however, they are dependent upon each other. The 3D reconstruction
requires the known poses of the camera, while the estimation of the absolute pose of the
camera (with real distance) requires the known 3D scene. The basic framework to solve
those two problems concurrently is the structure from motion, as well as visual odometry, in
which we focus on the pose estimation for navigation [14,15]. With a depth sensor or stereo
view, the coarse 3D scene can be generated at the beginning. Then, the fundamental steps
for the frontend are tracking the image scenes (feature points, landmarks, objects [16–21],
etc.) between frames and estimating the camera motion with the geometry constraints. The
backend records key information from the frontend, such as the 3D scene, landmarks, and
geometry constraints in keyframes over the navigation, and registers them into a global
map. With that information, the backend refines the estimation results by feeding a set of
keyframes, i.e., the pose graph, into the optimizer [22]. Meanwhile, when the frontend
detects similar scenes, and the backend believes the UAV has returned to a known place in
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the global map, the loop closure process will be activated. Loop closure detection may be
either online or offline, while optimization may only be conducted offline.

Frontend (Online processing) Backend (Offline processing)

…

Input frames

Scenes tracking Pose estimation
Mapping

Optimization

4
3

2
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Visual Simultaneous 
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Loop closure
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Figure 1. Visual simultaneous localization and mapping.

The most challenging problem for VSLAM is dealing with the cumulative error. The
cumulative error is usually calculated by measuring the root mean square pose error
between the estimates and the provided ground truth, which is a type of relative error. As
the odometry distance increases, the tiny errors from the frame-to-frame estimations become
significant. In particular, rotation errors may be amplified over long-term navigation,
which can induce large localization errors. Cumulative errors mainly come from the
frontend, i.e., the structure-from-motion process (SfM), in which the robot estimates its
camera motion and recovers the 3D scene structure frame by frame [23]. The mathematical
model of this process has been well studied in computer vision, projective geometry, and
photogrammetry [24,25]. The obstacles to implementing this theory in robotic applications
are the constraints in the real world. Keypoint detection and tracking inevitably introduce
noise and outliers. To deal with these problems, researchers have designed accurate and
robust feature descriptors, such as ORB-SLAM [26], or have estimated the motion by directly
minimizing the residual of images, such as DTAM [27] and LSD-SLAM [28]. Whether
feature-based or direct methods, the idea is to form an algebraic system, which is usually
nonlinear and overdetermined with noise and outliers, and find the optimal solution.
However, the local minimum problem during the regression or optimization for solving
such a system is always a critical issue for obtaining accurate estimation results. Although
many optimization methods have been proposed to remove the outliers and reduce the
impact of data noise, and the frame-to-frame estimation error has been minimized to
a trivial residual [29,30], the VSLAM system still suffers from a cumulative error and
the occasional wrong estimation. At the top system level, IMU-aided sensor fusion in
conjunction with a Kalman filter (KF) [31], bundle adjustment (BA) [32], or pose graph
optimization [33,34] may be the solution. The optimization problems formed from BA or
pose graphs are usually complex and non-convex. Although many optimizers have been
proposed [35–41] for solving these types of problems, it is rather difficult for the system
itself to be aware of the drifts [42]; open loop estimation and loop closure detection are very
likely to be the only reliable way to eliminate the cumulative error for VSLAM. However,
this process requires accurate and efficient image retrieval and matching.

This paper addresses the loop closure detection problem using deep learning-based
pose graph matching. There are two key steps in loop closure detection: (1) matching the
current scenes with the recorded keyframes and (2) finding the transformation between the
matched keyframes for trajectory correction. Because a long-term VSLAM generates a large
number of keyframes, the image views of the keyframes are usually discretized using fea-
ture descriptors. After the keyframes are matched, the correction of the trajectory is carried
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out by pose graph optimization. In our work, we combine the keyframe descriptors and
pose graphs by modeling them into a sparse image, for which each keyframe is converted
into a feature point. Then, we employ a deep convolutional neural network (CNN)-based
method, i.e., deep feature matching (DFM) [43], to solve the two key steps simultaneously
over a large data scale. The proposed method is evaluated on two self-driving car bench-
marks: the KITTI [44] and Oxford RobotCar datasets [45]. An illustration of the main idea
is shown in Figure 2. The main contributions of this work can be summarized as follows:

• To the best of our knowledge, this is the first time that a sparse image-based keyframe
map that stores each keyframe as a feature point with convolutional feature descriptors
is proposed for pose graph matching.

• We convert the loop closure detection problem to a feature point matching problem
so that keyframe matching can be performed over a large data scale with a geometry
transform consensus.

• We evaluate the method on the KITTI and Oxford RobotCar benchmarks, which
demonstrates the feasibility of the proposed method and the potential for its applica-
tion in multiagent robotics.

DFM feature matching for map imagesKeyframe encoding using VGG net

Pose graph with 
keyframe feature 
descriptors

Figure 2. Conversion of the loop closure detection problem to image feature matching. The green
lines represent estimated trajectories. The yellow dots represent the recorded keyframes in database.
Red lines are the transformation between matched keyframe and current keyframe.

2. Literature Review

Traditional loop closure detection methods usually encode the keyframe data using
a set of feature point descriptors, such as the bag-of-words (BoWs) [46,47] or a principal
component analysis (PCA). This means the image retrieval process for loop closure detec-
tion has been basically treated as an image classification problem. For example, the vector
of locally aggregated descriptors (VLAD) aggregates the local descriptors, i.e., the BoWs,
into a compact global image representation. The Fisher vector, on the other hand, uses the
Gaussian mixture model (GMM) to create a visual word dictionary matching and hence
encodes more visual information than the BoW. Except for 2D image-based methods, some
SLAM systems detect the overlap locations by matching the reconstructed 3D map [48,49].
However, 3D point cloud alignment with unknown overlap areas is a highly complex
problem mathematically.

Recently, with the development of deep learning [50], semantic VSLAM has attracted a
lot of interest. With regard to the pure vision SLAM system, recent efforts have been made
in semantic scene tracking, which is one level up from the feature point tracking during
the frontend stage. Meanwhile, deep learning-based feature point detection and matching
methods are based on a similar idea. For instance, SuperGlue, SuperPoint, DFM, etc., use
different layer outputs of CNN features as the point descriptors. These methods have
been used for both camera motion estimation and loop closure detection. A notable work,
SuperGlue [51], proposed the attentional graph neural network (AGNN). SuperGlue uses a
five-layer multilayer perceptron (MLP) to encode the feature descriptors with locations,
for which the relationship between neighbor feature points is trained by the attentional
aggregation scheme. Then, it finds the matched feature points between two images using an
optimal matching layer. In their subsequent work, SuperPoint [52], the authors proposed a
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MagicPoint Base Detector net and homographic adaptation for deep feature self-supervised
learning. In [43], a two-stage feature point matching DMF-net was presented. It uses a
dense nearest neighbor search (DNNS) to find the best match for each element between
two deep feature encoded images. To address the local illumination variation problem,
the authors proposed the hierarchical refinement algorithm (HRA), which changes the
number of feature points in each re-refinement stage by selecting the appropriate matching
values and excluding outliers. All of these methods use CNN as the point feature encoder,
and it is clear that loop closure detection and image point matching are fundamentally
similar. In fact, the feature semantic level in the loop closure detection should be higher
than the point matching because the task is to match the keyframes between two pose
graphs [53]. However, most semantic SLAM systems still perform loop closure detection
by image retrieval in feature point or image patch levels.

The semantic features used in our work move one level up. We treat the whole naviga-
tion map as the global image and each keyframe as the feature point. Thus, the keyframe
image retrieval and graph matching tasks can be processed immediately using the existing
deep feature matching methods.

3. Methods
3.1. Overview

The proposed method works with the pose graph formulation, where the pose graph
can be generated by any keyframe-based visual odometry estimation or VSLAM. Each
node of a pose graph is a keyframe consisting of a 6-DoF pose and an encoded image view.
The image views can be encoded in different ways for different methods. Our problem
formulation is shown in Figure 3; we replaced the feature patch of the image point in DFM
with the VGG19 feature maps of the image view. Thus, a pose graph-based local map
became a sparse image with the encoded deep features of keyframe image views.

1

2 2’ 6

5

4

3 3’

1

2 7 6

5

4

3 8

Pose graph

 

DFM point matching Keyframe matching

DNNS
+HAR

Encoded sparse image 

VGG19

Figure 3. Method overview. The node from 1 to 8 represent the keyframe recorded sequentially.

3.2. Deep Feature Matching

In DFM, the image feature matching process was divided into two stages. In the first
stage, the images were warped by estimating a rough geometric transformation between
two images in low spatial resolution using DNNS. In the second stage, the DNNS matched
the feature patches and refined them hierarchically by HRA, starting from the last layer
of a pretrained VGG19 net. Among these processes, the DNNS searched one of the image
feature patches to find the best match for each element of the feature patches extracted from
another image. We denoted the VGG19 feature maps of the l-th layer FA = VGG19(IA, l)
of image A, for a feature point pA

i in FA; the DMF found its matched pair < pA, pB > in
image B by:

< pA
i , pB

i >= DNNS(FA(Ω(pA
i )), FB({Ω(pB

j )|j ∈ neighbors(pA
i )})), (1)

where the Ω(pA) is a point set that represents the receptive field of pA, and the neighbors(pA)
extracted potential matches near the location of pA. The best match was defined by the
minimum l2 distance of the nearest neighbor points. In DFM, the final matching results
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were refined iteratively using the HRA process, which performed the DNNS matching of
all CNN layers. It is clear that the DNNS is the key process for feature point matching.

3.3. Problem Formulation

We first considered the single-agent case. We denoted the k-th node Nk of a general
pose graph as:

Nk = {Tk, Fk}, (2)

where T represents the 6-DoF transformation from the world frame to the camera frame,
and Fk is the encoded image view of the k-th keyframe.

We first converted the pose graph into a 2D encoded sparse image,

p = {H(Tk)|∀k}, (3)

where H(T) exported the 2D coordinates (x, y) of T and transferred them into pixel loca-
tions. For the descriptors of p, we used the VGG19 net, which contained 5 Conv-layers as
the image encoder. Because measurement of the similarities between two images requires a
high semantic understanding of the whole image, the feature maps of the first two layers of
VGG19 were not considered in our case. The final output was a descriptor that aggregated
the feature maps from the 3rd, 4th, and 5th Conv-layers. Thus, for the i-th keyframe, we
found its best match in the pose graph by:

< pi, pj >= DNNS(Fi, {Fj|j ∈ neighbors(pi), j 6= i}), (4)

where the feature maps Fi were obtained by Fi = {VGG19(Ii, l)|l = 3, 4, 5}. Hence,
the DNNS in our case was equivalent to find the j that minimized the distance between Fi
and Fj:

j = arg min ‖Fi − Fj‖. (5)

when performing the loop closure detection, the encoded sparse images were constructed
from local patches of the same pose graph. It is clear that the proposed method can be used
for a multiagent system as long as there are overlaps between the pose graphs.

3.4. Workflow

We did not consider how the loop closure detection process was activated because it
varies in different VSLAM algorithms. In this work, we assumed the detection was triggered
and two local pose graphs, GA = {Ni|i = 1, . . . , k} and GB = {Nj|j = k + 1, . . . , k + m},
which represent the old and recent keyframes, respectively, were initialized. This initial
condition also suits the multiagent system. We show the workflow of the proposed method
using pseudocode.

4. Experiments

We conducted the benchmark evaluation on two self-driving car datasets, i.e., the
KITTI and Oxford RobotCar. The method was implemented on Pytorch based on the
opensource code of DFM (https://github.com/ufukefe/DFM (accessed on 1 January 2022))
with a pretrained VGG19, and all evaluations were carried out on a desktop PC with a GTX
1080Ti GPU. We first demonstrated the matching performance of the proposed method
using the ground truth odometry data of the KITTI sequence 00. The two pose graphs to
be matched by the proposed method were generated with random starting and ending
frames. We generated a keyframe every 20 m throughout the odometry history. As the
ground truth odometry data were used, we identified the good matches by computing their
actual location distances. We simply used half the distance between (10 m) two keyframes
as the threshold for a mismatch. The matching results are given in Table 1. The results
indicate that the proposed method is capable of performing a robust pose graph match
over large-scale navigation data when the good matches (inliers) are the majority (>50%)
(see Algorithm 1).

https://github.com/ufukefe/DFM
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Algorithm 1: Deep Pose Graph Matching

Data: GA, GB

Result: MB,A

TA, FA ← GA;
TB, FB ← GB;
pA ← H(TA);
pB ← H(TB);
for pB

i in pB do
Fi ← FB(pB

i );
p̂A = neighbors(pA, pB

i );
F̂← FA(p̂A);
< pB

i , pA
j >= DNNS(Fi, F̂);

MB,A.append(< pB
i , pA

j >);
end

Table 1. Matching results of the pose graphs with random starting and ending frames. The first col-
umn shows the total number of keyframes, while the second one counts their overlapping keyframes.
We visualize the matching results of random start 1 in Figure 4.

Total Overlap Matches Good Match (%) FPS

Random start 1 120:101 62:60 47 55% 8
Random start 2 86:76 43:40 28 64% 14
Random start 3 312:164 36:43 16 72% 3
Random start 4 181:143 53:46 31 58% 8
Random start 5 62:34 8:6 3 66% 15

Average 152:104 40:39 25 63% 10

Pose graph A: 120 keyframes Pose graph B: 101 keyframes

KITTI Seq 00

Total:120:101
Overlaps: 62:60
Total matches: 47
Good matches:26

3002001000－100－200－300

100

200

300

400

500

3002001000－100－200
－100

100

200

300

400

500

0

Figure 4. KITTI sequence 00 results.
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To further clarify the feasibility and potential of the proposed method’s use in real
VSLAM and multiagent applications, in the Oxford RobotCar dataset’s evaluation, we
used the pose graphs generated by our previous visual odometry work [39] during two
independent sessions on the global map and a local map, respectively. Then, we performed
the same pose graph-matching test, and the result is shown in Figure 5. The matching
results showed that the local navigation trajectory was properly matched with the global
one. It demonstrates that the proposed method can perform robust keyframe matching for
loop closure detection.

Pose graph A: 290 keyframes Pose graph B: 60 keyframes

Total keyframes: 355:92
Overlaps: 84:92
Total matches: 23
Good matches:19

Oxford RobotCar dataset

Figure 5. RobotCar results.

Although absolute and relative trajectory errors are widely used for VSLAM or VO
algorithm evaluations, many uncontrollable factors, such as pose graph optimization
and bundle adjustment (BA), are involved during the trajectory refinement process. To
conduct a fair algorithm comparison with controlled factors, we compared our keyframe
matching results with HF-Net [54]. The keyframe matching experiments were conducted
on RobotCar datasets with random segmented pose graphs. The good match percentages of
each test are shown in Table 2. The results indicate that the proposed method had relatively
better matching results than HF-Net. This was because the similar keyframes were hard to
distinguish for the feature point matching-based methods, such as HF-Net. Our method
addressed this problem not only based on a global description of a keyframe but also on a
matching results refinement of all similar matches based on geometric consensus. While
the HF-Net can match the features between two images in more than 30 FPS, the keyframe
matching becomes slow when two large keyframe groups need to be matched. The average
FPS of the whole process is given in the last column for both methods.
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Table 2. Percentages of good matches using random segmented pose graphs. The best results are
marked in bold.

Test 1 Test 2 Test 3 Test 4 Test 5 Avg. Good Match Avg. FPS

HF-Net 67% 61% 46% 52% 71% 59.4% 3.6
Our 59% 64% 73% 58% 68% 64.4% 6.1

To compare the final loop closure detection performance quantitatively, we performed
standard pose graph optimization in the g2o toolbox across the above matching results.
The translation error of the relative pose error every 50 m after the loop closure correction
is given in Figure 6.

Test 1 Test 2 Test 3 Test 4 Test 5
0

2

4

6

8

T
ra

je
ct

or
y 

er
ro

r 
(m

)

HF-Net
Our

Figure 6. The translation error of relative pose error (every 50 m) after loop closure correction based
on the matching results of Table 2.

To validate the potential for applying the proposed method to multiagent cases, we
conducted the flight navigation test with two UAVs as Figure 7 shows. In this setup, each
UAV was flying based on its own coordinate system. When the proposed method was
activated, and their keyframes were matched, their pose graphs were transformed into a
unified and global coordinate system, which offered the precondition for multiagent control.

Agent 1 Agent 2

Coordinate unification by 
pose graph matching

Figure 7. Validation on multiagent application.
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5. Conclusions

This work demonstrates that the deep feature matching approach can solve the pose
graph matching problem by considering a whole pose graph as an image and replacing
image point descriptors with keyframe descriptors. The proposed method was built on
the deep learning-based feature point matching method DFM. Instead of the receptive
field of the feature point, we used the high-level semantic feature maps of the whole
keyframe image to perform the DNNS matching. Thus, the overlapped keyframes of the
two pose graphs were matched with a similar process for feature point matching. The
proposed method was evaluated on two well-known self-driving car benchmark datasets.
The experimental results have shown the feasibility of and potential for employing the
proposed method in semantic VSLAM loop closure detection and multiagent navigation. In
the future, we will transfer the proposed method to another deep point matching method
called SuperGlue, because in SuperGlue, a graph neural network (GNN) is used to assist
the matching process, making use of the connection relationship between points.
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