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Kamalakanta Muduli 7,* and Mukesh Prasad 2

1 Operations and Supply Chain Management Research Lab, School of Management, Doon University,
Kedarpur 248001, India

2 Australian Artificial Intelligence Institute (AAII), Faculty of Engineering & Information Technology,
University of Technology Sydney, Ultimo, NSW 2007, Australia

3 Department of Management Studies, Graphic Era Deemed to be University, Dehradun 248002, India
4 Guildhall School of Business and Law, London Metropolitan University, London N7 8DB, UK
5 Bhubaneswar Engineering College, CV Raman Global University, Bhubaneswar 752054, India
6 Department of Production Engineering and Safety, Faculty of Management,
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Abstract: This study work is among the few attempts to understand the significance of AI and its
implementation barriers in the healthcare systems in developing countries. Moreover, it examines
the breadth of applications of AI in healthcare and medicine. AI is a promising solution for the
healthcare industry, but due to a lack of research, the understanding and potential of this technology
is unexplored. This study aims to determine the crucial AI implementation barriers in public
healthcare from the viewpoint of the society, the economy, and the infrastructure. The study used
MCDM techniques to structure the multiple-level analysis of the AI implementation. The research
outcomes contribute to the understanding of the various implementation barriers and provide
insights for the decision makers for their future actions. The results show that there are a few critical
implementation barriers at the tactical, operational, and strategic levels. The findings contribute to the
understanding of the various implementation issues related to the governance, scalability, and privacy
of AI and provide insights for decision makers for their future actions. These AI implementation
barriers are encountered due to the wider range of system-oriented, legal, technical, and operational
implementations and the scale of the usage of AI for public healthcare.

Keywords: artificial intelligence; healthcare systems; developing countries

1. Introduction

Conceptually, the term “Artificial Intelligence” typically refers to a computerized
system consisting of hardware, software, and IT infrastructure that aims to perform real-
time commercial and non-commercial applications and cognitive functions with structured
human inputs [1]. A typical AI-based machine or process runs through mathematical logic
and computing programs. A wider variety of methods and claims come under the broader
scope of AI, including advanced algorithms, machine learning, deep learning, and pattern
recognition [2]. With high productivity and performance, AI has the potential to replace
human-oriented work in a wider variety of industrial and social applications. With intensi-
fied non-human computational intelligence activities, AI overcomes human limitations [3].
Thus, AI becomes a solution to real-time industrial and managerial problems, ranging
from procurement to after-sales services, through various personalized recommendations
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to customers through advanced data-driven technologies [3]. Thus, AI tools present a
trade-off between potential benefits and risks, as higher risk and greater value through
the usage of perceived technologies are preferred over human-centric solutions [3,4]. AI
uses supervised and unsupervised machine learning techniques for autonomous decision
making for multiple industrial solutions, ranging from BFSI, manufacturing, and retail
management to supply chain and logistics management [4,5].

Data-driven services are becoming more AI-driven, and thus, AI has become an
important element of business strategies for sustainable competitive advantage [6].

Continuous innovation is bringing new opportunities to various industries, ranging
from manufacturing, retail, supply chains, and logistics to transportation and healthcare. A
variety of areas in public healthcare leverage the use of artificial intelligence-based tech-
nology. Implementing AI in the healthcare system primarily deals with the assessment of
the challenges of AI implementation, which aims to manage or alleviate complications and
provide ideal treatment for a disease. In public healthcare in particular, AI supports clinical
decision support systems for patient-specific diagnosis, treatment decisions, and health
analytics [7]. Thus, for the healthcare industry, these AI-driven services are becoming key
elements for creating competitive advantages in the ecosystem. On the risk side, public
health has several concerns, including potential bias in the data usage for artificial intelli-
gence algorithms, the prevention and protection of patients’ privacy, and the healthcare
practitioners’ distrust of digital tools [7,8].

AI has transformed the delivery of public healthcare in emerging countries for specialty
treatments, including radiology and pathology. The digital reform in public healthcare is
largely supported by the availability of datasets and the novel methods for assessing these
datasets. Despite this, it faces a number of challenges in achieving the SDG public health
goals, including the lack of a trained workforce and inadequate public health surveillance
systems [9].

Recent advancements in AI have encouraged public enterprises to identify and ana-
lyze the risks caused by uncertainty while supporting planning and policy formulation.
However, AI interventions requires support from regulators, and practitioners to provide
public benefits. AI has been making a lot of progress recently, which is helping public
health organizations figure out how bad future outbreaks will be. This is a big improvement
over traditional methods, and it will help policymakers and practitioners make better plans
and save many lives. However, AI intervention requires that the implementation barriers
related to ethics, legality, behavior, and operation are addressed before deployment to
developing countries [10].

In this direction, efforts are being made by countries to achieve health-related SDGs
among emerging economies. Past research gives evidence to support a variety of health
issues addressed by AI, although it also shows the immense requirement to formulate
country-specific guidelines and policies for developing an AI implementation roadmap for
low-income and emerging economies [11].

The recent developments in the area of AI encourage researchers to investigate and
evaluate its adoption and implementation. This study discusses the need for and the
significance of AI in public services, especially in technological education, vaccine trials,
and data informatics. In particular, in the domain of public health systems, the key usage
of AI is in the gathering, diagnosis, and interpretation of medical data. However, in
addition to its global adoption and implementation in a variety of industries, there are a
few important concerns related to ethical and social issues, including trust and reliability.
These issues become prominent as AI-driven healthcare systems carry highly sensitive
health information and high-end customer vulnerabilities [11].

In past studies, academic researchers raised key concerns about the implementation
of AI-based tools. In developing countries, with the rapid advancements in the area of
AI technologies, public organizations are in the process of deploying AI applications to
build their productivity and to generate sustainable competitive advantage and value for
the beneficiaries.
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Leading countries such as India and China are showing a sharp upward trend to-
wards readiness with regard to the adoption of AI applications [12]. The rapid growth of
highlighted technologies, such as 3D printing, big data analytics, and ML/DL, brings a
collective emergence of industry game changers [13]. AI is envisioned as a critical enabler
technology in areas such as public finance, labor markets, marketing, public service adver-
tising, public distribution management, road and transportation, and public information
systems [14]. Therefore, AI has become a tool for enhancing the digital capabilities of gov-
ernment in public services and provides a comprehensive socio-economic measure to meet
the challenges related to public firms [15]. AI leverages data integration across both inter-
organizational and intra-organizational sources and firms to build more customer-oriented,
low-cost business solutions [16].

In developing countries, the usage of AI is empowering public services, including
enhancing public delivery, precision planning and production, and direct benefit transfer.
Technology in its new avatar has the potential to boost economic growth and reduce poverty.
The cost of managing public health is very high in developing countries, and it rises during
emergency times [17]. In developing economies such as China and India, public health
spending has increased by up to 5% of GDP [18]. At the same time, there are opportunities
to create value and incentives in health care systems, with the majority of spending on
digitalization and automation. Considering the non-availability of a responsive physical
health eco-system, in the recent health strategy draft by the WHO a digital health initiative
with the effective usage of digital technologies and health informatics was proposed, with
the aim of achieving an economic, equitable, and sustainable health system [19]. Thus, the
adoption of digital technologies, including smart automation and artificial intelligence,
can support the WHO’s efforts to make public health more affordable and improve public
health. In addition, the constant usage of digital technologies brings a significant impetus
to the economic development of the nation [13]. The United Nations (UN) has shown its
commitment to aligning multiple stakeholders to evaluate the role and benefits of digital
technologies, including AI, to achieve the Sustainable Development Goals (SDGs) [20].

In high-income countries, AI is gradually improving public health services. In the
USA, AI applications are saving up to USD 150 billion in healthcare costs [21]. In the
context of resource-poor developing countries, the potential of AI in public health needs to
be assessed and unleashed [22]. However, developing countries are struggling with two
fundamental issues related to the adoption of digital technologies. Firstly, there is the issue
of the lack of public health infrastructure and the dearth of trained human resources. It
is believed that the new digital wave is creating a psychological fear of unemployment
due to the system-level automation of higher cognitive tasks. Such fears provoke mistrust
in institutions and rising populist sentiments among the masses [23]. Conversely, due
to recent government initiatives and successful public-private partnerships, the Indian
healthcare industry is projected to reach to USD 372 billion [24]. On the other hand, the
dearth of trained human resources in the healthcare system is facing a global challenge
in the imparting of quality health services [25]. The use of digital technologies, including
blockchain, BDA, IoT, AR/VR, and artificial intelligence, is helping clinical practitioners to
make precision decisions related to the health industry [26]. AI’s potential in the healthcare
industry is broadly applied in biomedical research, translational research, and medical
practice. Thus, AI in health systems amplifies its capabilities [27]. The usage of AI in public
healthcare increases operational efficiency and accuracy during diagnosis, in monitoring
health conditions, and in reducing surgical complications [28] (Table 1).
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Table 1. Demonstration of the benefits of using AI in public healthcare.

[Sr. No]
Benefit of Using

AI in Public
Healthcare

Description Developing Countries Perspective References

Medical Benefits

1 Data-Driven
Decision Making

In medical data processing:
acquiring data, analyzing the data,
and assessing and evaluating the
data for the possible remedies in
order to formulate a decision. The
staged decision-making process
helps medical professionals to
understand and make the best use
of AI technologies. Thus, AI-based
decision systems utilize data in
following forms: patient data for
clinical decisions; operational data
from health centres and hospitals;
patients and hospitals to aid in
patient decision making

The accuracy and data accessibility
determines the quality of decisions in a
digital healthcare environment.
Particularly in healthcare, the inclusion of
smart data helps decision makers to
enhance the decision-making quality.
Implementation of AI may help the
medical statisticans and developers to
examine big data. However, managing
big data incurs costly processes and
impaired clincial outcomes. Thus,
continous improvement in data-driven
decisions needs to be made.

[13,20]

2 AI Assistance in
surgery

Based on cognitive functions,
ML/NPL is being used; it
supports touchless arrangements;
surgical robots are deployed using
speed and voice instruction
patterns. AI-surgical robots are
computerized equipment; they
support surgeons in conducting
hands-free surgery.
ML enables reinforcement learning
that makes the AI-surgical robots
access datasets to generate critical
data insights and
information backups.

In developing countries, the key concern
related to surgeon–robot collaborations is,
moreover, related to legal and regulatory
aspects; the lack of experience of
regulatory bodies in dealing with
collaborative intelligence is the biggest
challenge. LfD schedules are developed to
train robots to carry out new surgeries
independently through iterative processes
that include segmentation of the surgical
task, modeling, and subtasking in
sequence. Thus, training a machine is
again a challenge for
developing countries.

[21–23]

3
AI-assisted
tele-surgical
operations

Post-surgery requires constant
assessment of the patient.
Telepresence robots allow
surgeons and doctors to interact
with their patients for monitoring
their vital characteristics without
physical presence in the
patient’s wardroom.

During the COVID-19 pandemic,
post-operational tele-surgical operations
were used in various developed and
developing countries to avoid direct
contact between patient and doctors, with
intra-operative guidance using remotely
accessible videos, pictures, and
communication systems. For developing
countries, the solution is highly feasible
for the places that have poor access to
medical health centres and have travel
limitations/restrictions due to geography.
AI- and AR-enabled surgical mentorship
has the potential to become popular
among these countries. The key
advantages of such arrangements are the
systematic minimization of the length of
patient stay and the assisting of
post-treatment through a remote
support system.

[24,25]

4 Supports mental
health

AI-enabled systems for emotional
and mental well-being of
the patients.

New perspective of AI allows medical
practioners to leverage it for
understanding mental health of patients

[26]
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Table 1. Cont.

[Sr. No]
Benefit of Using

AI in Public
Healthcare

Description Developing Countries Perspective References

5
Usage of natural

language
processing

NLP for sentimental analysis.

The healthcare industry conventionally
uses natural langugage processing for
developing computational methods to
take human inputs. Sentimental analysis
is being used to analyze and interpret
vernal expressions of human emotions,
including the psychological challenges
faced by individual patients.

[27–29]

Economic and Social Benefits

6
Post-treatment
expenditures

reduction

Using AI, tailored therapies can be
developed for each patient that
can bring down the post-treatment
expenditures and lower the
post-surgery expenditures.

In developing countries such as India, AI
facilitates the decisions related to cost
optimization, which results in the
elimination of expenditure related to
post-treatment as the main cost driver in
healthcare ecosystem.

[30,31]

7 Early diagnosis

AI-enabled devices can perform an
extensive range of repetitive
activities accurately, including the
usage of predictive analytics for
diagnosis, in order to reduce
physician mistakes.

Health precision on electronic health
records can bring earlier diagnosis and
identification of life-threatening diseases
such as breast cancer. The earlier
diagnosis can significantly decrease the
expenses towards health services.

[32,33]

8 Empowering
patients

AI helps patients to make
individual decisions for
customized and precision
health services.

In recent times, wearable AI devices have
become very popular in low-income
countries due to their economic range and
high acceptability among the masses;
machine learning algorithms can help
patients to obtain multiple alerts to avoid
any serious level of risk.

[34,35]

The multi-industrial applications and the expanded growth of BDA and AI has
prompted the healthcare industry to preview their potential and their risks in public health-
care research [36]. The success rate from other industries has brought growth potential in
the healthcare industry as well [33]. Globally, the COVID-19 pandemic has transformed
healthcare delivery platforms from conventional face-to-face set-ups to online care using
digital tools [37]. While mitigating the risk of exposure to the COVID-19 infection, the
healthcare industry has quickly adopted digital collaboration tools for remote clinical aids
to patients [38]. According to Accenture (2017), the AI-enabled global healthcare operations
have the potential to bring cost optimization to the level of USD 150 billion by 2030 [33].
Various precision health apps are creating clinical–community linkage and establishing
dialogue between healthcare providers and patients and catering to the health needs of
the masses [39]. In addition, AI also demonstrates the possibility of reducing healthcare
costs, providing preventive healthcare to the masses, and increasing the accuracy of di-
agnoses [40]. Considering this trend, the majority of healthcare solutions companies are
adopting scientifically validated AI methods in their R&D projects [41].

Motivation of the Study

AI adoption in public sectors and its implementation risks are quite low in some
developed countries [42]. In the majority of South Asian emerging economies, the imple-
mentation of AI is at an embryonic phase due to a low clarity regarding digital technologies,
a lack of AI regulation and laws, and relevant issues pertaining to the data privacy and
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trustworthiness among stakeholders [43]. Thus, digitization in public services can be
driven by good governance and robust legislation [44,45]. Currently, developing nations
are transforming their public systems towards digitization to address the upcoming chal-
lenges arising due to the pandemic situation in recent times [46]. In particular, public
health systems impose various challenges for emerging economies that are different to
those of the developed countries [47]. AI implementation can bring together healthcare
solutions for various sections of society, irrespective of the socio-economic status [47].
Thus, there is role for AI in developing countries, where digitally equipped resources and
human expertise are very limited and untested. Previous studies have assessed various
aspects, including clinical and consumer need identification [48,49] and innovation [50]. AI
readiness has challenges [51,52]. A few studies also discussed a framework for the real-time
health systems [53], resource optimization [54], and mass usage [55]. There is a need for
strong and affective governance and a strategic plan for implementing AI applications
in public healthcare, education, and other public sectors [56]. Similarly, recent research
has discussed the significance of ethics and policy challenges in the effective governance
of AI [57,58]. In the developed countries, AI adoption has witnessed research initiatives,
and the efforts increase every day. However, developing countries such as India lack
research efforts in the area of AI adoption and its practices. The previous literature suggests
that the quality of public health using digital technologies in developing countries has
been investigated [55,58]. However, the conceptual frameworks that divulge the inter-
relationships among the barriers and enhance AI adoption by effective and appropriate
strategies to reduce the implementation barriers are inchoate. In the past few years, digital
developments in public domains are highly acknowledge, AI has emerged as the strategic
domain for public services [59]. Therefore, to address the societal problems related to public
health in emerging economies where the public health systems face a lot of constraints
related to capacity planning and operational effectiveness, AI may help local governments
to develop ample opportunities [60]. There is an immense need to explore, implement,
and expand the usage of AI for public healthcare for the present and future needs of the
masses. In a highly populated country such as India, the public healthcare organizations
are facing multiple barriers while implementing AI. The past literature shows that the
public healthcare industry still expresses few practical concerns about the implementation
of artificial intelligence [61]. There is a need for constant research to be carried out with
the aim of understanding and evaluating the various implementation challenges of the
AI technologies [62,63]. Furthermore, there is a dearth of quality research on the design,
development, and implementation of AI-enabled tools to address public health issues [64].
From the AI application perspective, more practical linkages are required to demonstrate
the relationship between AI in medicine and consumer care. There is the need to cre-
ate a strong theoretical foundation for future research on AI implementation for public
healthcare. The present study attempts to bridge that gap and aims to address the research
inquiries, including the following:

RQ1: What are the key implementation barriers to artificial intelligence in public healthcare
in the developing countries?
RQ2: What is the inter-relationship among the artificial intelligence (AI) implementation
barriers in the healthcare industry in the context of developing countries?
RQ3: What is the roadmap to reduce the AI implementation barriers in the healthcare industry?

Thus, this study aims to explore the possible solutions to the research questions in
the context of AI implementation in developing countries such as India. To enable this
purpose, the paper sets the following research objectives:

• To investigate the implementation barriers of AI in public healthcare in developing
countries, viz., the Indian context;

• To understand the linkage barriers and the dependent, driving, and autonomous bar-
riers among the selected barriers derived from the systematic literature review (SLR);

• To provide strategic commendations to smoothen the AI implementation in the public
health systems.
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The paper has the following organization: Section 2 elaborates on the literature on AI
technology and public health systems and the theoretical groundwork of the study. The
next section explains the methodology and methods used for the present study. Section 4
discusses the detailed research framework on AI implementation in public health. Section 5
explains the key results of the research study. In Section 6, a strategic blueprint is developed
to reduce the AI implementation bottleneck in the public healthcare domain. The last
section covers the conclusion, limitations, and open research challenges for the future.

2. Literature

This section discusses the literature review with respect to artificial intelligence and
public health in developing countries. That is presented in this section. The goals of this
section are threefold. Firstly, it will explore the AI implementation framework for public
healthcare in the context of developing countries. Secondly, past studies are discussed
to show the usage of AI implementation through various applications, including facial
expression, speech identification using machine learning, and NLP. Thirdly, past conceptual
studies are discussed to understand how various industries are using the potential of AI
implementation and the integration of AI into the public health systems. Section 2.1, with
the supporting literature, deals with the barriers that are affecting AI adoption in public
health. Section 2.2 discusses the literature on AI applications in the healthcare industry,
and it further discusses the AI disruptive potential; the topics are summarized, and the
requirement to proceed with this study is also explained.

Based on “Scopus” and the Web of Science database, a systematic analysis of the litera-
ture was carried out on the relevant publications on public health and the usage of AI in
this domain. As depicted in Tables 2 and 3, a search protocol was conducted using multiple
terms: “Public Health” AND “Artificial Intelligence”; “Public Health” AND “Machine
Learning”; “Public Health Systems” AND “Industry 4.0” AND “Digital Technologies”. A
systematic literature review process was followed to evaluate the prominent publications
on AI adoption and its implementation challenges and the digital transformation in public
healthcare. For the SLR, the selected timeline was 2017–2022; the first search resulted in
669 articles. The omission of duplicates was then made, leaving 518 articles related to the
research questions. Conference proceedings, conference papers, and working papers were
also excluded. Seventy-five articles were found to be relevant in the context of the research
questions. To conclude the selection of papers, a cross referencing approach was employed,
and finally, 35 papers were selected.

Table 2. Search Protocol.

Key Dimensions Description

Keyword “Public Health” AND “Artificial Intelligence”
AND “developing countries”

Timespan 2017–2021

Fields Article title, detailed abstract, and keywords

Inclusion Criteria Publications in Scopus database

Exclusion Criteria Non-English articles

Table 3. Systematic Literature Review (2017–2021).

Search Terms Initial Search First Screening Second Screening Third Screening

“Public Health” AND “Artificial Intelligence” 286 148 33 16
“Public Health” AND “Machine Learning” 217 228 21 12

“Public Health Systems” AND “Industry 4.0”
AND “Digital Technologies” 166 142 21 7

Total articles 35
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Due to the novel topic, allied technologies, including IE 4.0 and blockchain technology,
were also considered to identify the constructs.

2.1. Public Healthcare and Digitalization

Public healthcare is evolving as the fastest growing industry for the existing players.
The firms involved in the public healthcare supply chains are adopting new business
models [65]. The public healthcare sector does not have advanced technology and is
lacking in the adoption of analytics tools/methods as compared to other sectors, such
as retail and banking [66]. The public healthcare ecosystem is slowly transforming and
the major focus is on the improvisation of the value chains [67]. However, due to the
operational issues (such as data privacy and security in a cost-effective manner, etc.), the
public health industry has been limited with the improvisation [68]. The aging demography
in the developing countries is also an emerging challenge; the median-age population needs
more customized health services [69].

Therefore, over the last few years, developing a customer-focused and effective public
healthcare system has become an important challenge. AI has the capacity to transform
the public health systems. By 2024, AI-based applications in various consumer-centric
industries will grow by USD 20 billion, in comparison to USD 315.9 million in 2015 [70].
AI-enabled digital health or electronic health is an evolving area that includes EHRs that
aim to provide public services through web-enabled database management [71]. AI-based
health systems ensure improvement in public health at the local, regional, national, and
global level [72].

However, in developing countries such as India and China public health is in the
stage of constant evolution [73]. The inclusion of AI can strategically eliminate the medical
errors, which otherwise can be threatening to a patient’s health and overall well-being in
the healthcare systems [66]. As part of the ICT priorities, implementing the AI-enabled
health data is becoming significant [74]. Thus, the adoption of AI in the public healthcare
system could be the best practice and learning experience for the global healthcare industry.

2.2. Artificial Intelligence and Public Healthcare Systems in Developing Countries

As businesses embrace AI solutions, new challenges have emerged in the corporate
adoption, utilization, integration, and implementation of AI in emerging markets. Several
conceptual studies have addressed the challenges of AI in services [13], personalization [75,76],
advertising [77], sales management [78,79], industrial marketing [80,81], automation in
business logistics systems [82,83], market research [84], smart warehousing readiness [85],
personal assistance [86], tourism management [87], and ethics [88]. Despite the increasing
interest, academic contributions to business-related AI in emerging economies remain
scant. The institutional environments in developing countries differ vastly from those in
developed countries; this creates obstacles and legitimacy issues for AI-power business
applications [89]. Hence, we call for more theoretical and empirical studies to tackle the
challenges of AI in emerging markets [90].

Based on the systematic literature review (SLR), a variety of challenges were discussed
in the past research including ethical issues [91], the adoption challenges of mobile health
wearable devices [92], the scaling of the existing disease surveillance system for public
access [93], expandability and public data privacy concerns [94], and the lack of health
policies and intelligent systems [95,96]. The healthcare industry is growing each day; thus,
the existing players need to adopt new business models [94]. Around sixty percent of the
healthcare industry is not prepared to adapt to the integrated and collaborated environment
and is therefore unable to adopt and implement the analytics. This sector does not have
advance technology and lacks in the adoption of analytical tools/methods as compared
to different sectors/fields, such as the retail and banking field [92]. The public health
ecosystem is slowly transforming, where the major focus is on the improvisation of the
value chains through the usage of digital technology [93]. However, due to the operational
issues, such as data privacy and its security in a cost-effective manner, etc., the public
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health industry has been limited with the improvisation [94]. The aging demography in
the developing nations is also an emerging challenge with regard to the median age of the
population [95,96]. Therefore, customer-focused and effective public healthcare systems
are needed.

For developing countries, the efficiency of a public healthcare system is entirely based
on the quality and reliability of the health data of its patients [97]. The vast quantity and
accessibility of electronic health information will influence decision making on multiple
fronts, including for patients, physicians, healthcare systems, healthcare providers, and
regulatory bodies. The standardization of information storage and retrieval will be critical
for facilitating the information exchange across these multiple interfaces [98]. In the last
few years, AI has been used by the healthcare industry for transforming the public health
systems [99]. By 2025, the market of artificial intelligence will grow by USD 191 billion [13].
Digital health or electronic health is an evolving area that includes electronic health records
(EHRs), which are aimed at public services through data generated, delivered, or enhanced
through the internet and related technologies [100]. E-health ensures improvement in
public health at the local, regional, national, and global levels [101]. Due to the multiple
healthcare systems, data redundancy and a higher cost of healthcare services arise [102,103].
The concept of electronic health records (EHRs) was conceived in the 1960s at the Mayo
Clinic, Minnesota, and later accepted by the healthcare systems of the developed coun-
tries [104]. The major properties that define the level of quality of the EHR dataset include:
(a) conformance with existing data structural standards; the conformance of the EHRs can
be further classified as value conformance, relational conformance, and computational
conformance; (b) data completeness; and (c) data plausibility, which determines the data
accuracy. It can be further classified as uniqueness plausibility, atemporal plausibility,
and temporal plausibility [105]. With the emergence of AI-based technologies, EHRs are
becoming standardized as digital medical records for inter- and intra-hospital and inter-
and intra-clinic transactions, although the potential of EHRs is still not unleashed by the
developing countries due to various adoption and usage challenges and the lack of regional
health regulations related to health safety and privacy. However, countries such as India
and China are attempting to create convergence for the existing global health regulations
with, for example, the Health Insurance Portability and Accountability Act (HIPAA) and
the General data Protection Regulation (GDPR) [106]. Based on the quality of the EHR
systems and the available stored data, a healthcare organization conducted a variety of
analyses for decision making [107]. Functionally, the EHR system is highly formalized
information system which allows integration across multiple healthcare providers [108].
EHRs provide multiple advantages, including medical prescriptions, disease management,
and a contribution towards lowering medication errors [109]. However, EHRs have several
limitations including, a high waiting time, security concerns, and inter-operability [110].
One of the local concerns is the strategic electronic system plan, which is also identified
as a key barrier by previous researchers [111]. AI manages EHRs, financial transactions,
insurance claims, and underlined transactions. In developing countries such as India,
public health is in the stage of constant evolution [112]. The strategic inclusion of AI can
eliminate the medical errors, which otherwise can be threatening to the patient’s health
and the overall well-being of the healthcare systems [113]. As the part of ICT priorities,
implementing EMRs alongside AI is gaining importance [114]. Therefore, the adoption of
AI in e-health systems could be the best practice and learning experience for the healthcare
industry, globally.

The adoption of e-health is slow in developing countries. The major reasons for low
adoption are governance, e-healthcare standards and architecture, patient authentication,
infrastructure, data privacy issues, legal and ethical issues, and management issues [115].
The unified theory of acceptance [116] and the technology adoption model [117] were
applied in the previous research. The AI implementation barriers to the healthcare industry
are identified using a systematic literature review (SLA) validated by the group of experts.
The artificial intelligence adoption barriers are exhibited in Table 4. Furthermore, Figure 1
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depicts the conceptual framework of the implementation barriers of AI in public healthcare.
In addition, it illustrates the various tools and applications of AI, through which sustainable
operational excellence can be obtained in the public healthcare systems.
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Table 4. AI implementation in public healthcare: key barriers and concerns.

Code Implementation Barriers Description References

AI-1 Low level of coordination
among parties

The synchronization and coordination among various parties
including hospital administration, private parties, and suppliers
are less and lead to a low level of coordination among parties.

[111,112]

AI-2 Limited data
repository facility

Low scalability to facilitate increasing number of patients beyond
a certain capacity. [113]

AI-3 Upscaling of data Due to low level of upscaling of data, real-time data exchange in
medical image data storage devices can be disrupted. [114]

AI-4 Data ownership The centralized access of data, which is limited to hospital
administration only, reduces the benefits from data reusability. [116]

AI-5 High cost of maintenance Being in the infancy stage, public hospitals are doubtful about the
ROCE and ROI of investment in AI implementation. [116]

AI-6 Absence of health
informatics standards

The global standards for the storage of electronic health records
in databases and their retrieval by various AI driven machines
are not formed and unified.

[117,118]

AI-7 Data risk There are data risk management and security concerns related
to AI. [119]

AI-8 Low investments on R&D Low R&D priorities by the public hospitals on health informatics
and emerging digital technologies. [120,121]

AI-9 Low awareness about AI The traditional healthcare practitioners are not oriented towards
the usage of AI in the healthcare domain. [121,122]
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Table 4. Cont.

Code Implementation Barriers Description References

AI-10 Lack of awareness of legal
aspects of AI

Low/lack of awareness of legal aspects of implementing AI
Creates bottleneck for future upgradation. [98]

AI-11
Low envisioned future
planning towards
technological projects

Due to low vision for future return and non-financial advantages
of using AI, the top-level management lacks commitment. [82]

AI-12 Low commitment level from
top-level management

Low vision and roadmap among top-level management leads to
low level of commitment towards implementation of AI. [123]

AI-13
Lack of know-how and
technical expertise
among executives

Due to lack of technical expertise, the implementation stages are
adversely impacted. [124]

AI-14 Lack of proper infrastructure
to support AI implementation

Lack of proper infrastructure leads to low integration between
physical and digital ecosystems. [122]

AI-15 Data security and privacy
IT infrastructure effectiveness is ensured by high data security
and privacy. Thus, weak security may lead to severe privacy
issues, including digital theft and fraud.

[122,124]

3. Research Methodology

For the present study, the government hospitals in the state capital have been taken as
the case location. The healthcare respondents are key people involved in decision making
and policy formulation, top-level managers, and key beneficiaries, including patients
from the institutes; this is based on the AI implementation barriers identified from the
literature. In recent research, “Multi-Criteria Decision Methods” (MCDM) and “Structuring
modeling” has been widely used as an approach aiming to model critical constructs. The
methodology uses a limited focus group of experts to obtain the qualitative inputs; the
number varies from 12 to 15 experts [125,126]. Interpretive structural modeling (ISM) is
employed to identify the inter-relationships amongst the variables and the developing
hierarchical structure for the same variables. These methods were used in previous research
for identifying adoption barriers in cross-sector collaboration; supply chain flexibility; and
developing collaborative intelligent systems [127].

MCDM analysis has been carried out in the recent research to evaluate the AI adoption
and implementation in public services, including the public distribution system [128]; the
supplier selection for public healthcare [129,130]; pandemic and disaster management [131];
the public manufacturing sector of an emerging economy [132]; and smart healthcare
management systems for the selection of healthcare centres [133]. This study applied ISM
and fuzzy MICMAC to identify the existing relationships among the various artificial
intelligence adoption barriers. The methods are discussed below.

3.1. Interpratative Structural Model

This model is used to connect the attributes in a wide-ranging designed model pro-
posed by Warfield (1974). This method comprises a real-time learning mechanism, where
groups of elements are actively organized to shape an overall model. The aim of the method
is to use the subject knowledge and expertise of the experts to divide the complex systems
into several small sub-systems to form a hierarchical structure. The steps include:

Step 1: Identification of implementation barriers from past literature and their validation
through consultation with area experts.
Step 2: Establish companionship amongst the implementation barriers.
Step 3: Generate structural self-interaction matrix (SSIM) built on four aspects (V, A, X, O),
which represent the direction of the relationship among the implementation barriers.
Step 4: Generate an initial reachability matrix and transitivity check.
Step 5: Develop final reachability matrix and segment the levels.
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Step 6: Develop diagraph, and transitive link elimination.
Step 7: Check sum for inconsistency and review the model.

3.2. Fuzzy MICMAC Method

This method is very effective in calculating the driving and dependence implementa-
tion barriers. The strength of the implementation barriers may vary and be, for example,
weak, equal, strong, or not equal. The following are the steps for the fuzzy (Matrice
d’Impacts Croisés Multiplication Appliquée a un Classement) MICMAC application.

Step 1: Establish matrix for binary direct reachability from ISM variables. The diagonal
values are replaced with zero and transitivity is ignored.
Step 2: Matrix for the fuzzy binary direct relationship, based on fuzzy set theory; the
responses are undertaken by the experts.
Step 3: Matrix for the fuzzy MICMAC is stabilized. The repetition of the multiplica-
tion of the matrix is performed until the values of the driving and dependence powers
become constant.

3.3. Data Collection

The sources of data collection were public healthcare centers. The demographics of
the experts engaged in the research are exhibited in Table 5. The experts comprise system
engineers, medical practitioners, IT managers, and data scientists.

Table 5. Details of experts.

Variables Number of Experts

GENDER
Female 8
Male 7

AGE
25–30 years 8
31–35 years 3
36–40 years 2
41–45 years 1
46–50 years 1

EDUCATION
Ph.D. 3

MD/MBSS 4
Postgraduates 2

Graduates (Btech, BSc.) 6

EXPERIENCE
0–5 years 4

6–10 years 5
11–15 years 3

More than 15 years 3

ROLE
System engineers and IT managers 4

Medical practioners 3
Patients 2
Surgeons 4

Data scientists 2

4. Model Applications

The ISM and the fuzzy MICMAC are applied in the manner discussed in the earlier section.
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4.1. ISM Application

The ISM application includes the matrices, on the basis of the inputs by the subject
experts. The table SSIM, IRM, level segmentation, and FRM are developed using the
iteration process of the ISM procedure, as mentioned in Section 3.1 and described in
Tables 6 and 7. The MATLAB software was used for performing the transitivity. Figure 2
depicts the ISM levels.

Table 6. SSIM.

AI-15 AI-14 AI-13 AI-12 AI-11 AI-10 AI-9 AI-8 AI-7 AI-6 AI-5 AI-4 AI-3 AI-2 AI-1

AI-1 X V V A A A A A V V V V V A

AI-2 A A X A A A O A V A A V V

AI-3 A A A A A O A A V V V V

AI-4 X V V A A A A A V V V

AI-5 A A A A A A A A V V V

AI-6 A A V A A A A A V

AI-7 A A A X A A A A

AI-8 O V V A V A A

AI-9 O O O A A A

AI-10 O O O A A

AI-11 O V V A

AI-12 O V V

AI-13 V V

AI-14 X

AI-15

Table 7. Initial reachability matrix.

AI-1 AI-2 AI-3 AI-4 AI-5 AI-6 AI-7 AI-8 AI-9 AI-10 AI-11 AI-12 AI-13 AI-14 AI-15

AI-1 1 0 1 1 1 1 1 0 0 0 0 0 1 1 1

AI-2 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0

AI-3 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0

AI-4 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1

AI-5 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0

AI-6 0 1 0 0 1 1 1 0 0 0 0 0 1 0 0

AI-7 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0

AI-8 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0

AI-9 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0

AI-10 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0

AI-11 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0

AI-12 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0

AI-13 0 1 1 0 1 0 1 0 0 0 0 0 1 1 1

AI-14 0 1 1 0 1 1 1 0 0 0 0 0 1 1 1

AI-15 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1

For every implementation barrier, the reachability element and its predecessor are
identified. The implementation barriers which are carrying the same values for the reacha-
bility and intersection sets are ranked as top-ordered implementation barriers in the ISM
hierarchy. Further iterations are performed for the development of a hierarchical structure
(Tables 8 and 9).
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Table 8. Initial reachability matrix.

Reachability Set Antecedent Set Intersection Set

1,2,3,4,5,6,7,13,14,15 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 1,2,3,4,5,6,7,13,14,15

1,2,3,4,5,6,7,13,14,15 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 1,2,3,4,5,6,7,13,14,15

1,2,3,4,5,6,7,13,14,15 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 1,2,3,4,5,6,7,13,14,15

1,2,3,4,5,6,7,13,14,15 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 1,2,3,4,5,6,7,13,14,15

1,2,3,4,5,7 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 1,2,3,4,5,7

1,2,3,4,5,6,7,13,14,15 1,2,3,4,6,7,8,9,10,11,12,13,14,15 1,2,3,4,6,7,13,14,15

1,2,3,4,5,6,7,13,14,15 1,2,3,4,6,7,8,9,10,11,12,13,14,15 1,2,3,4,6,7,13,14,15

1,2,3,4,5,6,7,8,9,10,11,13,14,15 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 1,2,3,4,5,6,7,13,14,15

1,2,3,4,5,6,7,8,9,10,11,13,14,15 8,9,10,11,12 8,9,10,11

1,2,3,4,5,6,7,8,9,11,13,14,15 8,9,10,11,12 8,9,11

1,2,4,5,6,7,8,9,10,12 8,10,11,12 8,10,12

1,2,3,4,5,6,7,8,9,10,11,13,14,15 8,10,11,12 8,10,11

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 10,12 10,12

1,2,3,4,5,6,7,13,14,15 1,2,3,4,6,7,8,9,11,12,13,15 1,2,3,4,6,7,13,15

1,2,3,4,5,6,7,14,15 1,2,3,4,6,7,8,9,11,12,13,14,15 1,2,3,4,6,7,14,15

1,2,3,4,5,6,7,13,14,15 1,2,3,4,6,7,8,9,11,12,13,14,15 1,2,3,4,6,7,14,15

Table 9. Level segmentation.

Level Segmentation: Iteration II

Reachability Set Antecedent Set Intersection Set

6,13,14,15 6,8,9,10,11,12,13,14,15 6,13,14,15

6,8,9,10,11,13,14,15 8,9,10,11,12 8,9,10,11

6,8,9,11,13,14,15 8,9,10,11,12 8,9,11

6,8,9,10,12 8,10,11,12 8,10,12

6,8,9,10,11,13,14,15 8,9,11,12 8,9,11

6,8,9,10,11,12,13,14,15 10,12 10,12

6,13,14,15 6,8,9,11,12,13,15 6,13,15

6,14,15 6,8,9,11,12,13,14,15 6,14,15

6,13,14,15 6,8,9,11,12,13,14,15 6,13,14,15

Reachability Set Antecendent Set Intersection Set

8,9,10,11,13 8,9,10,11,12 8,9,10,11

8,9,11,13 8,9,10,11,12 8,9,11

8,9,10,12 8,10,11,12 8,10,12

8,9,10,11,13 8,9,11,12 8,9,11

8,9,10,11,12,13 10,12 10,12

13 8,9,11,12,13 13

Level Segmentation: Iteration IV

Reachability Set Reachability Set Reachability Set

8,9,10,11 8,9,10,11 8,9,10,11

8,9,11 8,9,11 8,9,11

8,9,10,12 8,9,10,12 8,9,10,12
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Table 9. Cont.

8,9,10,11 8,9,10,11 8,9,10,11

Level Segmentation: Iteration V

Reachability Set Antecendent Set Intersection Set

10,12 10,12 10,12

10,12 10,12 10,12
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5. Findings and Discussion

Based on the SLR, the study initially attempted to address RQ1. Table 4 depicts the key
implementation barriers of AI in public healthcare systems, in the context of the developing
countries, in order to answer RQ2 and to measure the inter-relationships among the AI
implementation barriers in the healthcare industry in developing countries. Based on the
expert survey of the subject experts and professionals to assess the hierarchical levels of AI
implementation in public healthcare, the integrated ISM Fuzzy MICMAC approach was
conducted to formulate the hierarchical level of AI implementation in public healthcare.
The ISM results are shown in Figure 2. Low awareness about AI (AI-9), lack of awareness of
the legal aspects of AI (AI-8), low envisioned future planning towards technological projects
(AI-11), lack of awareness of the legal aspects of AI (AI-10), and low commitment from top
management (AI-12) are the key drivers for all the other AI implementation barriers. Lack
of awareness of legal aspects of AI (AI-10) and low commitment from top management
(AI-12) are declared as the implementation barriers that have the maximum driving power
and collectively answer RQ1. The results are validated by the fuzzy MICMAC method,
which shows the classification of the AI implementation barriers into three main clusters.

Cluster I does not have any implementation barrier. This implies that there are no
weak implementation barriers in the study.

Cluster II represents the dependent barriers; Cluster III demonstrates the linkage bar-
riers; Cluster IV demonstrates the driving barriers. On the basis of dependence and driving
power, the implementation barriers with high dependence and weak driving power are
included in Cluster II. This cluster includes implementation barriers, low level of coordina-
tion among parties, lack of trust (AI-1), limited data repository facilities (AI-2), upscaling
of data (AI-3), data ownership (AI-4), high cost of maintenance (AI-5), data risk (AI-7),
absence of health informatics standards (AI-6), lack of proper infrastructure to support
AI implementation (AI-14), and data security and privacy (AI-15). These implementation
barriers require all the other barriers to minimize the impact of the dependent values on the
overall performance. There is a lack of know-how and technical expertise among executives
(AI-3). The linkage implementation barrier is included in Cluster III with high driving and
dependence power. The driving implementation barriers are included in Cluster IV. These
barriers have the highest driving and the weakest dependent power. AI-8, low investments
in R&D, low awareness about AI (AI-9), low envisioned future planning towards techno-
logical projects (AI-11), lack of awareness of the legal aspects of AI (AI-10), and lack of
commitment from top-level management (AI-12) are the driving barriers. These barriers
are obtained on the lowest of the ISM levels.

Practical Implications

The study outcomes not only contribute to the existing research literature but also
give an in-depth understanding of the AI implementation barriers in public healthcare
settings in the context of a developing country. The insights from the study can help future
researchers and decision makers to understand the significance of the AI implementation
barriers and focus on the most critical driving and dependent implementation barriers.
From the study, it is clear that the policymakers need to understand the key benefits of AI
implementation in the public healthcare. The summarized implications are:

i. Securing medical and clinical data

AI can provide the integration of a variety of partners, suppliers in the healthcare sup-
ply chain with shared information from existing information databases, and infrastructure
and relevant digital records related to patients, their medical history, and their feedback.
The removal of implementation barriers related to data security will be required for the
smooth flow of information.

ii. Trusted collaboration
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AI can be helpful in reducing data counterfeit and other threats related to health-
care operations. The tracking of a vaccine supply to healthcare systems using AI can be
performed for ensuring quality and timely delivery.

iii. Holistic quality management

AI can ensure the holistic quality in the healthcare system. There are various applica-
tions of AI, including medical imaging to ensure quality and timely delivery.

As discussed in Section 6, RQ 3 is responded to by the development of a roadmap to
reduce the AI implementation barriers to the healthcare industry.

6. Strategic Roadmap

The main research aim of the study is to determine the potential of AI in public
healthcare and also to evaluate the barriers towards AI implementation in the indus-
try. The research findings can benefit policymakers to develop a strategic roadmap for
the implementation of digital technologies (such as BDA, AR/VR, and blockchain tech-
nology) in public healthcare. The key outcome of the research is the knowledge about
inter-relationship among the barriers related to AI implementation and also the basis of
the causality and prominence. Due to various implementation barriers that have an im-
pact on AI implementation, it remains low in emerging economies. In this context, the
implementation of AI, particularly for public health, can be enhanced if health systems and
policy makers are aware of the barriers that contribute to its successful deployment and
have an understanding of the relationships among the implementation barriers. Thus, the
research is significant in evaluating the importance of the variety of AI implementation
barriers in public healthcare systems. Furthermore, the strategic roadmap consists of the
following steps:

• The development of industrial symbiosis leads to a digital ecosystem for resource
sharing among parties;

• The development of a centralized AI-enabled system is for the co-creation of new and
open healthcare systems;

• The support from the top-level management of key sustainable practices will enhance
the focus of the health organizations to collaborate in AI implementation.

6.1. Conclusions, Limitations and Open Research Challenges

AI exhibits a great potential to transform the public healthcare sector. If adopted
effectively, various operations issues such as public hospital record maintenance costs,
inefficient healthcare practices, and data breaching can be easily handled. The overall
ability acquired by AI in public healthcare can help hospital and public healthcare centers
to fully secure patient data and trails and manage the outbreak of a harmful situation such
as that generated by the COVID-19 pandemic. AI in public health is an important area of
research to explore collaboration and inter-dependencies. Electronic resource sharing, and
public services with support from the government, private organizations, and NGOs can
take more initiatives to resolve the ongoing societal issues and provide electronic health
services to the public. Very rarely, studies have confirmed the ISM outcomes through
fuzzy MICMAC analysis to determine the inter-relationships among the implementation
barriers. Our modeling results show the different implementation barriers, according to
their significance on scale of dependence, autonomy, linkage, and independence. It has
been observed in the interaction with experts that they are still watching the top players
utilize the technology to see its impact on their performance and the implications of their
day-to-day operations. As the implementation of AI is a costly affair, therefore they do not
want to risk it. There is a dearth of quantitative studies about the potential benefits of AI
in public health in developing countries. In addition, there is a larger concern related to
infrastructural support, functional skills requirement, and implementation readiness among
the top-level management. The scarcity of professionals specifically in the combination
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of healthcare systems and AI is another concern in developing countries such as India.
Top-level management includes either doctors or those with other qualifications.

This technology experiences difficulty in the Indian healthcare sector due to the
existing IT act (IT Act, 2000). According to the IT Act, any kind of breach of personal
data should compensate the victim. If the healthcare ecosystem can overcome the driving
variables, those that are recognized as the barriers to implementing AI in healthcare, then
the formulation of a real-time public healthcare system can be realized. Currently, the
public healthcare system is having many implementation challenges from data generation
to secure and reduce the cost of operations for the two main stakeholders, namely the
patients and the healthcare providers. Moreover, AI implementation can be helpful in the
identification of low quality and counterfeit drugs and other medical commodities.

6.2. Limitations and Future Research Directions

The authors have deployed a multi-criteria decision approach to determine the imple-
mentation barriers towards AI adoption in public healthcare. The research carried out in
the near future may record the effect of the barriers on AI implementation in the public
healthcare sector in the context of developing countries such as India. Furthermore, em-
pirical shreds of evidence can be collected to validate the results of the study, and selected
case studies can be prepared. Based on the study and from the public healthcare system
perspective, interested parties can develop a collaborative implementation roadmap while
designing, managing, and implementing AI across public hospitals and healthcare systems.
In addition to the above, various allied technologies, including public clouds, IIoT, and
blockchain, are used for data collection, gathering, storage, and access to ensure a secured
and decentralized access for effective public healthcare. Future studies can undergo empiri-
cal studies for evaluating the AI implementation barriers and their impact on the healthcare
industry. In addition to the above, allied technologies, including public clouds, IIoT, and
blockchain technology can be useful in data generation and their gathering and data access
to ensure operational excellence in public healthcare systems. Further studies can undergo
empirical studies for evaluating the AI implementation barriers and their overall impact on
the public healthcare industry.

The research limitations can be further improvised in future research works. The iden-
tification of implementation challenges and their identification as common entities for both
developing and developed countries is difficult. This study evaluated 15 implementation
barriers from a single country; thus, for the purpose of generalization, more cross-country
data are required. Moreover, more empirical evaluation of the research problem shall be
required. Furthermore, various perspectives on the design and development of the concep-
tual framework can be further expanded and empirically developed from the viewpoint of
sustainable public healthcare systems.
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