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Abstract: Technical advances have converted bioremediation into a large-scale ecosystem service
suitable for the treatment of polluted soils worldwide; however, its application in Chile is scarce. The
main hurdles that must be addressed include the capacities of such approaches for the treatment of
polluted soils, the lack of knowledge about key factors affecting bioremediation costs and the lack of
a legal framework to regulate this activity. In this study, the economic performance of the bioreme-
diation of chronically hydrocarbon-polluted urban soils based on bioaugmentation, biostimulation
or the combination of both approaches projected to an industrial scale was evaluated. The cost of
bioremediation ranged between USD 50.7 and USD 310.4 per m3 of contaminated soil. In addition,
the items and activities that had the most significant impacts on the final bioremediation cost, such
as compost for biostimulation and bacterial growth media for bioaugmentation-based approaches,
were identified. The projected costs were compared against an extensive database of 130 soil bioreme-
diation projects. The bioremediation treatment costs fell within the top 60% of the more expensive
projects, highlighting the high effort involved in bioremediation of chronically contaminated soils.
This framework can facilitate the decision making of entrepreneurs, consultants, researchers and
governmental authorities when launching initiatives to develop a local bioremediation industry
capable of cleaning up a high number of polluted sites in Chile.

Keywords: microbial bioremediation; cost of bioremediation; bioremediation industry

1. Introduction

Petroleum-derived hydrocarbons are the main hazardous compounds causing the contam-
ination of extensive areas of soil and water. The pollution is more frequent at areas near to oil
wells and sites devoted to the production, distribution, manipulation, disposal and especially
storage of petroleum-derived products. Inadequate management, monitoring and maintenance
have led to contaminated sites, generating a potentially permanent source of diffuse pollution
that represents a significant health risk for neighboring communities. Historically, conven-
tional techniques for restoring polluted soils have mainly consisted of excavation, removal
and disposal of contaminated materials into waste-dumped or hazardous-waste landfills [1,2].
The volatility of the hydrocarbons during removal and management operations constitutes a
health risk, especially for workers during excavation, handling and transportation. Microbial
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communities in soils possess metabolic and physiological flexibility for adaptation to environ-
mental challenges [3]. The input of contaminants usually impacts the structure and function
of the soil microbiome, reshaping microbial communities towards the selection of species that
can survive and cope with the toxicity of the contaminants [4–10]. Emergent species within
the disturbed communities usually share enhanced physiological and substrate degradation
capabilities, oxidizing, transforming, immobilizing or binding the contaminants [11–15]. This
metabolic flexibility of soil microbiota present in the environment provides a platform for
microbial bioremediation as a valuable ecosystem service [16]. In addition, the biodegradable
nature of hydrocarbons and the ubiquitous distribution of hydrocarbon-degrading microor-
ganisms have underlined the efficacy of microbially driven bioprocesses for the restoration of
polluted ecosystems [17–21]. Currently, there is an increasing need for alternatives in cleaning
up contaminated sites worldwide. For instance, it has been estimated that there are 500,000
and 340,000 contaminated sites in the U.S. and Europe, respectively [22,23]. China has over
two million hectares of abandoned sites in more than one hundred old industrial cities that
require environmental restoration before redevelopment [24]. It is in this context that full-scale
bioremediation projects have been successfully applied, mainly in Europe, North America and,
more recently, China [25,26]. As a result, the global industry related to bioremediation services
has systematically spread, becoming an industry worth USD 35 billion in 2009 [27]. The growth
of the global bioremediation market has accelerated in recent years, reaching USD 91.0 billion in
2018, and it is expected to grow to USD 186.3 billion in 2023 [28].

The main sources of soil contamination in Chile are mining activities (30.9% of total
sites), including deposition of metals and metalloids, and agro-industrial activities (30.1% of
total sites), including petroleum products, pesticides, fertilizers and urban waste (24.2% of
total sites) [29]. Regarding contamination by metals and metalloids, the geological evolution
specifically associated with the Andes has resulted in an overwhelming proportion of
metallic ore deposits being located in the northern part [30]. Chilean porphyry copper
deposits have a low ore grade but exist in huge volumes and, together with the lack of
regulations, this has encouraged several large-scale mining operations to leave a legacy of
contaminated areas [31]. It has been previously reported that these polluted sites include
740 tailings, of which 23.3% are abandoned [32]. Soil contamination associated with
agricultural and forestry production systems includes excessive utilization of fertilizers and
pesticides, resulting in diffuse contamination across nearby areas [33,34]. The contamination
of soils by other chemicals, such as petroleum derivatives and organochlorines, has mainly
been associated with industrial activities outside the boundaries of cities. However, with
the growth of the urban population, they have been absorbed by urban areas, such as in
Valparaíso, Concepción and Santiago, and there are also cities with industrial activities,
such as Quintero, Puchuncaví and Talcahuano [1,35–39]. Despite the urgent need for
sustainable clean-up processes, applications of microbial bioremediation in Chile are scarce.
Recently, the Chilean government evaluated 19 projects designed to restore metal and
hydrocarbon-polluted soils, among which only 8 projects (42%) focused on bioremediation.
Several factors may explain why bioremediation is not commonly used. Currently, Chile is
the only Organization for Economic Co-operation and Development (OECD) country
that does not have a soil protection regulation, which would regulate the maximum
permissible concentrations of contaminants [40,41]. Bioremediation may entail higher
costs in comparison to conventional techniques, such as the confinement of contaminants
in authorized places. The high variability in the physical, chemical and microbiological
properties of soils requires the design of site-tailored treatments [42,43]. In addition, the
lack of directives, regulations, definitions of methodological tools, process standards and
requirements for contaminated soils have hindered the application and development of a
local bioremediation industry.

The aim of this study was to provide insights into the comparative costs of five
approaches for bioremediation of long-term hydrocarbon-polluted urban soil, including
biostimulation, bioaugmentation and the combination of both, highlighting the key factors
that influence the costs associated with each approach. Since each contaminated soil has
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specific characteristics, this study is a guide to developing the cost assessments of bioreme-
diation processes. This framework will facilitate the decision making of entrepreneurs and
consultants when performing a risk–cost–benefit analysis. This study will help to trigger
governmental authorities to generate environmental policies, regulations and standards
for contaminated soils, as well as launching initiatives to develop an environmentally safe
and robust local bioremediation industry capable of cleaning up different polluted sites
in Chile.

2. Materials and Methods

Economic evaluation was based on treating chronically contaminated soil, taking
the soil conditions of the Las Salinas site (Viña del Mar, Valparaiso Region, Chile) as
a reference. The Las Salinas site is a contaminated brownfield that was subjected to
petroleum industrial activity for more than eight decades. During this long period, the
contamination pressure not only affected the diversity and community structure of soil,
but also hampered the ecosystem function and its natural resilience. In such environments,
the remaining contamination is often enriched with heavier and more structurally complex
fractions of hydrocarbons, due to volatilization or solubilization of volatile fractions and
the degradation of lighter alkanes [44]. The more recalcitrant compounds can also be
sorbed to the soil matrix, decreasing their bioavailability and the biodegradation rate and
extent [44–47].

In general, three main approaches have been widely used for restoring hydrocarbon-
contaminated soils [1,48]. The first technology, called biostimulation, includes the en-
hancement of the metabolic activity of native microbial communities by providing limiting
nutrients, such as phosphorous, nitrogen or oxygen, and further modification of environ-
mental factors [1]. The second approach is based on the addition of hydrocarbon-degrading
microorganisms, frequently applied when native microbial communities lack the metabolic
capabilities or when their activity is unable to trigger significant biodegradation rates [49].
A third approach is based on the addition of stable organic amendments, such as compost,
which has been applied with success across pilot- and full-scale applications [44,50,51]. The
analysis presented here was based on the bioremediation of chronically contaminated soils,
such as those currently present at Las Salinas, in which there is no evidence of persistent
degradation processes over time. Therefore, the economic assessment was based on the
addition of compost, the addition of hydrocarbon-degrading microorganisms as well as a
mixture of both approaches, for which experimental results were previously published [52].
In this study, the bioremediation was addressed by five treatments. Briefly, the first two
were based on bioaugmentation, with the addition of five hydrocarbonoclastic strains
(named BA), and also the same treatment with the addition of permanent air venting
(BAV). The selected hydrocarbonoclastic bacterial strains for bioaugmentation were Acine-
tobacter sp. DD78, Acinetobacter sp. AA64, Acinetobacter sp. AF53, Pseudomonas sp. DN36
and Pseudomonas sp. DN34. These strains were previously isolated from hydrocarbon-
contaminated soil (Valparaíso, Chile) and possess the ability to degrade a wide range of
hydrocarbons [53]. Acinetobacter sp. DD78 possess the ability to produce biosurfactants,
which can help improve the bioavailability of the hydrocarbons for biodegradation [54].
The following two treatments were based on biostimulation with the addition of compost
in two different ratios, 9:1 (v/v) and 3:2 (v/v), named BE1 and BE4, respectively. The fifth
treatment considered was the combination of bioaugmentation and biostimulation, using a
mixture of soil and compost with 3:2 (v/v) ratio (BAE).

To determine the feasibility of bioremediation as an industrial activity, an economic
evaluation was made based on the results of the bioremediation strategies projected to
industrial scale. The projection considered the implementation of an on-site hydrocarbon
soil bioremediation process in a square one-hectare field with 10 biopiles of 100 m length
each. The biopiles were designed to be trapezoidal with 2 m height, 5 m width (base) and
2.5 m width (top), with a 5 m space between each pile (Figure S1). A potential decrease in the
bulk density was assumed to be 25% after construction. Each biopile has a total volume of
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750 m3 of material that was covered with a High-Density Polyethylene (HDPE) membrane
to conserve moisture, minimizing leachate production and gas emissions. It was projected
that bioremediation process at an industrial scale would take 20 weeks, assuming one
week of preparation and one week of dismantling the biopiles and associated materials, as
previously observed (unpublished). An additional period of ten weeks was also considered
for contingencies and maintenance. Therefore, each bioremediation cycle treats between
3750 and 6250 m3 of soil, depending on each strategy (Table S1). The proposed equipment
and supplies required for the construction of biopiles and soil movement were two front
shovel loaders with 2.5 m3 buckets each. Since water content is one of the most critical
factors that regulates microbial activity during bioremediation, all treatments include a
system for irrigation that uses one spray truck of 20 m3 that periodically moistens the soil.

To determine the initial capital for each treatment, we considered that bioaugmentation-
based approaches required infrastructure with higher-technology equipment and cost-
intensive installation efforts than those required by biostimulation-based approaches. In-
deed, a set of bioreactors was included for bioaugmentation and air injection treatments
covering two stages. An initial stage of preinoculation where sufficient biomass is grown
for inoculating bigger reactors that contain the biomass to be incorporated into the soil. Five
jacketed bioreactors of 0.3 m3 with blowers of 0.0075 m3 s−1 and six jacketed bioreactors of
15 m3 equipped with blowers of 0.4 m3 s−1 were considered for preinoculation and inoc-
ulation stages, respectively. Calculations for culture volume added for bioaugmentation
was determined on the basis that each strain reaches a density of 106 CFU g−1, value that
is 10-fold higher than those levels of cell density of hydrocarbon-degrading microorgan-
isms at which bioremediation will be negligible [55]. Based on bacterial counts made in
preliminary laboratory experiments [52], each strain requires one jacketed reactor, except
for Acinetobacter sp. AA64, which requires two. On the other hand, biostimulation-based
approaches require neither biomass reactors nor blowers. Instead, they need machinery to
build biopiles, including a front shovel loader and a spray truck. A similar trend was ob-
served when installation services costs were calculated. The cost of installation services was
determined by adding the costs of installation of equipment, instrumentation and control,
piping, electrical wiring, infrastructure, yard improvements, services, land, engineering
and supervision, infrastructure expenses, contractors fees and contingencies (Table S2), and
calculated according to suggested values [56].

The determination of operation costs included variable costs, fixed costs, indirect
production costs and administrative and sales expenses. Variable and fixed costs enclosed
direct raw materials and manpower, respectively. For treatments requiring bioaugmenta-
tion, all materials for preparation of Bushnell Haas (BH) medium and monitoring microbial
grow were included. The BH broth medium contains (in grams per liter of Milli-Q water):
KH2PO4, 1; K2HPO4, 1; NH4NO3, 1; MgSO4, 0.2; CaCl2, 0.020; FeCl3, 0.050. For biostimu-
lation treatments, the supply was assumed to be compost. For every treatment there are
several common costs, such as water, diesel and electricity.

The fixed costs considered remuneration for direct and indirect labor, building mainte-
nance, publicity, machinery depreciation and many supplies and services. The incomes,
as well as costs, were calculated based on the number of treatments instead of a time
scale. Calculations of operating incomes of each treatment were estimated based on the
breakeven–total-cost formula as (Fixed costs + Variable costs) = Total revenue = Breakeven,
and (Quantity sold × Unit selling price) = Breakeven. Calculations of variable costs per
unit produced and the unit selling price were estimated based in the following formula
Profit = Unit Sales × (Unit Sales − Variable unit costs)—Total fixed costs. An estimation
of contribution margin ratio was made based on ten years life expectancy of each equip-
ment. As every treatment lasts twenty weeks, it was considered that 200 treatments were
performed along life expectancy. Revenue estimations were made considering investment
costs and the future return of investment in different time lapses (1 to 10 years).

In addition, an extensive cost analysis of 130 soil bioremediation projects was located,
reviewed, and evaluated using a collection of peer-reviewed literature, federal and state
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agency reports (Table S3). This analysis included bioremediation with either hydrocarbons
or a mixture of hydrocarbons and other contaminants, such as organic solvents, halogenated
organic compounds and heavy metals. Projects were classified according to the bioreme-
diation strategies, in the following categories, “bioventing”, “biostimulation”, “solvent
vapor extraction”, “phytoremediation”, “thermal treatments”, and “bioaugmentation”. In
addition, two extra categories were included. The category “various treatments” employs
a combination of more than one treatment. The second category, “other”, is a treatment
that was no included in the list.

3. Results

Economic assessment was made based on the results of bioremediation of five treat-
ments to clean-up chronically hydrocarbon-contaminated soils, based on bioaugmentation,
biostimulation or combination of both technologies [52]. The first approach was bioaug-
mentation, with the addition of five hydrocarbonoclastic strains (named as BA). The second
technology was bioaugmentation with the addition of permanent air venting (BAV). The
following two approaches were based on biostimulation with the addition of compost in
two different ratios, 9:1 (v/v) and 3:2 (v/v), named BE1 and BE4, respectively. The fifth treat-
ment was the combination of bioaugmentation and biostimulation, using a mixture of soil
and compost with 3:2 (v/v) ratio (BAE). The analysis of the start-up capital, defined as the
resources required to acquire the assets needed for each bioremediation approach, resulted
in a high difference between bioaugmentation and biostimulation treatments. Among all
five treatments, bioaugmentation-based approaches were those with the highest start-up
capital. The complete start-up capital of BAE and BA was USD 1,822,159, whereas the capi-
tal of BAV was USD2,150,961 (Table S2). In contrast, the complete start-up capital required
for biostimulation-based approaches, BE1 and BE4, was an order of magnitude lower than
those technologies with bioaugmentation, due to the fact that there is no requirement for
equipment, such as reactors and blowers, decreasing costs of installation.

The estimated cost of the bioremediation of chronically hydrocarbon-contaminated
soils, assuming that the investment is recovered after five years of operation, ranged
between USD 50.7 and USD 310.4 per m3 of contaminated soil (Table 1). Biostimulation
with 10% compost (BE1) was the treatment strategy with the lowest cost (USD 50.7 per m3),
followed by biostimulation with 40% compost (BE4, USD 131.7 per m3). The estimated
costs for treatment per m3 of soil of both strategies that exclusively involved addition
of bacterial cultures, BA and BAV, were USD 141.8 and USD 153.9, respectively. BAE
was evaluated as the most expensive technology (USD 310.4 per m3 of contaminated
soil) due to the high technological level required to provide the bacteria to ensure the
bioaugmentation of only 3375 m3 of soil per bioremediation cycle (Figure 1). The analysis
encompassed the estimation of product costs, period costs, liabilities and obligations.
Projections showed that product costs represent the largest cost for all treatments, reflecting
the importance of the selection of raw materials, such as compost and bacterial growth
media for biostimulation and bioaugmentation-based approaches (Table S4). The largest
item of product cost was the direct material that ranged from USD 17.5 to USD 174 per
m3 of bioremediated soil, contributing to 35% and 56% of total costs of BE1 and BAE,
respectively (Figure 1). The direct material cost, mainly based on compost, was USD 12.3
and USD 74.1 for biostimulation with 10% and 40% of compost, respectively (Table 1). Each
cycle using biostimulation with 10% was more cost effective due to lower compost addition
and the treatment of 5625 m3 of contaminated soil, whereas biostimulation with 40% of
compost applied higher compost concentration (four-fold) and treated only 3750 m3 per
bioremediation cycle (Figure 1). For biostimulation approaches, manufacturing overhead
cost was the second largest contribution to the total costs. In contrast, in bioaugmentation
approaches, provision and covering assets were the second and the third largest item costs,
suggesting that the technological level of bioaugmentation has a significant impact on
its economic performance. The provision cost of bioaugmentation treatments is almost
two-fold higher than the provision cost of biostimulation, mainly due to an increase in
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monitoring and quality control. In addition, there is a high level of costs for equipment and
machinery for the culture of microbial strains (Tables S2, S4 and S5).
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Figure 1. Estimated cost for bioremediation of chronically contaminated soils using different strategies
projected to industrial scale. Colors indicate type of cost contributing to the total bioremediation
cost. Blue tones show products’ costs. Direct material costs are shown in navy blue, manufacturing
overhead costs in blue and direct labor costs in light blue. Red tones indicate items included in
liabilities and obligations as follows: Marron shows provision, red shows covering assets, and salmon
shows renovation of machinery. Marketing and selling expenses are shown in gray. Administrative
expenses are shown in white. Dotted line circles shown the quantity (in m3) of soil treated per
10 biopiles of each treatment.
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Table 1. Estimated costs per m3 of contaminated soil treated by different bioremediation approaches.

Items BE1 BE4 BAE BA BAV

Products’ costs

Direct material costs USD 17.5 USD 81.9 USD 174.0 USD 59.9 USD 61.4

Direct labor costs USD 3.5 USD 5.3 USD 6.3 USD 3.8 USD 3.8

Manufacturing overhead costs USD 11.6 USD 17.4 USD 29.2 USD 17.5 USD 19.0

Period costs
Administrative expenses USD 4.5 USD 6.7 USD 6.7 USD 4.0 USD 4.0

Marketing and selling expenses USD 0.2 USD 0.4 USD 0.4 USD 0.2 USD 0.2

Liabilities and
obligations

Covering assets USD 3.3 USD 4.9 USD 36.0 USD 21.6 USD 25.5

Provision USD 8.4 USD 12.6 USD 39.8 USD 23.9 USD 27.2

Renewal machinery USD 1.6 USD 2.5 USD 18.0 USD 10.8 USD 12.7

Total USD 50.7 USD 131.7 USD 310.4 USD 141.8 USD 153.9

Furthermore, different scenarios for recovery assets were simulated. When the time
length of the start-up investment recovery increased to ten years, the cost per m3 of
treated soil decreased more significantly for the bioaugmentation treatments than for
the biostimulation treatments (Table S6). All these aspects have unequal impacts on
the economic performance of the different bioremediation technologies, highlighting the
relevance of this analysis, especially for evaluating profitability under incipient market
conditions, such as those for bioremediation in Chile.

Cost of Bioremediation in Chile and Other Countries

Our results were calculated using average costs in Chile; therefore, they may be
highly influenced by domestic dynamics of unrelated sectors rather than those sectors
related to the nature of bioremediation. In order to compare our results to worldwide
bioremediation operations, we reconstructed an extensive analysis of 130 bioremediation
projects of contaminated soils. The analysis included different types of contaminants (e.g.,
hydrocarbons, organic solvents, halogenated organic compounds, heavy metals), as well as
diverse remediation approaches including biostimulation, bioventing, bioaugmentation,
solvent vapor extraction and thermal treatments (Table S3).

We determined that the cost of bioremediation was highly variable and ranged be-
tween USD 0.5 and USD 1820 per m3 of treated soil. All the projects that registered costs
of < USD 2 per m3 of treated soil were associated with treatments based exclusively on
biostimulation, and these treatments only removed 50% of hydrocarbons (Table S3). In
contrast, projects that reported costs higher than USD 700 per m3 of treated soil involved
treatments of a diversity of contaminants, such as BTEX, VOC, PAHs and heavy metals,
using a variety of approaches, including biostimulation, bioaugmentation and thermal
treatments (Table S3). The distribution of costs of the projects seems to be more influenced
by the type of remediation treatment than the type of contaminants in the soil. The 40%
of those projects with lower cost (36) were based on bioventing (20), biostimulation (10),
solvent vapor extraction (5) and phytoremediation (1). The 60% of projects with higher costs
(94) involved approaches such as bioventing (27), thermal (26), solvent vapor extraction
(13), biostimulation (12), bioaugmentation (1), other (6) and combined (9) treatments. Costs
calculated in our projections fall within this last group, highlighting the important effort in-
volved in bioremediation of chronically contaminated soils (Figure 2). In general, this effort
requires reshaping the soil microbiota and dramatically strengthing their biodegradation
capabilities towards the most recalcitrant and less bioavailable fractions. In contrast, several
projects belonging to the 40% of lower cost are based on bioventing and biostimulation,
mainly oriented to metabolize more easily biodegradable pollutants. The cost of our more
expensive treatment, BAE (bioaugmentation and biostimulation), was within the top 20%
more expensive projects of the dataset, which are enriched by physicochemical aggressive
techniques, such as thermal treatments and solvent vapor extraction (Figure 2).
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Figure 2. Distribution of the cost of bioremediation across a set of 135 projects around the world. The
bar chart in the left shows costs of bioremediation sorted from the cheapest (0%) to the most expensive
(100%), and the cost for bioremediation is expressed in USD per m3 of contaminated soils in logarithmic
scale. The contaminants column indicates the type of contaminants in the treated soil as the following.
“HC-der” indicates soils contaminated with hydrocarbons-derived compounds; “HalVOC” indicates soils
contaminated with halogenated volatile organic compounds; “mets” indicates soils contaminated with
metals; “OS-der” indicates soils contaminated with organic solvent compounds. The approach column
indicates the technique used for soil bioremediation. Abbreviations: Phytorem—phytoremediation;
SVE—solvent vapor extraction; Thermal—thermal treatments.

4. Discussion

Far from being a silver bullet, there is not a single bioremediation approach that is
useful in all hydrocarbon-contaminated sites [57]. Thus, appropriate characterization of the
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polluted soils and the adaptation of bioremediation techniques on a case-by-case basis are
essential [58]. Adjustments should consider several factors, including technology-specific
components, contaminants (type, concentration, aging and distribution), and the physico-
chemical properties of the soil. As a result of the variability, the design and implementation
of bioremediation projects have a direct impact on their capability to evaluate the economic
performance, converting this into a daunting task [43]. An initial guide for the evaluation
of costs of different bioremediation approaches, such as the one presented here, is relevant
not only to compare these alternatives to projects based on excavation and disposal, which
is rather easy to grasp, but to integrate this information through management practices to
ensure the technical and economic feasibility of bioremediation projects, where the decision
making is empirical rather than knowledge based.

This study indicated the cost of bioremediation of chronically hydrocarbon-contaminated
soils by different approaches in a country with neither developed environmental remediation
industry, nor economic policies that help to determine the treatments costs. The cost of the
bioremediation of chronically hydrocarbon-contaminated soils was estimated to be between
USD 50.7 and USD 310.4 per m3 of soil. Among those, biostimulation with 10% of compost
(BE1) was found to be the most cost-effective treatment. Except for BE1, all other bioremedia-
tion costs ranged on values that have been previously reported for biopile bioremediation of
hydrocarbon-contaminated soils [59]. Our results showed that biostimulation-based treatments
have lower costs than their counterparts using bioaugmentation. Specifically, the comparison
between all bioaugmented treatments and BE1 revealed that the last treatment, though effective
in hydrocarbon biodegradation [52], showed a significant reduction in direct material costs,
provision and covering assets. This highlights the properties of compost, which is the mature
product of composting, a bioprocess that transform solid organic substrates into relatively
stable, organic-rich material via microbial communities [60]. Amendments with compost are
considered a blend between the addition of nutrients and microorganisms with enzymatic
composition and metabolic capabilities to biodegrade persistent compounds [50]. The first
production of compost based on organic urban waste was dated as early as about 6000 years
ago, when humans transitioned from being gatherers and hunters to breeders and farmers
before establishing themselves in urban settlements [61]. Since then, compost has been widely
applied in agricultural fields as a source of limiting nutrients for crops, such as nitrogen and
phosphorus [62–65], amendments to reducing soil-borne crop diseases [66,67], and as a way
of enhancing soil fertility by increasing natural nutrient cycling [68] in both conventional and
organic agriculture [69]. The applications of compost have expanded to other fields, such as
control of soil erosion [70], carbon sequestration [71], greenhouse gases biofiltration [72] and
enhanced bioremediation [46,73]. Indeed, their application in bioremediation of organic contam-
inants has exponentially increased over the years [74,75]. However, in Chile, compost currently
maintains a low price, since it does not compete with alternative uses besides turf/grass in-
dustries and organic-based agriculture. Therefore, the potential impact of higher demand for
compost on the cost of biostimulation-based bioremediation remain to be examined in further
detail. In contrast, the requirements of equipment and supplies for cultivation of high volumes
of microbial biomass, as well as monitoring and quality controls converts bioaugmentation
to a more expensive process. These results should be analyzed cautiously as a higher control
level of remediation, including addressing the level of success of bioaugmentation and/or
biostimulation in supplying hydrocarbon-degrading microorganisms, which may increase the
efficiency of the process, but also may raise the bioremediation costs. Further analysis towards
analyzing the impact of critical variables on the efficiency and efficacy of bioremediation are
beyond the scope of the current work, however, they remain to be examined in future.

The economic evaluation of microbial bioremediation of chronically contaminated soils
presented in this study will contribute to improvements in the understanding of how costs
vary for each bioremediation approach, and therefore, they may be used as an input for risk–
cost–benefit analysis. This is especially relevant in an industry that focuses its efforts on
facing environmental remediation liabilities that occurred in the past instead of producing
new products or rewarding shareholders [43]. As a whole, the absence of regulation and
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laws governing the maximum permissible concentrations of contaminants in soils converts
the traditional “the polluter pays” to the predominant paradigm in Chile, preventing
the advent of alternative paradigms that integrate ecosystem services, such as microbial
bioremediation, as a valuable input to support ecological restoration. Furthermore, this
framework will help to address similar challenges that other productive sectors have
historically faced in Chile, where the controversial tradeoff between economic growth
and environmental pollution is still rather frequent [76]. As with many other current
sustainability challenges [77], it becomes relevant to establish a debate about regulations
and incentive policies to encourage the implementation of local bioremediation industry
capable to clean up a high number of polluted sites. Undoubtedly, the technical and
scientific dimensions of the debate will have a positive impact on the recent Framework
Law for Soils (Ley Marco de Suelos) that, after twenty years of discussion, has advanced
to the discussion of several issues, including climate change, land management, land
degradation and the prevention of soil contamination [41].

5. Conclusions

During the last few decades, the use of microbial bioremediation as a technology
to restore polluted sites has been increasingly applied worldwide. Despite its several
technical advances, and the growing need for improved technologies to effectively restore
contaminated environments, bioremediation has been scarcely used in Chile. In the present
study, the cost of five different bioremediation strategies based on biostimulation and/or
bioaugmentation for removing hydrocarbons from chronically contaminated soils in an
industrial projected scenario were estimated. The results identified compost and bacterial
culture media as the items with the highest cost for biostimulation and bioaugmentation-
based approaches, respectively. The comparison of the projected costs with an extensive
database of 130 soil bioremediation projects indicate that the treatment costs fall within
60% of the more expensive projects, highlighting the high effort involved in bioremediation
of chronically contaminated soils. An initial guide for the evaluation of costs of different
bioremediation approaches, such as the one presented here, is relevant not only to compare
these alternatives to projects based on excavation and disposal, which is rather easy to grasp,
but to integrate this information through management practices to ensure the technical and
economic feasibility of bioremediation projects, where the decision making is empirical
rather than knowledge based. This framework will also facilitate a debate about regulations
and incentive policies to encourage the implementation of local bioremediation industry
capable of cleaning up a high number of polluted sites, as well as to improve the decision
making of entrepreneurs and consultants, and may help to trigger government-generated
environmental policies, regulations and standards for contaminated soils.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/su141911854/s1, Figure S1: Dimensions of projected soil
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of 130 bioremediation projects worldwide; Table S4: Products and period costs of the different
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tion treatments; Table S6: Recovery assets of the bioremediation treatments after initial investment
recovery. Refs. [44,78–140] are cited in supplementary materials.
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