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Abstract: Smart tourism is a developing industry, and numerous nations are planning to establish
smart cities in which technology is employed to make life easier and link nearly everything. Many
researchers have created object detectors; however, there is a demand for lightweight versions that
can fit into smartphones and other edge devices. The goal of this research is to demonstrate the
notion of employing a mobile application that can detect statues efficiently on mobile applications,
and also improve the performance of the models by employing the Gaussian Smoothing Filter (GSF).
In this study, three object detection models, EfficientDet—D0, EfficientDet—D2 and EfficientDet—D4,
were trained on original and smoothened images; moreover, their performance was compared to find
a model efficient detection score that is easy to run on a mobile phone. EfficientDet—D4, trained
on smoothened images, achieves a Mean Average Precision (mAP) of 0.811, an mAP-50 of 1 and an
mAP-75 of 0.90.

Keywords: smart cities; computer vision; object detection; mobile application

1. Introduction

Smart cities are based on the notion of using various forms of technology to address
people’s daily needs. It provides residents with a great deal of convenience and value.
Tourism has an important function in cities, as well as social places, entertainment, and
shopping complexes [1]. Travel blogs, tour guides and maps have been the traditional
methods used by tourists when they are on tour. In today’s world, those methods are
described as outdated. Object detection is a fundamental study area in computer vision
and artificial intelligence. Its goal is to find the target of interest in an image, establish the
category appropriately, and provide the bounding box of each target. It is a requirement for
more advanced computer vision tasks, including target tracking, object detection, pattern
recognition, and semantic scene interpretation [2].

The tourist industry is gradually incorporating intelligent tourism applications, and
research into these applications has recently begun [3]. Using visual sensors and artificial
intelligence, computer vision and machine learning may assist give trustworthy intelli-
gent autonomous solutions to smart tourism in several ways [4–6]. Features and image
processing are very important in detection. Filtering is a very important task in image
processing; it removes noise, enhances contours and improves texture in images. The
Gaussian Smoothing filter has proven to be effective in many areas; the filtering enhances
the model’s performance in classification [7–9]. The Viola–Jones detector’s implementation
strategy is similar to that of the standard object detection method. It largely uses artificial
design and innovative feature extraction algorithms for recognition and detection [10,11],
as well as Support Vector Machines, Decision Trees [12], and other classifiers. The image
is frequently preprocessed before detection to improve image quality [13]. To forecast the
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object, sliding window processing is frequently used for the image during the detection
phase. The best detection performance is attained at that moment.

The sliding window approach, on the other hand, lays heavy demands on the com-
puter’s computational capacity because it traverses all potential locations and size ratios.
Furthermore, the capacity to express hand-crafted features is limited, adding to a poor over-
all detection impact. The Region Convolutional Neural Network (RCNN) algorithm [14]
was proposed in 2014, and Convolutional Neural Networks(CNN) was used to extract
features. CNN is a machine learning method that has pushed the development of object
identification tasks to the deep learning level. The gradient descent approach may be
used by deep learning to automatically optimize model parameters [15–17]. Various object
detection tasks have achieved significant progress.

The motivation of the study is to develop a smart tourism application that can serve
as a means of information in modern tourism. Object detection models are affected by
noise in images. This motivated us to improve the model’s performance by applying the
Gaussian Smoothing Filter to enhance the images. The main contributions of this study are
as follows:

• Applying the Gaussian Smoothing filter to improve the performance of the trained models.
• A lightweight object detection model that can be deployed to mobile phones and edge

devices was proposed to detect statues efficiently.
• A mobile application with the trained model as a backend was developed to detect

the statue and give information about the statue.

2. Related Works

In this section, we highlight the main existing alternatives for the targeted problem.
We classify these alternatives into single versus two-stage detection approaches.

2.1. Two-Stage Detection

Two steps of the two-stage detection architecture are region proposal and object
detection. On the image to be examined, a series of region proposal boxes are first presented.
Object detection is then carried out. The RCNN detection system, presented by [14], first
generates a region proposal box on the picture using selective search [18]. The CNN is
then used to extract features, after which the SVM classifier and bounding-box regression
are trained, and the outcome is predicted. Although utilizing CNN for feature extraction
improves the detection impact significantly, it comes with several downsides, including
a lengthy training process. Fast RCNN has been updated to address the aforementioned
concerns [19], and faster RCNN [20] algorithms have been developed. The end-to-end
detection procedure is completed faster with RCNN. First, the RPN algorithm was proposed
as a replacement for the selective search for regional ideas, resulting in a considerable
reduction in the amount of time spent on regional recommendations. Furthermore, by
eliminating repeating feature calculations, shared features save time; detection accuracy on
the VOC07 dataset [21] is 73.2%, and 42.7% on the COCO dataset. The study referenced
in [22] concluded that this not only improves classification risk but also better integrates
feature extraction and classifier function, which is critical for pedestrian classification at
various sizes. Several studies were carried out on the two-stage detectors and models such
as RFCN [23] and the RCNN family [14,19,20,24].

2.2. One Stage Detection

In one-stage detection, the region proposal stage is eliminated; unlike in two-stage
detection, bounding boxes were assigned at objects’ centres randomly on feature maps, and
then a single network was used in processing the image. This concept improves detection
speed in calculating the bounding boxes and the probability of each zone [25–27]. However,
there is a degradation in accuracy due to the limited number of objects, and the models have
issues with smaller objects. Speed in detection is very important, especially in autonomous
vehicles [28]. YOLOv2 and YOLOv3 were proposed by [29,30], respectively, as a result
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of the aforementioned concerns. They were fine-tuned to address the aforementioned
difficulties, resulting in a single-stage detector that improved detection accuracy while also
striking a reasonable balance between speed and precision.

The researchers [31] have presented a framework for SSD one-stage detection [31],
which is different from YOLO. In this technique, SSD, multilayer mapping in the convolu-
tional layer technique, detects multiscale objects via producing feature layers of various
sizes; this improves the detection of smaller objects. The RetinaNet detector was proposed
by [32] in 2017, which has a new loss function that improves detection by paying atten-
tion to classification and imbalance in a data set. The study referenced in [33] proposed
ALFnet [33], which detection speed is similar to SDD and detection accuracy is similar
to Faster RCNN. To improve the previous loss function, [34] presented DIOU Loss and
CIOU Loss in 2019. It considers the overlap area, centre point distance, and aspect ra-
tio, as opposed to the prior object box regression loss. The bounding box with distance
loss has a quicker convergence speed and greater convergence accuracy, improving the
object detection framework’s detection accuracy. The study referenced in [35] suggested
YOLOv4. Backbone partly employs the CSPNet structure [36], which takes advantage of
the benefits of numerous detection frameworks. Adding the SPP structure [37] and the PAN
structure [38] to the neck section allows for feature fusion. The benefits of clustering [39]
are also employed to calculate the projected frame size. The PAN structure combines the
information collected from multiple layers, and it can enable the network to integrate the
features of different scales. Finally, on the coco dataset, YOLOv4 achieves 65FPS detection
speed, reaching the optimum balance of current detection frame speed and accuracy.

The YOLO series approaches [27,29,30,35], namely, deep-learning-based SSD, were
proposed in recent years. The YOLO techniques may be utilized for a variety of object
detection tasks. Because just a small number of objects are anticipated in each anchor,
missing detection is common in congested pedestrian scenes, and the algorithm’s perfor-
mance suffers as a result. However, because of the fast detection speed of such algorithms,
pedestrian detection technology may be used in the field of intelligent driving. The SSD [31]
technique is presented for generic object detection, and it can help with the multiscale
detection problem in pedestrian detection.

In the broad object detection field, the RetinaNet [32] detector proposes a novel loss
function that can increase detection accuracy. The ALFnet [40] algorithm is mostly used
to identify pedestrians. It may be extended to generic object detection to some extent due
to the effective enhancement of the task of pedestrian detection. The border regression
problem in object identification is investigated by the CIOU Loss [34] method, which
significantly increases the detection effect of diverse objects.

3. Statue Detection

In this section, we use statue detection as a proof of concept for the proposed approach.

3.1. Dataset and Data Preprocessing

A video of thirty various sculptures surrounding the Near East University was col-
lected for this study; the aim was to capture each statue from a different angle. In total,
300 images were generated from each video. Annotations were carried out on the images
using the Roboflow online tool. Images were enhanced by turning them horizontally and
vertically, cropping and randomly changing the brightness. The data augmentation will
improve the model’s robustness and reduce overfitting [41–47]. The dataset was split into
80%, 10% and 10% training, validation and testing, respectively. Table 1 gives details about
the data.

Table 1. Dataset split information.

Training Validation Testing

6696 774 774
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3.2. Gaussian Filtering (Smoothing)

Gaussian filters are a class of linear smoothing filters with weights chosen according
to the form of the Gaussian function [48]. Equation (1) is a very good filter for eliminating
noise taken from the normal distribution of the Gaussian smoothing filter.

G(x) = e−
x2

2σ2 (1)

Equation (1) determines the width of the Gaussian. The two-dimensional discrete
Gaussian zero mean function (2) is used as a smoothing filter for image processing.

g[i, j] = e−
(i2+j2)

2σ 2 (2)

3.3. EfficientDet

EfficientDet [49] is a neural network for object detection. It is a TensorFlow object recog-
nition API that supports many model families, including CenterNet. [50], MobileNet [51],
ResNet, and Fast R-CNN. The EfficientDent outperform the pre-existing models employed
in [32,52]; they are also lightweight models that can be deployed to edge devices and mobile
applications.

3.4. Model Training

In this study, three EffiientDet architecture models were employed to detect statues.
The training was carried out in two stages: firstly, the training was conducted on origi-
nal augmented images, and secondly, training was conducted on augmented Gaussian
Smoothened filtered images. Instead of using CSV annotation, as it is the traditional API,
we changed the training process to use PASCAL VOC (XML) annotation to reduce the
XML-to-CSV conversion stage. Furthermore, a post-training quantization was performed
to reduce the model’s size in order to improve CPU and hardware accelerator latency. The
post-processing slightly reduces the accuracy of the model.

The three EfficientDet models employed, D0, D2 and D4, were trained for 10 epochs
using a batch size of 8. Version D2 was regarded to have a compromise between accuracy
and detection speed, making it suitable for deployment to a mobile application. D4 is
heavyweight; it has better accuracy but less processing speed on the mobile application.
After the models had been trained and exported, the android studio was used to create a
mobile app in which the exported model could be used for statue detection. Figure 1 Shows
the complete training and deployment process of this study. Google Research created
Colaboratory (Colab), which was used for training. Colab is a Linux machine with a user
interface based on the Jupyter notebook service that requires no configuration. It offers
free access to reasonable computer capabilities, such as the Graphical Processing Unit
(GPU) [33]. As a result, popular libraries such as Keras, TensorFlow, PyTorch, and OpenCV
are utilized to create deep learning applications. This virtual computer has a 2 core CPU
and 12 GB of RAM, which may be expanded to 25 GB for free if necessary. When using the
laptop, the GPU will be assigned at random. Nvidia Tesla K80s, T4s, P4s, and P100s are
among the GPUs that may be accessed [33].
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4. Results and Discussion

In this study, three object detection models, EfficientDet—D0, EfficientDet—D2 and
EfficientDet—D4, were employed to detect statues; the performance of two of the models
was compared to find the best performing model. The D0 achieves an mAP of 0.348,
mAP-50 of 0.652 and mAP-75 of 0.3. The D2 achieves an mAP of 0.63, mAP-50 of 0.894
and mAP-75 of 0.81, whereas the D4 achieves an mAP of 0.751, an mAP-50 of 1 and an
mAP-75 of 0.837. The D4 achieves a higher mAP with over 10%, an mAP-50 with more
than 20% and an mAP-75 with over 3%. For the models trained with smoothened images,
the D0 achieves an mAP of 0.352, mAP-50 of 0.595 and mAp-75 of 0.41. The D2 trained on
smoothened images achieves an mAP of 0.694, mAP-50 of 0.966 and mAP-75 of 0.867. The
D4 trained with smoothening images achieves an mAP of 0.811, mAP-50 of 1 and mAP-75
of 0.90.

The models trained with smoothened images show improved performance compared
with the models trained on the original images. The performance of the models is presented
in Table 2. On the COCO datasets, the performance of the EffiecientDet family models was
compared and presented in Table 3. The EfficientDet—D4 achieves an mAP of 49.9, mAP-50
of 69 and mAP-75 of 53.4. The performance of the proposed model and the performance of
the model on the COCO dataset are presented graphically in Figures 2 and 3, respectively.

Table 2. Performance of the EfficientDet D0, D2 and D4 employed in the study.

Models mAP mAP-50 mAP-75

EfficientDet—D0 0.348 0.562 0.4
EfficientDet—D2 0.63 0.894 0.81
EfficientDet—D4 0.751 1 0.837

EfficientDet—D0 + Smoothing 0.352 0.595 0.41
EfficientDet—D2 + Smoothing 0.694 0.966 0.867
EfficientDet—D4 + Smoothing 0.811 1 0.9
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Table 3. Performance of the EfficientDet D0, D2 and D4 on the COCO dataset.

Model mAP mAP-50 mAP-75

EfficientDet—D0 33.8 52.2 35.8
EfficientDet—D2 43 62.3 46.2
EfficientDet—D4 49.9 69 53.4
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To implement the mobile-app-based detection system, the trained model which serves
as the backend of the system was incorporated into the mobile app. The mobile is set
to detect five objects at a time with a minimum detection threshold of 40%. If the statue
detection is not 40%, the model will not present the detected object; once the object is
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detected, the statue and its information will be presented in another screen called the statue
description screen. The detection and information screen can be seen in Figure 4.
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5. Conclusions

One area of rapidly growing research is smart education. Several object detection
models have been developed to efficiently detect objects with high accuracy. In this study,
EfficientDet—D0, EfficientDet—D2 and EfficientDet—D4 were proposed to detect statutes
for outdoor tourism and the trained model was used to develop a light mobile application.
The EfficientDet—D4 trained on smoothened images achieves a mean average precision
(mAP) of 0.811, mAP-50 of 1 and mAP-75 of 0.90. The model’s performance demonstrates
that it is capable of carrying out the desired job. The drawbacks of object detection models
are datasets and high computational resources. More networks will be examined in a future
study to improve detection performance and speed the detection. The study’s drawbacks
thus far are the need for extra training in the event of more statues.
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