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Abstract: Due to the complexity of the production shop in discrete manufacturing industry, the
traditional genetic algorithm (GA) cannot solve the production scheduling problem well. In order to
enhance the GA-based method to solve the production scheduling problem effectively, the simulated
annealing algorithm (SAA) is used to develop an improved hybrid genetic algorithm. Firstly, the
crossover probability and mutation probability of the genetic operation are adjusted, and the elite
replacement operation is adopted for simulated annealing operator. Then, a mutation method is
used for the comparison and replacement of the genetic operations to obtain the optimal value of the
current state. Lastly, the proposed hybrid genetic algorithm is compared with several scheduling
algorithms, and the superiority and efficiency of the proposed method are verified in solving the
production scheduling.

Keywords: production scheduling; hybrid genetic algorithm; artificial intelligence; sustainable
design; discrete manufacturing

1. Introduction

Production scheduling is one of the classic non-deterministic problems, involving
aircraft carrier scheduling, port cargo scheduling, parts processing scheduling, and many
other fields [1]. In the production field, the scheduling of production workshops, equipment,
personnel, and materials is different for different manufacturing enterprises, and the
production cycle is also varied [2]. With the emergence of large-scale systems for production
and the proposal of a variety of intelligent algorithms, the production scheduling of
workshops has attracted extensive attention from managers, and remarkable results have
been achieved continuously [3]. In the competitive environment of the new era, enterprises
have paid more attention to how to use production scheduling to effectively manage
resource allocation, deal with production scheduling, and improve production efficiency [4].

Although there have been many intelligent scheduling algorithms, it is still an im-
portant goal to seek more efficient and practical scheduling approaches in the production
scheduling of discrete manufacturing industry [5]. Considering the complexity and di-
versity of discrete production scheduling, there are two algorithms that are used to solve
these problems [6]. One is based on traditional unified research, which mainly includes
the Lagrange relaxation method [7], the branch-and-bound method [8], and the mathe-
matical programming method [9], etc., which are not effective in practical engineering at
present. The other is a heuristic algorithm, mainly including the genetic algorithm, simu-
lated annealing algorithm [10], particle swarm optimization algorithm [11], and ant colony
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algorithm [12], etc. For example, Choi et al. [13] proposed a mixed integer programming
model and local search algorithm to solve project scheduling in a variety of manufacturing
environments. Nie et al. [14] studied the dynamic scheduling problems of job publication
by date and proposed a heuristic algorithm and a reactive scheduling strategy based on
gene expression coding and applied it to production scheduling. These algorithms are
simple in structure and easy to implement, which can achieve satisfactory results in solving
production scheduling issues [15].

Among many intelligent algorithms, genetic algorithm (GA), with its special opti-
mization mode, is an effective approach used to solve production scheduling problems,
and has achieved some results [16,17]. Pezzella et al. [18] proposed a GA that combines
multiple strategies for initial population generation, selection, and reproduction, which is
used to solve production scheduling problems. De Giovanni and Pezzella [19] proposed
an improved GA for distributed production scheduling problems, which determines the
processing path of the workpiece through a greedy decoding process. Zhang et al. [20]
used pareto-optimization-based GA and two new objective functions based on setup and
synergy costs to solve production scheduling problems. Chamnanlor et al. [21] proposed
a hybrid GA based on ant colony algorithm for production scheduling. Meng Yue et al. [22]
created a hybrid algorithm of path reconnection for the production scheduling problems,
which combined the genetic algorithm, domain structure algorithm, and path reconnection
algorithm to further enhance the calculation ability. Zhao et al. [23] used the hybrid genetic
simulated annealing algorithm to deal with the production scheduling of flexible jobs.
Although simulated annealing factors were added to improve the performance of the algo-
rithm and make the algorithm jump out of local optimal, the influence of adaptive crossover
and mutation probability on the final convergence of the algorithm was not considered.

In accordance with the above literature analysis, to better and more effectively solve
production scheduling problems, an improved hybrid genetic algorithm (IHGA) is pro-
posed in this work. Different from other hybrid genetic algorithms in selecting individuals
for crossover and mutation, the proposed algorithm adopts an adaptive strategy to adjust
the size of probability. In the early stages of population iterative reproduction, at first,
higher probability is used to choose more individuals, expand the scope of the late opti-
mization, increase species diversity, and reduce the probability of premature phenomena.
The premature algorithm is beginning to choose a large amount of high fitness individuals,
obtaining a quick local optimal value and not a global optimal value. In the later stage
of population iterative reproduction, excellent individuals can be preserved with a low
probability, and the convergence of the algorithm relative to the optimal value can be com-
pleted as soon as possible. In the simulated annealing factor, using the memory function,
the optimal solution is conducted to mutate by probability to obtain as many individuals as
possible. A heating strategy is added to avoid falling into local optimum, which determines
the new individual compared with the fitness function of the original individual.

The rest of this paper is organized as follows. Section 2 presents a system modeling of
the production scheduling. Section 3 describes the operation process of improved hybrid
genetic algorithm. In Section 4, experimental analysis is carried out. The application testing
of the improved approach is carried out in Section 5. The conclusions and future works are
provided in Section 6.

2. Modeling Production Scheduling

The problems of production scheduling in the discrete manufacturing industry usually
refer to the determination of the processing sequence of each workpiece under various
production requirements and processing constraints, considering the relevant parts in the
assembly plan. In view of the characteristics of the discrete manufacturing industry and
the actual demand, time arrangement is the main factor. The production scheduling of
the discrete manufacturing industry can be described as follows: a batch of workpieces
are needed to be produced; the number of the workpieces is n; each workpiece contains
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many processes; the batch of the workpieces is completed by using m sets of machines in
the shortest time. The main constraint conditions for production scheduling are as follows:

(1) At the beginning of production, each workpiece can be randomly selected and pro-
cessed on the designated machine;

(2) Each piece of equipment used for production in the workshop can only process
one workpiece at any time;

(3) Each workpiece can only be processed once on each piece of equipment;
(4) Sudden interruption is forbidden after it has started;
(5) Any workpiece in the first process is not in order; however, the same workpiece in

production has a certain sequence constraint and absolutely cannot be changed;
(6) The production of the workpiece must conform to the actual process line and needs

to be practical;
(7) The processing time of each workpiece has been determined and does not change

with the sorting;
(8) Auxiliary time for processes such as tool installation and workpiece transportation is

not considered.

According to the actual production situation of the discrete manufacturing industry,
each workpiece has a certain entry point; however, only after the production of all the
relevant workpieces can this be assembled. To improve the production and assembly
efficiency, it is necessary to reduce the overall production time of the batch of workpieces
to a relative minimum. Mathematical modeling is used to find the completion time of
the whole batch of workpieces, that is, the latest time to find the completion of the last
workpieces. The mathematical model is as follows:

In terms of the production characteristics of workpieces in a workshop of the discrete
manufacturing industry, it can be concluded that the calculation formula for the latest
processing time of process P of workpiece ji is as follows:

Sji p =

{
Tc.t (P = 0)

max
(
Eji p − 1, Tc.t

)
(P > 0)

(1)

where c is machine serial number, t is the current machine.
The processing time Tc.t of machine t is:

Tc.t= Sji p+T (2)

where T is process P occupies the production time of machine t.
The end time E of the workpiece ji for process P is:

Eji p= Sji p+T (3)

The latest production time for finishing the last step of workpiece is:

max
0 ≤ i < c

Ti (4)

The meaning of each variable in the mathematical model is shown in Table 1. The
mathematical model describes the production scheduling, and the production time of each
plan can be calculated. Then, the time consumption of each plan can be compared to select
the best scheduling plan with the shortest time.
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Table 1. Variables in the mathematical model.

Name Meaning of Variable

Sij Latest start time of process j for workpiece i
Eij Completion time of process j for workpiece i
tij Number of the required machine for workpiece i to perform process j
Tij Time of process j for workpiece i
Pij Process of workpiece i using machine j
Ti Processing time with serial number i
Pi Process of workpiece with serial number i
ji The workpiece i
P Current operation Pji of ji
t Machine number of process P
T Processing time of process P

3. Improved Hybrid Genetic Algorithm for Production Scheduling

The genetic algorithm, particle swarm optimization algorithm, and simulated anneal-
ing algorithm are commonly used in production scheduling. Genetic algorithm has good
parallelism and strong global search ability; however, it is easy to fall into local optimal
solution. Particle swarm optimization algorithm has a simple structure and an autonomous
learning ability; however, its stability is poor and global search is slow. The simulated
annealing algorithm has strong parallelism and robustness; however, the parameters are
difficult to control, the initial value requires high, and the convergence is slow.

According to the production characteristics and requirements of a discrete industry
workshop, the algorithm needs to have high robustness and stability, must be able to meet
the better global search ability, and cannot have high requirements for the initial value,
therefore the genetic algorithm is chosen as the fundamental, and the simulated annealing
algorithm is used to improve its defects.

3.1. Chromosomal Coding

There are many encoding methods of chromosomes in the genetic algorithm, and
an appropriate encoding method can improve the efficiency of the global optimal solution
and its of finding ability. Due to the complexity and particularity of discrete production
scheduling, a procedure-based coding method is chosen in this work, and the encoding
mode of chromosomes is shown in Figure 1. The length of chromosomes is related to the
number of machines and workpieces. Therefore, if there are m machines, n workpieces, and i
process (0≤ i < n) of each machine, the length of the chromosome is chSize ≤ (n × m). Since
the number of processes may not be equal for different workpieces, the length of the
chromosome should be the sum of the number of processes in all workpieces. In a specific
chromosome, the coding rule is that the number of times a workpiece appears in a chro-
mosome indicates the number of processes it needs to be processed, such as, for example,
the first occurrence of j1 in chromosome means the first process of j1 workpiece, and the
fourth occurrence means the fourth process of j1, based on which the process of the other
workpiece can be deduced.
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3.2. Design of Fitness Function

In the process of genetic algorithm optimization, the fitness function is mainly used
to evaluate the advantages and disadvantages of chromosomes. Under the condition of
minimizing the completion time in production scheduling in the discrete manufacturing
industry, the value of the fitness function is the maximum completion time obtained in
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accordance with the mathematical model created above, and the fitness function can be
used to effectively determine the level of chromosomes. In this method, the larger the
fitness function value is, the longer the completion time of all the part is; the smaller the
fitness of chromosome is, the easier it is to be eliminated in the selection operation. The
smaller the fitness function value is, the shorter the completion time of all the workpiece is;
the larger the fitness of chromosome is, the easier it is to be selected and inherited by the
next generation population.

3.3. Selection Operation

When selecting individuals in a population, excellent individuals are selected with
a high probability, while those with low fitness are selected with a low probability. There-
fore, the population will evolve in a good direction at the beginning of the iteration.
A tournament method is used to select individuals, which removes the best one to enter
the offspring population and repeats the operation until the new population size reaches
the original population size. The main operation method is used to randomly select Z
individuals from the population, let them compete for fitness, and then select the best one
from them. In this work, all individuals participating in the championship are the whole
population, and Y is the number of randomly selected individuals from the population and
Y = 3; then, the optimal individual j is selected. The steps are shown in Figure 2.
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There are usually three main ways to select individuals in genetic algorithms. The
first is more commonly used in the tournament method described above. The second is
the roulette selection method, which calculates the selection probability of individuals
through a comparison of the individual fitness value in the population and then deter-
mines the composition of the offspring population [24]. To solve the time minimization
problem of production scheduling, there is a need to first the transform fitness function into
a maximization problem, where the fitness value of each individual is obtained separately.
Each fitness value is divided by the sum of the fitness values of all individuals, and the
probability of individual selection is obtained. The cumulative probability of all individ-
uals is collated into a roulette wheel, and a new generation population is continuously
obtained by generating random numbers between [0, 1] for each roulette selection. The
third random traversal sampling method has the same probability of individual selection
as the second [25]. The difference lies in whether it is necessary to select individuals with
equal distance. For example, if mexm individuals need to be selected, the distance of pointer
selection should be 1/mexm, and the position of the first pointer should be determined by
generating a random number in [0, 1/mexm]. Through the analysis of the above methods,
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the advantages of the tournament method include its low time complexity, easy parallel
processing, and low premature phenomenon.

3.4. Crossover Operation

The crossover operation is one of the key operations in continuous evolution, where
two paired chromosomes somehow exchange a part of their genes with each other, forming
two new individuals to increase population diversity and increase the probability of
producing excellent individuals [26]. Different from the previous crossover operation,
an adaptive adjustment strategy is adopted in this work to keep the diversity of individuals
at the initial stage of population iteration and ensure the convergence of optimization
results as soon as possible at the later stage. An OX crossover method based on process
coding is adopted in the hybrid algorithm, and the operator crossover diagram is shown
in Figures 3 and 4. In the crossover process, the starting and ending positions of the
chromosomes of the father and the mother are random. Crossover operation changes the
gene sequence of a part on the basis of preserving chromosome gene fragments, which
increases the diversity of the population, improves the search ability of the algorithm,
and increases the probability of excellent individuals; therefore, the randomness of newly
generated individuals is greater.

Step 1: Two chromosomes P1 and P2 are randomly selected each time according to the
selection operation as the father and mother.

Step 2: One chromosome is selected as the father, a gene fragment is intercepted
by randomly determining two positions in the chromosome, and the intercepted gene
fragment is used as a progeny chromosome prototype. The operation process is shown in
Figure 3.

Step 3: The remaining chromosome is taken as the mother, where the missing codes of
the progeny prototype are completed, as shown in Figure 4.

Step 4: The first child is generated through Steps 2 and 3 above, and then the second
child is generated by repeating Steps 2 and 3 above.

The crossover probability is Pc, and the probability can be adjusted adaptively by
adopting the number of iterations. The crossover probability is closely related to individual
fitness and the number of iterations. The calculation formula of the probability is as follows:

Pc =

 k1 × 1√
gen ×

fmax− f ′
fmax− f avg

( f ′ ≥ f avg)

k1 × 1√
gen ( f ′ < f avg)

(5)

where f max is the maximum fitness value in the population; f ′ is the larger fitness value of
the two chromosomes that need to be crossed; f avg is the average value of the fitness of all
individuals in the population; gen is the number of iterations of the population so far; k1 is
the adjustment parameter of the crossover probability. The value of k1 increases, and the
crossover change increases, which is determined as 0.85 according to simulation experience.

Sustainability 2022, 14, x FOR PEER REVIEW 6 of 16 
 

with equal distance. For example, if mexm individuals need to be selected, the distance of 

pointer selection should be 1/mexm, and the position of the first pointer should be deter-

mined by generating a random number in [0, 1/mexm]. Through the analysis of the above 

methods, the advantages of the tournament method include its low time complexity, easy 

parallel processing, and low premature phenomenon. 

3.4. Crossover Operation 

The crossover operation is one of the key operations in continuous evolution, where 

two paired chromosomes somehow exchange a part of their genes with each other, form-

ing two new individuals to increase population diversity and increase the probability of 

producing excellent individuals [26]. Different from the previous crossover operation, an 

adaptive adjustment strategy is adopted in this work to keep the diversity of individuals 

at the initial stage of population iteration and ensure the convergence of optimization re-

sults as soon as possible at the later stage. An OX crossover method based on process 

coding is adopted in the hybrid algorithm, and the operator crossover diagram is shown 

in Figures 3 and 4. In the crossover process, the starting and ending positions of the chro-

mosomes of the father and the mother are random. Crossover operation changes the gene 

sequence of a part on the basis of preserving chromosome gene fragments, which in-

creases the diversity of the population, improves the search ability of the algorithm, and 

increases the probability of excellent individuals; therefore, the randomness of newly gen-

erated individuals is greater. 

 

Figure 3. Father chromosomes’ generated offspring. The yellow fragment represents the part re-

moved from the Father, the blue is the part passed on to the offspring, and the white is the unas-

signed portion of the offspring. 

 

Figure 4. Mother chromosome completes the progeny chromosome prototype. In the mother chro-

mosome, the yellow fragment represents the part passed on to the offspring, and the blue is the part 

removed. In the offspring, the yellow fragment represents the portion that inherits from the mother, 

and the blue is the portion that inherits from the father. 

Step 1: Two chromosomes P1 and P2 are randomly selected each time according to the 

selection operation as the father and mother. 

Step 2: One chromosome is selected as the father, a gene fragment is intercepted by 

randomly determining two positions in the chromosome, and the intercepted gene frag-

ment is used as a progeny chromosome prototype. The operation process is shown in Fig-

ure 3. 

Step 3: The remaining chromosome is taken as the mother, where the missing codes 

of the progeny prototype are completed, as shown in Figure 4. 

Step 4: The first child is generated through Steps 2 and 3 above, and then the second 

child is generated by repeating Steps 2 and 3 above. 

The crossover probability is Pc, and the probability can be adjusted adaptively by 

adopting the number of iterations. The crossover probability is closely related to 

Figure 3. Father chromosomes’ generated offspring. The yellow fragment represents the part removed
from the Father, the blue is the part passed on to the offspring, and the white is the unassigned
portion of the offspring.

3.5. Mutation Operation

Mutation operation has a relatively small probability in the genetic algorithm; however,
it also has a significant impact on the more diverse population. Therefore, the mutation
probability should be adjusted slightly in the same way as the crossover operation; the
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mutation probability has a great relationship with the fitness value of chromosomes and
the number of iterations of the population. The mutation operation is mainly based on
the location mutation method, which randomly selects chromosomes in the population
according to the probability, randomly determines the two locations of chromosomes, and
carries out gene exchange to generate new chromosomes in this way. In this algorithm,
two pairs of the chromosomes’ genes are exchanged, as shown in Figure 5.
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Figure 4. Mother chromosome completes the progeny chromosome prototype. In the mother
chromosome, the yellow fragment represents the part passed on to the offspring, and the blue is the
part removed. In the offspring, the yellow fragment represents the portion that inherits from the
mother, and the blue is the portion that inherits from the father.
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The probability of mutation operation is also adjusted adaptively as the number of
iterations increases, and the adjustment formula is shown as follows:

Pm =

{
k2 × 1√

gen ×
fmax− f

fmax− favg

(
f ≥ favg

)
k2 × 1√

gen
(

f < favg
) (6)

where f is the fitness value of individuals who may be mutated at present; k2 is the
adjustment parameter of individual mutation, generally between (0, 1). Other variable
names in the formula have the same meanings as described in Equation (5).

3.6. Simulated Annealing Operator

In order to improve the local searching ability of the genetic algorithm, a new hybrid
genetic algorithm is proposed. A simulated annealing algorithm is created, which is
different from the previous genetic simulated annealing algorithm in that the simulated
annealing operator is adjusted [27]. In the past hybrid genetic algorithms, the simulated
annealing operator lacks the memory function. However, using the memory function
saves the optimal solution generated in the annealing process in this work. Moreover, in
the simulated annealing factor, the optimal solution is introduced by probability and is
mutated to obtain the optimal individual as far as possible, and the heating strategy is
added to avoid falling into the local optimum. The fitness function of the new individual is
compared with that of the original individual, and whether the original individual replaces
the original individual through the result is determined to ensure that the individual is as
good as possible.

The optimal value is determined by a comparison in the simulated annealing operator,
which is not applicable to the algorithm because the optimal value is highly likely to be
ignored. For this IHGA, the optimal value is searched for in the population for several
times at each temperature state, and the optimal value in this stage is determined with
a certain probability by reaching the specified optimization times. At temperature Tk (k is
the number of cooling times), the optimal value in the population is compared with the
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randomly selected value, T1 is the initial temperature; others have similar meanings in turn,
and Tmin is the end temperature, which is set to 0.001 in this work. The cooling formula
added in this work is as follows:

Tk+1 = αTk (7)

where α is the cooling coefficient.
In the simulated annealing process, to prevent the temperature from falling too fast

at the initial stage of cooling, an appropriate heating strategy is adopted in the annealing
process, which is beneficial to increase the acceptance probability of various chromosomes,
ensure a more diverse selectivity of chromosomes, and avoid the occurrence of local
optimization. The search steps are as follows:

Step 1: The current state bit is set as S, the initial value of the cycle counter is d = 1, the
initial value of the counter for the new individual of the generation population is O = 1,
and the length of the Markov chain is L.

Step 2: Select v individuals with the lowest fitness value from the population generated
after mutation operation as the initial solution in annealing operation, and make the current
state bit S = v.

Step 3: Select an individual randomly from the population, determine this state bit as
S’ = v’, and calculate the increment of fitness value as dE = f (v’) − f (v).

Step 4: If dE < 0, the current status bit is determined as S’; otherwise, the exp(−dE/TK)
is taken as the probability of S’, and S = S’.

Step 5: Select the current chromosome for mutation, determine the new state of the
mutant chromosome S” = v”, and calculate the fitness value of the new chromosome. If
f (v”) ≤ f (v’), the state bit of the mutant chromosome is S”, that is, S = S”; otherwise, S = S’,
and return to Step 3; If d > L is true, the current internal temperature cycle is terminated,
and Step 6 is performed instead.

Step 6: Calculate and compare the fitness values of all new individuals after the
completion of the internal cycle. Then, select the individuals with the lowest fitness values
to the new population, and take them as the initial solution of the temperature of the next
iteration and make O = O + 1.

Step 7: The temperature value of the next iteration is obtained through cooling
operation. The calculation formula of temperature difference is ∆T = TK − TK+1. If
∆T > 0.5(T1 − T2), the heating operation is carried out and TK+1 = TK+1 + 0.5∆T.

Step 8: Repeat Step 3–Step 7 until the number of generated individuals reaches the
population value or the minimum temperature and the operation is terminated.

The pseudocode is shown below (Algorithm 1):

Algorithm 1. The pseudocode of IHGA.

1: Begin
2: Initialize the individuals S and the temperature t in the population
3: While (t >= minimum temperature and O <= population size)
4: While (d <= chain length)
5: Update One New to a random individual in the population
6: Update S by One New fitness
7: Update S by mutating its genes
8: Add S to population All New
9: d++;
10: end while
11: Calculate the fitness of each individual in the population All New
12: Update S the individual with the highest fitness of All New
13: Update t by judging the cooling speed
14: O++
15: end while
16: End
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By analyzing the operation process of the improved hybrid genetic algorithm (IHGA),
the operation process is simply described as shown in Figure 6.
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Step 1: After analyzing the problem to be solved optimally, N chromosomes (N
scheduling schemes displayed in coded format) are randomly encoded to form the initial
population of P0 (the initial effective scheme).

Step 2: According to the fitness function determined by the mathematical model, the
fitness values of all chromosomes are obtained (evaluate the advantages and disadvantages
of the scheduling scheme).

Step 3: The tournament method was used for the selection operation, and the appro-
priate winners are selected during iteration to ensure a better population (the scheduling
scheme is further optimized).

Step 4: The crossover or mutation operation is carried out by adaptive adjustment
strategy (crossover or mutation among scheduling schemes) so that the population diver-
sity is high in the early stage (the diversity of scheduling schemes is improved) and the
outstanding individuals are not easily eliminated in the later stage (the high-quality process
in the scheduling scheme is retained).

Step 5: Using the simulated annealing factor to strengthen the local search ability,
including those selected for probability (high quality), in comparison with the mutations in
the annealing stage of the operation using a cooling strategy, will ultimately distinguish the
elite individual from the original optimal individuals, who are then compared to determine
whether they should be replaced (compare and optimize new scheduling scheme with the
initial scheduling scheme).
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Step 6: If the number of iterations is compared with the final number of iterations, the
final number of iterations cannot be reached, continue to perform the operations of Step 2
to Step 5; If the execution reaches the last generation, the optimal solution is output.

4. Experimental Analysis

To verify the effectiveness of IHGA in solving production the scheduling problems in
discrete industries, the method is compared with the improved particle swarm optimiza-
tion algorithm proposed by Liu Hongming et al. [28], the Quantum Whale optimization
algorithm proposed by Yan Xu et al. [29], and traditional genetic algorithm. The FT series
proposed by Fisher and Thompson in 1963, and the LA series proposed by Lawrence in
1984, are used for comparison [30]. IHGA is written in C++ language and runs in Visual Stu-
dio 2019 software. The operating environment is Windows10 system, the main frequency is
2.60 GHZ, and the memory is 8 G on a personal laptop.

The parameters of the IHGA are set as follows: population size N = 200, number
of evolutionary iterations G = 100 (according to the results of the previous algorithm, it
will converge and find the optimal solution in about 50 iterations; thus, 100 iterations
are used as the convergence criterion to ensure that the optimal solution is found), initial
temperature T1 = 1000, ending temperature Tmin = 0.001, cooling coefficient α = 0.98, and
Markov chain length L = 200 in simulated annealing.

4.1. Comparison of IHGA and Existing Popular Algorithms

For the discrete shop scheduling problem, the improved particle swarm optimization
(IPSO) proposed by Liu et al. [28] and the Quantum Whale optimization algorithm (QWOA)
proposed by Yan et al. [29] can deal with some production scheduling problems. However,
their optimization performance obviously has some shortcomings compared with the
hybrid algorithm proposed in this work. Based on two kinds of algorithms related to case
set scheduling, and when compared with IHGA, the obtained case set scheduling results,
and the comparison of the two aspects, mainly results in the average of the scheduling
results of the optimal solution and the solution of the data comparison, as shown in Table 2.
The n × m represents the total number of parts and machine; the product of C∗ for the
optimal solution has been obtained; the Avg. runs the algorithm ten times to obtain the
average of the solutions. According to the comparison results in Table 2, for scheduling
case sets FT06, LA01, and LA06, the IHGA algorithm proposed in this work can obtain
the known optimal solution due to the excellent local search ability of the simulated
annealing operator.

Table 2. Comparison of IHGA, QWOA, and IPSO.

Numerical
Example

The Size Is
n × m

C*

QWOA IPSO IPSO

The Optimal
Solution Avg. The Optimal

Solution Avg. The Optimal
Solution Avg.

FT06 6 × 6 55 55 55 55 55 55 55
FT10 10 × 10 930 983 1045 976 1027 956 982
FT20 20 × 5 1165 1223 1313 1206 1222 1188 1209
LA01 10 × 5 666 666 674 666 666 666 666
LA06 15 × 5 926 926 927 926 926 926 926
LA16 10 × 10 945 958 1012 973 1011 945 954

As shown in Table 2, although IHGA did not obtain the known optimal solution for
algorithm case set FT10 and FT20, the relevant solutions obtained by IHGA are superior to
the other two algorithms, with a significantly stronger optimization capability.
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4.2. Comparison of IHGA and Traditional GA

To further confirm that the improved algorithm is superior to the standard genetic
algorithm, the algorithm proposed in this work is compared with the genetic algorithm in
searching results, as shown in Table 3.

Table 3. Comparison of IHGA and GA optimization results.

Numerical
Example

Size
(n × m)

C*

GA IHGA Improved Effect/%

Optimal
Solution Avg. Optimal

Solution Avg. Optimal
Solution Avg.

FT06 6 × 6 55 55 55.4 55 55 0 0.7
FT10 10 × 10 930 1020 1050 951 990 6.8 5.7
FT20 20 × 5 1165 1269 1326 1182 1215 6.9 8.4
LA01 10 × 5 666 666 668 666 666 0 0.2
LA03 10 × 5 597 597 658 597 609 0 7.5
LA06 15 × 5 926 926 927 926 926 0 0.1
LA08 15 × 5 863 863 928 863 870 0 6.3
LA13 20 × 5 1150 1150 1210 1150 1161 0 4.1
LA18 10 × 10 848 885 946 848 868 4.2 8.2

It can be seen from Table 3 that, in the cases of FT06, LA01, LA03, LA06, LA08, and
LA13, both algorithms can finally obtain the optimal solution of the scheduling problem;
however, the average value obtained by IHGA is superior to GA. The IHGA did not find
the optimal solution of scheduling cases in FT10, FT20, and LA18. However, compared with
GA, the optimization effect was greatly improved, with the improvement effect ranging
from 4.2% to 6.9% and the average improvement effect ranging from 5.7% to 8.4%. In the
comparison of the two algorithms, the search result is greatly improved, mainly because
the simulated annealing operator improves the local search ability of the genetic algorithm,
which greatly improves the search ability of the algorithm proposed in this work.

Taking LA03 in the test datasets as an example, the feasibility and superiority of the
algorithm proposed in this work in solving discrete scheduling problems are explained
in detail. The specific datasets of LA03 are shown in Table 4. The data in Table 4 show
that the processing parts uses the serial number of the machine and the processing time;
for example, in the corresponding parts in the Table 2, 1/29 means that, in the process of
selecting the Numbers for 1 s process machinery for processing, it takes time for 29, and
other data have the same meaning.

Table 4. Details of LA03 datasets.

Artifacts

Process Each Process Processing Machine and Processing Time

Process 0 Process 1 Process 2 Process 3 Process 4

Artifacts 1 1/23 2/45 0/82 4/84 3/38
Artifacts 2 2/21 1/29 0/18 4/41 3/50
Artifacts 3 2/38 3/54 4/16 0/52 1/51
Artifacts 4 4/37 0/54 2/74 1/62 3/57
Artifacts 5 4/37 0/81 1/61 3/68 2/30
Artifacts 6 4/81 0/79 1/89 2/89 3/11
Artifacts 7 3/33 2/20 0/91 4/20 1/66
Artifacts 8 4/24 1/84 0/32 2/55 3/8
Artifacts 9 4/56 0/7 3/54 2/64 1/39

Artifacts 10 4/40 1/83 0/19 2/8 3/7

For example, it can be seen from the comparison of results in Table 3 that both IHGA
and GA algorithms can find the optimal solution; however, the average value obtained
by IHGA is better than that obtained by GA, which means that IHGA has good robust-
ness. After a period of comparative testing, the convergence of the iterative curves of the



Sustainability 2022, 14, 11747 12 of 15

two algorithms, in dealing with the LA03 scheduling problem, is shown in Figure 7. As can
be seen from Figure 7, GA not only has a slow convergence speed when searching for the
optimal value, but also cannot find the optimal value, and converging occurs at about 630.
The IHGA has a relatively fast convergence speed and can jump out of the local optimum
in time and find the global optimum value of 597. This indicates that the IHGA proposed
in this work is obviously superior to the genetic algorithm and can solve the production
scheduling problem of the workshop more effectively.
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Taking LA03 as an example, the IHGA can determine the currently known optimal
fitness solution 597, select the chromosome with the best fitness, and obtain the correspond-
ing scheduling Gantt chart according to the process arrangement results of each part in the
chromosome, as shown in Figure 8. The Gantt chart can prove that the IHGA proposed
in this work can provide an excellent and effective solution for production scheduling in
discrete industries.
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5. Industrial Field Test

A MES system is developed by the C# object-oriented development language, and the
corresponding database is established by an SQL server, where the production scheduling
function adopts the proposed IHGA. To verify the feasibility of the MES system, industrial
application tests were carried out with the help of a network environment and hardware
platform used in the discrete manufacturing industry. The reducer production project of the
industry was selected as the basis, and the business process of the designed MES system
was verified in a workshop. The specific steps are as follows:

Step 1: Production plan. According to order demands, the production planner makes
a specific reducer production project, where the 12 kinds of parts are set in the production
process, and the project is distributed after the process and working hours of each part are
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modified. The system records the names of the employees who distribute and receive the
production plan. The distributed production plan contains basic information.

Step 2: Production scheduling. The team leader of the production unit checks the
distributed production plan to conduct scheduling optimization according to the IHGA,
and the optimized results through Gantt chart is displayed as shown in Figure 9. The
processing sequence and corresponding processing time of different parts on different
equipment are showed, and further optimization of the production plan has been realized,
including specific production time and operating staff.
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Figure 9. Production scene diagram of discrete manufacturing industry. (a) The workshop produces
kanban boards. (b) Gear drilling machine processing process. (c) Machining process of bushing lathe.
(d) Bushing lathe workshop.

Step 3: Production and processing. Workshop operators receive the production plan
distributed by the team leader, logging in the MES system according to their own authority
and obtaining the parts to be produced. Then, the parts are produced according to the
time of the production process and process drawings. The system records the name and
production time of employees, and the production team leader using the system can see
the production status of the process at any time, as shown in Figure 10.
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The industrial experiment proves that the IHGA can realize the production schedul-
ing of the industry so that the production of a variety of products can be completed in
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a relatively short time, which greatly improves the production efficiency of the workshop.
According to the detailed production plan generated after scheduling, the on-site produc-
tion situation of the workshop is shown in Figure 10. It can be further seen that, when the
operator uses a drilling machine and lathe to process the reducer workpiece, the optimized
software can run normally and record the production time, equipment name, and employee
name to reflect the processing status of the parts and facilitate the traceability of defective
products. Real-time display is carried out on a large screen in the workshop to reflect the
working efficiency of the staff, the running status of the equipment, and the production
situation, etc., and the transparent production of the workshop is realized.

6. Conclusions and Future Works

Firstly, the basic situation of production scheduling in discrete industries is intro-
duced in this paper. Considering that the simulated annealing algorithm can improve the
shortcomings of genetic algorithm optimization, an improved hybrid genetic algorithm is
proposed to solve the problem of production scheduling. In this work, the shortcomings
of the genetic algorithm are analyzed and studied, and the adaptive strategy is adopted
to adjust the probability of crossover and variation of genetic operators. The adjustment
mainly depends on the number of iterations and fitness, so that the population diversity
is high in the early stage and convergence is possible in the later stage. For the added
simulated annealing operator, the elitist substitution strategy is adopted to save the optimal
solution and avoid the occurrence of the local optimal of the genetic algorithm. The results
show that the improved hybrid genetic algorithm has a better optimization ability com-
pared with other scheduling algorithms. Compared with the genetic algorithm, although
the optimal solution was not obtained in the three cases, the improvement effect of the
optimal solution was 4.2%~6.9%, and the average improvement range was 5.7%~8.4%.
The simulated annealing operator played a good local optimization effect in IHGA, which
greatly improved the optimization ability of the overall algorithm.

In the actual production process of the discrete industry, production scheduling consid-
ers more complex indexes; therefore, the next main task is to study the flexible production
scheduling with multiple indexes, improve the production efficiency of the workshop, and
reduce resource waste. More cases will be used for simulation comparison to verify the
effectiveness of the method.
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