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Abstract: In the detection of surface floating garbage, the existence of complex backgrounds and the
small target sizes make the surface floating garbage easy to mis-detect. Existing approaches cannot
yet provide a solution to the aforementioned problems and they are typically limited to addressing
specific issues. This paper proposes a PC-Net algorithm for floating garbage detection. First, a
pyramid anchor generation approach is proposed, which makes the anchor to be generated centrally
near the target and reduces the interference of background information in the anchor generation.
Then, in the RoI Pooling feature map import stage, the classification map is used as the feature
map. This approach generates feature maps with a higher resolution and more distinct features,
thereby enhancing the feature information of small targets and enhancing the classification accuracy.
Experimental results on floating garbage dataset indicate that the average detection accuracy of the
proposed approach is 86.4%. Compared with existing detection approaches, such as Faster R-CNN,
YOLOv3, YOLOX, and Dynamic R-CNN, the average accuracy of detection is increased by 4.1%,
3.6%, and 2.8%, respectively.

Keywords: object detection; anchor mechanism; classification discrimination diagram; floating garbage

1. Introduction

At present, there is much floating garbage in rivers, lakes and sea surfaces [1]. If this
garbage can be recycled, it will improve the ecological environment and provide economic
benefits [2,3].

However, the manual salvaging of floating garbage on water surfaces is inefficient and
costly. Therefore, mechanized salvage will be the future trend, and research into floating
garbage detection algorithms on the water surface will promote mechanized salvage over
manual salvage. On the basis of its processing, the floating garbage detection algorithm for
deep learning on water surfaces can be divided into one-phase and two-phase processes.
Common first-stage algorithms include YOLOv2, YOLOv3, YOLOv4 [4], SSD, etc., and
common second-stage algorithms include R-CNN, etc. Zhang et al. [5] proposed a network
model using a combination of low-level and high-level features that has superior real-time
performance for floating garbage detection on the water surface. Lin et al. [6] introduced
Soft-NMS based on the YOLOX algorithm model to improve occlusion target detection.
Wang et al. [7] proposed a lightweight Ylov4 target detection network based on an efficient
Net-B0 fusion ECA mechanism. This method improves the speed of model detection
by reducing the parameters of the network model. Verma V et al. [8] studied the use
of symmetry during garbage image sampling. Because symmetry is applied to extract
its features, image resizing is uniform. Ma et al. [9] proposed an enhanced single-lens
multibox detector (SSD) with a lightweight and novel feature fusion module. Deng H
et al. [10] introduced the idea of expansion convolution into the feature pyramid network
to enhance the feature extraction ability of small objects. Secondly, the spatial channel
attention mechanism is used to make features learn adaptively. Zheng et al. [11] proposed
inland river ship recognition based on binocular stereo vision (BSV), and taking into account
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the computational pressure caused by the huge network parameters of the classic YOLOv4
model, the MobileNetV1 network was used as the feature extraction module of YOLOv4
model. Dan Zeng et al. [12] used the unsupervised area proposal generation algorithm to
selectively search and non-maximum suppression (NMS) to extract the location and size of
garbage areas. Li et al. [13] in During training, the anchor boxes were re-clustered to replace
the inappropriate anchor boxes. Li et al. [14] proposed a SAR ship feature enhancement
method based on high-frequency sub-band channel fusion, which makes full use of the
contour information, aiming at the speckle noise and ship contour ambiguity caused by SAR
special imaging mechanism. Cheng et al. [15] proposed a saliency enhancement algorithm
based on the difference of anisotropic pyramid (DoAP). Considering the limitation of
IoU in small target detection, we design a detection framework based on bhattacharya-
like distance (BLD). On the basis of the improved RefineDet [16] model, Zhang et al.
proposed a real-time detection approach for floating objects on the water surface. This
approach exhibits a good real-time performance, but the detection accuracy, particularly
for relatively small floating objects on the water surface, needs improvement. Zhang
et al. [17] introduced the structure of recursive feature pyramid (RFP) and deformable
convolution network (DCN) into the learning framework in order to optimize the basic
backbone of the network and construct a feature map with high-level semantics and low-
level positioning information of the network. Based on YOLOv5S deep learning, Du
et al. [18] adopted the BiFPN network structure to enhance the feature extraction ability of
the original PANet network for unsafe objects in transmission line images. Zeng et al. [12]
proposed a garbage detection method for airborne hyperspectral data based on multiscale
CNN. Zhang et al. [19] introduced multibranch expansion convolution to enhance the
characteristic information of small targets and replaced cascade RCNN with a multilayer
deformable convolution network to improve the speed of the network model. Tian et al. [20]
converted YOLOv4 into a four-scale detection method. In order to improve the detection
speed, the new model was pruned.

Wen et al. [21] proposed a multiframe detection method of small targets on the sea
surface based on a deep convolution neural network. Zhou et al. [22] proposed an improved
YOLO-SASE detection algorithm, which combines a SASE module, SPP module and
multilevel receptive field structure. GU et al. [23] proposed a small target detection method
for ocean surveillance radar based on multifeature and principal component analysis. Gao
et al. [24] proposed a high-precision detection algorithm based on feature mapping depth
neural network of spindle network structure for dim targets with few pixel features in
complex and diverse backgrounds. Jia et al. [25] added a center loss function on the basis
of SSD (Single Shot MultiBox Detector) network to better deal with the problem that the
intra-class difference is greater than the inter-class difference. This solves the problem of
insufficient sensitivity to small objects. On the basis of the SSD network, Liu et al. [26]
used residual network as the basic network of single lens multibox detector (SSD) target
detection network model. Sha et al. [27] used ResNet50 instead of VGG16 in a fast-RCNN
backbone network to increase the training depth of the network, and used soft-NMS instead
of NMS, and modified the classifier layer of fast-RCNN. Sharma et al. [28], based on the
fast-RCNN network model, introduced saliency detection to better detect and identify
targets. On the basis of the Mask RCNN network model, Huang et al. [29] used ResNet as
a feature extraction network, and effectively combined the feature pyramid network (FPN),
ROIAlign and full convolution network (FCN) and other modules. Li et al. [30] used a
high-resolution network (HRNet) as the backbone network of image feature extraction, and
adopted focus loss as the classification loss and region of interest alignment instead of region
of interest merging. Shi et al. [31] introduced a cascade strategy and adaptive threshold
strategy, and proposed a domain-based adaptive fast RCNN method. Li et al. [32] put
forward GPR-RCNN based on RCNN network model, which can robustly detect defective
areas even in the presence of obvious noise. On the basis of Faster RCNN, Zhao et al. [33]
improved the fast regional convolution neural network model by using the characteristic
pyramid network (FPNs) to realize the insulator location in complex background images.
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Yu et al. [34], based on the Mask RCNN network model, took Resnet101 as the backbone
network and adopted the feature pyramid network (FPN) structure for feature extraction.
Han et al. [35] proposed a real-time small traffic sign detection method based on improved
Faster RCNN. Xie et al. [36] integrated a deconvolution module on the basis of the Faster
RCNN network model to provide additional context information, which is helpful to
improve the detection accuracy of small-scale pedestrian examples. On the basis of the
Faster RCNN network model, Sun et al. [37] combined various strategies to improve it,
including feature concatenation, hard negative mining and multiscale training. On the
basis of the YOLOv3 network model, Wang et al. [38] proposed AS-CBAM (Adaptive
Selection Convolution Block Attention Module) and innovatively combined with HDC
(Hybrid Extended Convolution) to maximize the receptive field and fine-tune the features,
aiming to solve the problem that the original CBAM maximum pool operation can be easily
used to introduce background noise. Nevertheless, some problems with complex contexts
and too small a proportion of target size cannot be effectively resolved.

This paper focuses on two contributions and proposes a PC-Net-based algorithm for
floating garbage detection on water surfaces. In the detection of floating garbage on the
water surface, the presence of a complex background and a large aspect ratio gap between
targets (such as branches and bottles) presents the first challenge.

A solution for the generation of pyramidal anchors is proposed based on the concept
of the Faster R-CNN network. The fundamental concept is to generate an anchor centered
on the target and to adjust the anchor’s parameter settings based on the size and aspect
ratio distribution of the target in order to better match the target. This strategy effectively
reduces complex background interference, improves the overlap between the positive
sample and the target, and enhances the performance of the anchor mechanism. Second,
to address the issue that the target in the floating garbage on the water surface has an
insufficient size share in the feature map and an unbalanced foreground and background
share, which can easily result in the loss of feature information during the classification
stage, thereby severely affecting the classification accuracy. The purpose of the proposed
new classification discrimination map is to import a classification discrimination map with
a higher resolution during the RoI Pooling feature map import stage in order to improve
the accuracy of floating garbage detection on water surfaces.

2. PC-Net

In this paper, we employ the idea of a Faster R-CNN network, and Figure 1 depicts the
model structure. First, ResNet-50 is used as the feature extraction network in this paper [39].
Second, a pyramidal anchor generation approach is employed during the anchor generation
phase. Third, during the RoI pooling feature map import stage, in order to provide clearer
features for the upcoming classification operation, the classification discrimination map
is lead into the RoI pooling stage. The details of these three strategies are given in the
following sections.

2.1. Feature Extraction Network

ResNet-50 is used as the feature extraction network in this paper. Figure 2 displays the
network structure of ResNet-50, which includes residual learning and applies the concept of
directly connected channels to the feature extraction network. Before ResNet-50, the feature
extraction network transforms each layer nonlinearly before proceeding to the next layer of
operation. The directly connected channel concept, on the other hand, permits a specific
percentage of information from the previous levels to be transmitted to the subsequent
layers; i.e., a jump connection is accomplished. Prior to ResNet-50, feature extraction
networks suffer from issues such as the loss of feature information when extracting features
and, in some circumstances, gradient disappearance and explosion, making it impossible
to train deeper-layer feature networks. Additionally, ResNet-50 effectively overcomes the
aforementioned issue by transferring the original data to the output and thus indirectly
addressing the issue of feature information loss.
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2.2. Pyramidal Anchor Generation Approach

In floating garbage identification on the water surface, the complicated water surface
background results in inaccurate target detection. The fundamental problem is that ripples
on the water surface, uneven illumination, and other various interfere with the extraction
of positive and negative sample feature information, resulting in significant discrepancies
between the retrieved feature information and the target. Based on this, this research
proposes an approach for generating pyramidal anchors. This approach employs the
semantic knowledge of image features to guide the construction of anchors. In other words,
we jointly estimate the probable locations and shapes of the target centers, build anchors
with associated locations, grades, and forms, and then forecast based on these anchors.

2.2.1. Center Area Selection

As indicated in Figure 3, the central area was selected. Using the label information,
we first extracted the coordinate value of the center point, the length, and the width of the
object to be detected. This information was then utilized for center area selection.
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The implementation process can be divided into the following three steps.
Step 1: The coordinate information of the labeled box is used to build a binarized label

map for each image, where the portion of the labeled box containing the target is coded
as 1 and the remainder is coded as 0; i.e., the foreground portion is labeled as 1 and the
background portion is labeled as 0.

Step 2: Apply the coordinate location information of the designated box to various
feature map scales yields the coordinate position information (x′g, y′g, w′g, h′g), where xg is
the horizontal coordinate of the box’s center and yg is the vertical coordinate of the box’s
center. The box is then divided into three categories: ignore area, center area, and outer area.

The center area (CA) = (x′g, y′g, σ1w′g, σ1h′g) defines the central region of the annota-
tion box, i.e., the yellow portion of the region in the image above, which is the most central
portion of the annotation box and the anchor box constructed with this portion as its center
corresponds to the positive sample.

(x′g, y′g, σ2w′g, σ2h′g) is the ignore area (IA). IA is a broader region, represented in the
picture above by the green area. If the anchor point center is created in this section, its IoU
is rather low. Hence, this section is disregarded and used as a buffer.

The outer area (OA) is where CA and IA are removed in the whole feature map. If its
center is in this part, the anchor is a negative sample.

Step 3: The above is mapped to other feature maps; i.e., this method realizes selects
the central area of all feature maps.

2.2.2. Anchor Grade Classification

In the detection process of floating garbage on the surface of the water, there is an issue
with the aspect ratio and size of the target, such as branches, plastic bags, and bottles, etc.
Therefore, in this paper, the anchor grade approach is adopted to generate an anchor with
corresponding sizes according to the different sizes of targets to be detected. As shown in
Figure 4, it is a schematic diagram of anchor grade. The square is the set length and width,
and the rectangular length and width are, respectively, enlarged by two times and reduced
by one half. Refer to Formula (1) for the specific setting method.
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In addition, as stated in Table 1, each level generates three sizes of anchor boxes. Each
anchor box size is generated in three proportions: 1:1, 1:2, and 2:1. Formula (1) for grade
classification is as follows:

l = d10× (e
min(wg ,hg)

ε − 1)e (1)

where min(wg, hg) represents the smallest width wg and height hg values of the target g. ε
is the hyperparameter, while l represents the anchor generation level. When l is equal to or
greater than 3, the third rank is also chosen.

Table 1. Anchor grade.

Grade Anchor Size

1 32 × 32, 64 × 64, 128 × 128
2 64 × 64, 128 × 128, 256 × 256
3 128 × 128, 256 × 256, 512 × 512

The anchors generated in this manner, regardless of whether they are positive or
negative samples, are still mostly clustered around the target. So, the strategy efficiently
eliminates background interference. In addition, anchors of a particular size and aspect
ratio are formed based on the size of the target to be identified, so the approach effectively
implements the anchor mechanism.

2.3. Classification Discrimination Diagram

In the detection of floating garbage on the surface of the water, there are many prob-
lems in the data set used in this paper; for example, the size of floating garbage is too small,
and the information features retrieved during the feature extraction step are insufficiently
distinct, hence reducing the accuracy of the categorization of floating garbage. This paper
proposes a classification discrimination map to aid the classification of floating garbage on
the water surface.

First of all, during the conventional processing of the classification operation in RoI
Pooling, generating about 300 suggestion boxes after the feature map is processed by RPN.
After that, these suggestion boxes are pooled and become the characteristic diagram of size
7 × 7. Finally, they are identified and classified.

The structure of the RPN network is shown in Figure 5. Its main function is to generate
an anchor based on the feature graph, and screen out candidate anchors that may contain
targets from the generated anchor.
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As a result, for a normal-sized target, as depicted in Figure 6a, when d is more than
102, the size of its labeled box is approximately the same as the feature network processing,
and the subsequent operation will not result in the loss of feature data. However, if the
designated box is too small for small targets, as depicted in Figure 6b, when m is less than
64, then after the feature network processing, its m1 value will be less than 4. Because
4 × 4 is smaller than 7 × 7, an interpolation-based modification (bilinear interpolation in
this case) is required for the feature map. Obviously, the semantic content of the image will
be lost after such processing, and the original feature information will not be sufficiently
clear, which will result in a less robust model after training, leading to misdetection and a
reduction in detection accuracy. Therefore, when a target is to be detected but its length and
width are less than a certain threshold, misdetection will occur. In addition, an evaluation
of the dataset revealed that there are more small targets than large ones (the definition of
small targets for the dataset in this paper is described in detail in Section 3.1).
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This paper proposes a classification discrimination diagram for the above problems (as
shown in Figure 7). In the first step of the specific implementation procedure, Conv4 executes
the upsampling operation, utilizing nearest-neighbor interpolation. In the second phase,
Conv3 is processed by 1 × 1 convolution kernel to adjust the number of channels, so that
the number of channels is the same as that of Conv4 convolution layer. In the third phase,
the concat operation is executed to complete the feature fusion of Conv3 and Conv4 in order
to generate the classification discrimination map. In the fourth phase, the suggestion box
generated by RPN processing is expanded and mapped to the classification discrimination
diagram in the same proportion. In the fifth phase, the classification discrimination diagram
is imported into RoI Pooling stage for subsequent classification operation.
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The modification is intended to increase the resolution of the discrimination map. The
reason of this modification is based on the assumptions that the object detection network
requires less information to establish if a proposal is a foreground object compared to
identifying the type of object in the proposal region. Therefore, when the proposal is a
foreground object, better results can be achieved by evaluating the class of objects with
higher-resolution features.

3. Experimental Analysis
3.1. Experimental Environment and Algorithm Evaluation Metrics

ResNet-50 is used as the feature extraction network in this paper. ResNet-50 features
deeper network layers than VGG16, ZFNet, and LeNet, and incorporates a residual module
to reduce information loss and extract more comprehensive semantic feature information.
As shown in Table 2, it is the environment configuration used in this experiment.

Table 2. Illustrates the experimental environment.

Category Environment

Graphics Card GeForce GTX 1080Ti
Memory 12 GB

Operating System Ubuntu16.04
Deep Learning Framework PyTorch 1.7.0

CUDA Version CUDA 10.1
Scripting language Python 3.7

The evaluation whether the approach of this paper is effective for detecting float-
ing garbage on the water surface. In this experiment, recall and accuracy were used as
evaluation metrics, and the formulas for calculating recall and accuracy are presented in
Formulas (2) and (3).

recall =
TP

TP + FN
(2)

accuracy =
TP + TN

TP + FP + FN + TN
(3)

TP (True Positive) is a positive sample with a positive prediction in the above formula.
FP (False Positive) is a positive sample with a negative forecast. FN (False Negative) is
a positive sample with a negative prediction, whereas TN (True Negative) is a negative
sample with a positive forecast.

According to the definition provided by the international organization SPIE, a small
target is one whose image resolution is less than 32 × 32. The size of the dataset utilized in
this paper is 416 × 416; hence, a target whose size is less than 208 pixels is a small target.
Based on this criterion measurement, there are 643 small targets in this paper’s dataset.
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3.2. Dataset

Since there is no public dataset for studies on the identification of floating litter on
water surfaces. In total, 2400 sheets of data from a subset of the VOC2012 dataset, an online
collection, and field photography are utilized for this investigation. Later, it was expanded
to 9600 images by data augmentation-related techniques, containing pictures of different
types of floating garbage in various water scenes. According to the various sorts of floating
garbage, there are eight test categories: bottles, grass, branches, plastic bags, milk cartons,
balls, plastic garbage, and leaves. Figure 8 depicts a portion of manual annotation of several
types of floating garbage.
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3.3. Ablation Experiments

This experiment compares the performances of several anchor generation approaches
based on Faster R-CNN for detecting floating garbage on water surfaces. As demonstrated
in Table 3, the average accuracy increased by 3.4% with the production of pyramidal
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anchors, from 82.3% to 85.7%. The pyramidal anchor generation approach of the Faster
R-CNN framework may effectively optimize the model, as is evident.

Table 3. Ablation experiments.

Number Model Backbone Recall/% Accuracy/% Small Target Detection
Quantity

1 Baseline ResNet-50 81.1 82.3 187
2 Pyramid anchor frame ResNet-50 84.9 85.7 199

3 Classification
discrimination diagram ResNet-50 81.3 83.5 386

4 PC-Net ResNet-50 85.8 86.4 392

This experiment also compares the performance on the job of detecting floating
garbage on the surface of the water after the classification discrimination map is included.
According to Table 3, the accuracy increases by 1.2% when only the categorical discrimina-
tion map is introduced and increased by 0.7% when it is introduced after the pyramidal
anchor has been built. After adopting the classification discrimination map within the
Faster R-CNN framework, it is clear that the model may be effectively optimized.

Pyramidal anchor generation is used to reduce the disturbance of anchors caused by
complex background information, such as water surface fluctuations and light reflections
during the generation stage, which affects the quality of positive and negative samples, and
then affects the subsequent classification and recognition. In this study, the classification of
anchor classes is eventually accomplished using discrete terms, and the hyperparameter ε is
employed to define the pyramidal anchor class differentiation. In this study, the experimen-
tal analysis of ε values is conducted, with the experimental results of the hyperparameter ε
displayed in Table 4. This research focuses on values within the interval (500, 2000). As
shown in Table 4, the best detection and accuracy are achieved when ε = 1000, followed
by ε = 1100, and the worst result is obtained when ε = 500. It can be seen that choosing
appropriate coefficients is very important for the anchor box generation stage.

Table 4. Accuracy with different ε values.

500 700 900 1000 1100 1300 1500 2000

Accuracy/% 83.15 84.38 85.94 86.40 86.34 86.11 85.82 85.33

ACC is typically used to evaluate the classifier’s classification performance. The ACC
value represents the proportion of correctly identified samples among the target samples
to be evaluated relative to the total number of target samples. Figure 9 depicts the ACC
curves for the four approaches in Table 3, where the horizontal axis represents the number
of iterations and the vertical axis represents the ACC value. It is evident from Figure 9 that
the other three approaches in Table 3 are an improvement over the approach used as the
baseline. Specifically, the approach presented in this research has the biggest development,
leading to the conclusion that its classification results are superior and its mistake detection
rate is lower. As depicted in Figure 9, the ACC values of the approach presented in this
research and approach 2 (baseline + pyramidal anchor) are vastly superior to those of the
other two ways. Comparing their differences reveals that both the approach presented
in this research and approach 2 (baseline + pyramidal anchor) employ the generation
approach for pyramidal anchors. Because it generates anchors surrounding the target to
be identified, the pyramidal anchor creation can reduce background interference, increase
the quality of positive samples, and hence reduce the mistake detection rate. Based on the
preceding study, it is clear that the approach presented in this paper is superior in its ability
to detect floating garbage on the water surface.
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Figure 10 displays the Faster R-CNN baseline, the pyramidal anchor, the classification
discrimination plot, and the curve representing the variation of loss value with the number
of iterations during model training. As seen in Figure 10, each model presented in this
paper has converged. The proposed approach compared to the baseline approach, the
number of parameters and model complexity are enhanced. Figure 10 demonstrates that
the initial value of the approach presented in this research is slightly larger at the start of
training, but the converged loss value is lower, the fluctuation in training is also reduced,
and the overall convergence process does not change majorly.
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Figure 11 shows the detection findings of three distinct forms of floating debris on the
surface of the water. There is complicated background interference in the first panel, including
water reflection and light reflection. The second panel contains the interference of water
surface fluctuations, and the target to be detected is small. In the third panel, there are many
objects to be inspected and the size is small, as well as the interference of water surface
fluctuation. Figure 11a depicts the baseline Faster R-CNN test results, while Figure 11b depicts
the test results of the proposed approach. Figure 11 demonstrates that only one target was
detected in the baseline of the first test image. Additionally, the approach described in this
study generates positive and negative samples surrounding the target to be investigated,
which effectively decreases environmental interference and finds three targets to be inspected
simultaneously. Although both techniques completely detect the target to be investigated in
the second test image, for the milk carton, the approach presented in this research improves



Sustainability 2022, 14, 11729 12 of 16

by 0.56 compared to the baseline approach due to the absence of feature information due to
the target being too small. Using classification discrimination maps, the approach described
in this research augments the semantic information of small target characteristics. Similarly,
in the third test image, the approach presented in this research effectively eliminates the
complicated background interference of the water surface fluctuation class and enhances the
semantic feature information of small targets.
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3.4. Experimental Comparison

In Figure 12, the accuracy performance of each type of floating garbage in the proposed
approach is displayed.

By comparing the results in Table 5, the proposed approach generates much less of a
detection anchor than the Faster R-CNN approach, yet the detection rate of each category
is improved to various degrees. Objects that are particularly susceptible to environmental
interference, such as water grass and tree branches, have a higher detection rate of boost.
Therefore, it can be confirmed from this aspect that the revised model presented in this
study is resistant to external elements such as light and rain. In addition, the reduction in
the detection frame of the approach presented in this research suggests that the improved
model’s time efficiency will not be much enhanced in comparison to the original model.
In conclusion, the approach presented in this paper improves detection accuracy while
lowering the anchor generation number significantly compared to the baseline (Faster
R-CNN) approach.
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Table 5. Test results of different categories.

Class
Target Anchor Detect Anchor Accuracy%

Faster R-CNN PC-Net Faster R-CNN PC-Net

bottle 3318 6291 4020 89.4% 90.0%
grass 375 2191 676 68.8% 83.9%

branch 880 4288 1463 75.7% 79.8%
plastic-bag 830 2125 1261 87.8% 88.2%
milk-box 497 1971 788 86.5% 88.3%

ball 105 703 144 84.9% 87.3%
plastic-garbage 434 2430 674 84.6% 87.5%

leaf 554 2531 901 81.4% 86.0%

According to Table 6, the approach suggested in this paper increases accuracy 4.1%
more than Faster R-CNN. Another comparison with various target identification algorithms
reveals that the approach presented in this study outperforms the SSD algorithm by 7.3%,
the YOLOv3 algorithm by 6.6%, the YOLOX algorithm by 3.6%, and the Dynamic R-
CNN [40] algorithm by 2.8% in terms of accuracy.

Table 6. Results of recall and accuracy under different models.

Method Recall/% Accuracy/%

SSD 72.3 79.1
YOLOv3 76.4 79.8
YOLOX 80.5 82.8

Faster R-CNN 81.1 82.3
Dynamic R-CNN [40] 84.8 83.6

PC-Net 85.8 86.4

As shown in Figure 13, it is the experimental result of different algorithms. As can
be seen from the figure, PC-NET has a good effect on detecting small targets and targets
reflected by light. However, the detection frame error for large targets is relatively obvious.
As shown in the sixth row in Figure 13. Although the target can be detected, the detection
frame is relatively small and does not completely cover the target. The reason for this
phenomenon may be that PC-Net pays less attention to edge information. When the anchor
is generated, the PC-Net network refers too much to the intermediate information of the
target, so the weight ratio of boundary information is too low.
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4. Conclusions

The existing water surface floating garbage detection techniques cannot easily detect
floating garbage in conditions involving complicated backdrops, small size shares, and
other variables. On the basis of the existing framework model of target detection, addi-
tional experimental analysis and enhancement have been conducted to present the PC-Net
network for identifying and classifying floating garbage on the water surface. The effect of
the production of pyramidal anchors on the accuracy of identifying and classifying floating
garbage on the surface of water has also been investigated. After the implementation
of a classification discrimination map, the detection effect of small targets is improved.
This paper presents an effective solution to the problems of a complicated background,
an excessive number of small targets, and an excessive disparity in target size within the
dataset. The algorithmic model suggested in this study is 4.1% more efficient than the
Faster R-CNN algorithm, 7.3% more efficient than the SSD algorithm, 6.6% more efficient
than the YOLOv3 algorithm, 3.6% more efficient than the YOLOX algorithm, and 2.8%
more efficient than the Dynamic R-CNN algorithm. The future will be based on the PC-Net



Sustainability 2022, 14, 11729 15 of 16

network model, as some progress has been made in this research on the detection of small
targets. Future research will conduct further investigations on the detection of more compli-
cated scenarios and problems involving floating garbage, mutual block caused by floating
garbage and floating garbage accumulation. Future approaches will further improve the
precision of floating debris detection on the water surface.
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