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Abstract: Lockable obfuscation, a new primitive that occurs in cryptography, makes it possible to
execute arbitrary polynomial-sized functions and recover a secret under specific equality conditions.
More concretely, if the function executed over a specific input produces an output that matches an
expected target value, here denoted by a, some secret string of bits s is exposed. Written in algebraic
terms, if f : X → A has the property that for some x, f (x) = a, s is revealed. This work explores
the possibility for safely decrypting ciphertexts, and based on the recovered plaintext’s equality
to a stored message, to reveal some secret. Concretely, this work provides a review of existing,
well-known public key encryption schemes and argues for the efficiency of a new one relying on the
ratio Mersenne hypothesis (RMERS), which is to be used in conjunction with a lockable obfuscator.
This work explores the advantage conferred by this scheme, especially in the minimization of the
branching program’s number of levels that need to be obfuscated. The drawbacks of such schemes
are also pointed out, given that they currently require the LWE evaluations level-per-level, one output
bit at a time.

Keywords: lockable obfuscation; key encapsulation; Mersenne primes

1. Introduction

Various tasks require the manipulation of highly sensitive cryptographic data. In most
of the cases, such use cases include securing communication channels, signing financial
transactions, or distributing cryptographic keys that may be used for encryption (symmetric
or, depending on the scenario, for public key decryption, digital signing, etc.). These data
must be well-protected by the hardware or software implementations against all types
of attacks.

On a current basis, such sensitive pieces of information, as the aforementioned ones,
are provided in either hardware or software implementations. Considering the first case,
such a secret piece of data can be easily destroyed through a physical process: for instance,
using physically unclonable functions [1] (abbreviated PUFs), whenever the hardware will
be investigated, through most of the known side-channel means, the PUF will internally
destroy the protected key.

However, carrying hardware devices may be a cumbersome task, depending on the
task. For instance, it may easily fell prey to routine airport checks. This makes us further
consider the case of software. For instance, people carry smartphones or laptops as part
of their daily routine, and it is less likely that existing software on such devices to be
well-scrutinized during standard security checks, as an example, as compared to hardware.

Our work focuses on the problem of protecting such sensitive data in several scenarios
that we elaborate below, in the motivational subsection. In such cases, the usage of public
key encryption may be insufficient. Namely, it is desirable to prevent a secret from being
shared between two parties in order to mitigate the human factor: for instance, where one
party (A) knows that whenever party (B) sends the message “START THE ACTION”, it will
have to execute an operation. What is desirable to prevent are the risk factors: for instance,
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if A becomes corrupted or compromised, she may share this command with the adversary
E. One step further ahead, E may encrypt the command and send it to A, pretending she is
B. Thus, there may be need for authenticated encryption.

On the other hand, B may release a “black-box” software to A, which may indeed
reveal such a command like “START THE ACTION”, but only whenever the evaluation
of some function passes. For instance, the black-box may encapsulate some decryption
key decK, while B sends a ciphertext that is to be decrypted under this embedded decK;
whenever the decryption process under decK, of the ciphertext CT sent by B produces some
predefined value, such as “CORRECT”, the secret information is then released.

Before discussing several key motivational aspects, this work elaborates more on the
method of realizing such “black-boxes”, from a mathematical, and then software-related
point of view. Fortunately, there is no need to reinvent the wheel: at first sight, the existing
range of cryptographic applications seem to match the need. A cryptographic mechanism,
coined as virtual black-box obfuscation [2], is sufficient for this task. However, such virtual
black-box obfuscation has been proven to be impossible for several simple tasks, and it
may be generally more difficult to use it. However, the more recent literature propose the
notion of lockable obfuscation [3,4], which is more akin to the simpler scenarios that are
considered in this paper. Obfuscation itself has found practical examples in many areas of
software engineering [5].

1.1. Motivational Aspects

Delegating trading capabilities: Wealthy individuals often delegate their savings
designated for investments to professional traders; these traders are supposed to invest
the financial assets as well as possible. In many circumstances, traders buy and sell stocks
according to their own strategies, without asking for approval from the owners. However,
things may change as the owners may want to give their approval for buying certain stocks
of politically-sensitive companies, for instance. (See for instance the case of large telecom
industry manufacturers.) In our somewhat related example, we consider an extremely
volatile market—cryptocurrencies. Suppose a very busy but rich investor has already
bought Ether, and stores the secret keys used to sign Ether transactions. Assume that
Ether’s price is relatively stable for around 1 year (a fact that has been confirmed by the
trading record of this cryptocurrency), and the investor does not want to reveal his secret
key to the trader until Ether grows. Once this is the case, for example, if the price of Ether
grows 10 times in one week, the investor decides to sell and will hand in the key to the
trader. Then, in a matter of hours (thus, over a relatively short period), the trader will buy
and make profit on behalf of his investor.

The problem above is broken down into several components in order to analyze it: (i )
the investor wants to be in full control of buying/selling stocks; (ii) the fact that stocks are
very volatile prevents the investor from making the decision of buying within a very short
time (i.e., minutes); (iii) the investor, once he decides he wants to invest in a specific stock,
wants to delegate his rights to the trader; and (iv) the investor can “commit” to his secret
key and will reveal it only at a specific moment, with the trader being authorized to sell in
a couple of hours, for instance.

Signing keys usually look pseudorandom and are hard to memorize. So, they must
be stored somewhere, which makes this procedure prone to cyber attacks. On top of that,
instead of rushing and sending a stored secret key to the trader, utilizing an insecure
channel, the key can be stored in a lockable obfuscator, and once the sender sends a
randomly looking but specially designated message having some well-defined properties,
the key is revealed.

As it can be easily observed from the use case present above, speed is an important
criteria when working within such a scenario. It will be of no help for the trader if he learns
the secret key that is used to transact a month after. Henceforth, we need to ensure the
sensitive data are efficiently recoverable in a short amount of time.
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Decrypt and Reveal: Several ultimate military scenarios have to deal with situations
where a “letter of last resort” is required to fire an intercontinental ballistic nuclear missile.
In such case, orders are communicated directly to the commanders of submarines carrying
such annihilation weapons. Most of the time, a short alphanumeric code is transmitted and
it has to be used to fire a missile. Several questions arise regarding the authenticity of such
code: Can it be sent in plain? What happens if someone knows it at any time (such as the
submarine commander or one of the officers)? Can the commander use this code at his
will? Can it be reproduced in case the commander defects? Can an external adversary that
knows it mimic the process of sending it and “fool” the submarine staff?

Even without any credible information on the topic, it is less likely that such messages
are sent in plain. Encryption may be the standard and current technique for dealing with
such cases. However, human players are always an issue: how can we deal with someone
who knows such keys and who provides them to adversaries. In such a case, can an
adversary deliberately send a cable to be allegedly decrypted to a nuclear launch order and
code?

1.2. Discussion: Using Symmetric or Public Key Encryption within the Black-Box?

Although it makes a lot of sense to protect sensitive variables until they really need
to be released, as seen in the motivational aspects presented above, a pressing question
that comes to mind is the following: what sort of check should the “black-box” perform in
order to release the secret? As a general rule, the more complex the function to be run in
the black-box, the more time will by taken to perform such an operation.

A first option will be to use a symmetric encryption algorithm within the black-box.
(From a theoretical point of view, a one-way function is sufficient here, as it provides a
symmetric encryption scheme for free. However, we use a symmetric cipher as it is a more
practical and popular concept to work with.) If this is the case, then the sender must store
the key used to send messages to the black-box. In terms of our examples, the investor
must store this symmetric key somewhere, then use it to encrypt messages to the black-box.
So, instead of storing a random looking Ether key, he will now store a random looking
symmetric key. Although the last one may be shorter, it is still hard to memorize.

The second question: Is public key encryption providing any benefit here? What if the
investor uses a public key? He will need to send a message encrypted under the public key.
The gain is that such a message may be memorable, and independent from the secret key
and from the secretly stored key used to sign Ether transactions.

Henceforth, for the case of an investor, it makes more sense to use a public key
encryption scheme within the obfuscated black-box construction.

1.3. Preamble: Public Key Encryption

Public key encryption (PKE) is a method that allows two parties to communicate in the
presence of an adversary without pre-sharing any cryptographic secret. (Though, it must
be noted that standard public key encryption schemes are prone to man-in-the-middle
or botnet-based attacks [6]. For instance, an eavesdropper that owns the communication
channel with A and B may simply interact with A pretending to be B, and interact with B,
pretending they are A.) (Known as key.)

The history behind public key cryptography is by now half a century old, and started
from ingenious mathematical ideas to a scientific branch, rigorously modeled using game
theory, allowing for the modeling of attacks run by very strong opponents (attackers).

Early schemes. The early cryptographic schemes were inspired by the Diffie–Hellman
key exchange. It should be noted, that although the simple Diffie–Hellman key exchange
(that we describe in Section 3.4) was proposed in the 1970s, it was not until the middle of the
1980s that the first Diffie–Hellman inspired public key encryption scheme was proposed.
The underlying hard problem was related to the discrete-log assumption. Meanwhile,
the very different RSA cryptosystem had been proposed, based on a completely different
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assumption: factoring. Both schemes are extremely popular, and have been standardized
and adopted by practitioners.

An interesting Mersenne assumption. Aggarwal, Joux, Prakash, and Santha [7] put
forward a set of novel assumptions based on the properties of low Hamming weight
elements sampled from some group of order p, where p is a Mersenne prime. The first of
their assumptions states that the ratio of two elements over Zp that have a low Hamming
weight is pseudorandom, which we call the RMERS assumption.

The other is, which we call the Mersenne Low Hamming Weight Combination As-
sumption, is very similar to the Learning Parity with Noise problem (LPN): the adversary
is required to distinguish tuples (A, A · S + E) from uniform ones, where S and E have
Hamming weight h and A is a random elements over Zp. Based on those assumptions,
the authors introduced an ingenious PKE scheme, for encrypting bit-by-bit, which is of
great didactic importance through its simplicity. The practical performance of their first
scheme is however, lame, as it encrypts a message bitwise, incurring ciphertexts propor-
tional to the input length. A second scheme allows for the encryption of messages of
multiple bits, through an error correcting code.

Those assumptions have been under scrutiny in the work of [8]. Later several other
primitives have been developed based on those assumptions [9,10]. More recently, several
primitives were built from related assumptions [11].

1.4. Preamble: Lockable Obfuscators

Obfuscation, as a computer science subject, deals with making programs unintelligible.
Representing programs can be achieved in many forms, including PRAMs, Turing machines,
or combinational logic circuits. These computational models are all equivalent in the
runtime up to a polynomial factor.

Ideally, two obfuscated programs cannot be told apart, assuming they implement the
same functionality. This intuition is captured formally within the notion of indistinguisha-
bility obfuscation [2].

While the notion of indistinguishability obfuscation is extremely complex, a more
general notion exist, denoted virtual black-box obfuscation. This is impossible for all
computable functions, but it turns out to be possible for something like point functions, or
more recently, lockable functions [4].

A lockable function is defined as follows:

fy : X → Y , (y, s) ∈ Y2 , fy(x) =

{
⊥ , when fy(x) 6= y
s , when fy(x) = y

(1)

Several lockable obfuscators were proposed, and they are also suitable for storing
decryption keys, as advertised by some of their use cases. These make them a prime
candidate for the applications we use.

2. This Work

This work’s contribution consists of a new, more efficient instantiation of a lockable ob-
fuscation scheme, created on purpose for a specific public key encryption scheme working
on Mersenne prime moduli.

As stated in Section 1, lockable obfuscation is a general paradigm that allows the user
of an obfuscated (black-box) program to recover a secret value subject to the result of a
computation given that f (x) = α.

As may be hinted, this work needs the public key decryption to play the role of f ,
with the decryption key hidden in the obfuscator. The notion is guaranteed as long as y has
sufficient min-entropy given the function f .

Thinking about software implementations and their performance, the decisive fac-
tor for constructing our lockable obfuscator is the branching program complexity of the
decryption procedure.
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The Main Observation

This paper analyses four of the publicly available and largely used standard public
key encryption keys. First, several well-known candidates are quickly ruled out. During
the process, the provided analysis is based on the textbook versions. (We avoid the PKCS
standards because they have even worse efficiency and describing them does not serve to
our purpose.) The main issue is the complexity of repeated modulo exponentiation of a
large number.

A much simpler procedure is described in the LWE-based public key encryption
scheme proposed by Regev. Although the scheme is inefficient as it encrypts bit-by-bit, it
has an extremely simple decryption procedure, involving an inner product between the
secret key and a ciphertext component.

However, the core observation made in this article is based on the decryption property
of the Mersenne-based public key encryption scheme introduced in [7].

The main gain in working with Mersenne primes as moduli, namely p = 2n− 1, with n
itself a prime is the arithmetic: multiplying two elements modulo p induces a cyclic shift,
in the following way:

a · b := a · (2b0 + 2b1 + . . . + 2blog(n)) (2)

and each multiplication with a power of two induces the cyclic shift.
The obfuscator construction described in Section 5 is based on the reality that a

decryption program is known at setup. We consider the relevant branching program,
and encode the transition matrices that are used for program evaluation. There is a need to
evaluate the input homomorphically over a ciphertext that encrypts the decryption key of
the Mersenne-based public key. The interesting aspect is the branching program, which
corresponds to the execution of one multiplication (up to 2n additions of n elements).

Thus being said, the scheme presented in this article is a custom-made lockable
obfuscator. A pseudorandom generator is used to make sure that the decrypted value
has sufficient min-entropy: instead of comparing a memorable value, we will compare a
pseudorandom version of it with a random looking value.

3. Background Work

Notations related to algorithms: In this work, standard notations are used, and
θ ∈ N∗ is considered as the security parameter of a an encryption algorithm (in close
relation to its key length). An algorithm is implemented through a Turing machine, as a
standard model of computations, and the inputs are given in their unary representation.
PPT stands for “probabilistic polynomial-time”, as a function of the security parameter. An
important distinction must be made between a deterministic and a randomized algorithm.

Notations for the mathematical part: For an integer q ≥ 2, we denote this by Zq
the ring of integers modulo q, and we represent it as Zq = (−q/2, q/2]. The “index”
set {1, . . . , k} is represented as [k]. A real-valued function NEGL is negligible if NEGL ∈
O(θ−ω(1)). We state that an event occurs with overwhelming probability if its probability
is 1− NEGL. The set of all negligible functions is written by NEGL. A ordered list of n
elements is written as [a1, . . . , an].

Notations for Probability theory: Min-entropy and randomness extraction. The min-
entropy of a random variable X is defined as H∞(X) := −log2(maxxPr[X = x]). Let
SD(X, Y) denote the statistical distance between two random variables X and Y . This work
sometimes refers to the Leftover Hash Lemma (LHL) from [12,13].

Notations related to adversaries: Given a randomized algorithm A, we denote the
action of running A on input(s) (1θ , x1, . . . ) over uniform randomness term r and assigning
the output(s) to (y1, . . . ) by A(1θ , x1, . . . ; r)→ (y1, . . .). To simulate that A is given oracle
access to some procedure O, we write AO . For any finite set S, we denote its cardinality
by |S|. We sample an element x from the uniform distribution over S by x←$ S. When
another non-uniform distribution χS is used, we write x←χ S.
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3.1. Complexity Assumptions

The Learning With Errors Cryptographic Hypothesis. The Learning with Errors
(LWE) (search version of the problem [14]) asks for the secret vector s over Fl

q, given
a polynomial-sized noisy vector of the form A · s + e, where A represents a randomly
sampled matrix over Fk×`

q , and e represents a small error term sampled using the Normal
distribution represented as χ. The decision version of the problem asks any PPT adversary
to distinguish between the distribution of the LWE problem as opposed to the uniform
distribution.

Ring-LWE. Lyubashevsky, Peikert, and Regev et al. [15] introduced the LWE version for
polynomial rings. We assume that R = Z[x]/(xn + 1) for n a power of 2, while Rq := R/qR,
where q is a prime number constrained by q = 1 mod 2n.

Definition 1 (Ring LWE). Assume that s is sampled from Rq and denotes a secret. The adversary
is given a polynomial number of samples that are all of the form (a, a · s + e) with a sampled from
Rq and e←χ Rq, (exclusive), or all uniformly sampled over R2

q. The decision RLWEq,φ,χ states that
some PPT-bounded adversary cannot distinguish between the two settings with more than negligible
advantage.

Mersenne Low Hamming Weight Ratio Hypothesis.

Definition 2 (Mersenne Ratio Hypothesis). Let n ∈ N∗ be a prime number and let p = 2n − 1
be a prime number. Let h ∈ N∗ and let Wh = {x|x ∈ {0, 1}n ∧ ‖x‖2 = h} be the set of n bit
integer having Hamming weight h. Let r be a random element over Zp. Let a and b be sampled
uniformly at random from Wh. For any PPT adversary A, its advantage in distinguishing between
the following distributions:∣∣∣∣∣Pr[A(1n, (a·b−1) mod p)→ 1]− Pr[A(1n, r)→ 1]

∣∣∣∣∣ , (3)

is negligible; all the operations are performed modulo p.

In the definition above, the adversary is given access to elements that are sampled
either from the distribution a · b−1 mod p or from the uniform distribution, and it has to
tell with sufficient advantage from which distribution the element has been sampled.

The decision variant of the Mersenne assumption is very similar to the Learning with
Errors assumption.

3.2. Pairwise-Independent Hash Functions

This work assumes prior knowledge on the theory behind hash functions.

Definition 3. AssumeHα is a family of hash function. Each H ∈ H has domain {0, 1}` and range
{0, 1}`′ . H is pairwise independent if the following condition holds:

Pr[h(x) = a ∧ h(y) = b] =
1

22`′ (4)

for all pairs input (x, y) ∈ {0, 1}2` and output pairs (a, b) ∈ {0, 1}2`′ .

3.3. Pseudorandom Number Generators

A pseudorandom number generator (PRNG, [16,17]) is in essence an algorithm that
transforms a seed s, usually sampled from the uniform distribution into a (usually larger)
output. The gist is that the output distribution should be indistinguishable to the uniform
distribution over the co-domain.

Syntactically,
PRNG(s)→ y, ∀s ∈ D . (5)
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3.4. Public Key Encryption

Public key cryptography is the backbone used in implementing secure protocols over
the Internet. Its roots originate in the public key exchange protocols proposed by Diffie
and Hellman [18]. For the broad audience, we assume that Alice and Bob store each the
secrets a and b; say both elements modulo some large prime p. Alice publishes ga while Bob
reveals gb; suppose these two quantities are published online. Then, both Alice and Bob

learn gab as (ga)b modulo p for the case of Bob and
(

gb
)a

modulo p for the case of Alice.
Once such a simple key exchange protocol was proposed, public key cryptography

emerged. Researchers such as Taher El Gamal and Ronald Rivest, and Adi Shamir and
Leonard Adleman observed that is easier to share secrets in a similar way to the exchange
of the keys.

Definition 4 (Public key encryption). The following triple of algorithms represents a public key
encryption scheme:

• A first step is meant to generate keys. The algorithm produces the public key pk and the secret
key sk. We make the convention the secret key is n bits long and the public key has P(n) bits,
where P is a polynomial.

• The encryption routine encrypts the message M into the ciphertext CT using only the public
key pk, without knowing the secret key sk; this routine is denoted by Enc.

• The decryption routine, can be seen as an inverse process with respect to the encryption routine:
using the secret key sk, the message M is recovered from the ciphertext. This routine is denoted
by Dec.

The completeness of any public key encryption scheme is defined by the following
equation:

Pr[KeyGen(α)→ (pk, sk) ∧Dec(sk,Enc(pk, M)) = M] ∈ 1− ε(α) (6)

where ε is the inverse of an exponential function.

The security of public key encryption is defined through game theory. The considered
game includes an efficient adversary, and it interacts with an efficient benign entity:

Setup phase: The challenger chooses one well-formed pair of keys from the uniform
distribution defined over the set of all possible key pairs. The public key is given to the
adversary.

Challenge phase: The adversary chooses two messages of equal length, to be denoted
as M0 and M1, and sends them to the challenger.

Encryption phase: One message out of the two, say message mb, is selected and en-
crypted. Let the resulting ciphertext be CTb, and let it be sent to the adversary.

Output phase: the adversary sends its output b′, revealing if the message comes from
m0 or m1.

The adversary wins the game, if:

Pr
[
Adversary(pk, CTb, M0, M1)→ b′ ∧ b′ = b

]
=

1
2
+ c (7)

where c is a noticeable quantity.

3.5. Fully-Homomorphic Encryption

The notion of a fully homomorphic encryption [19–21] permits its users to evaluate
some function (represented as a circuit) over a ciphertext. The result can be decrypted
under the secret key paired with the encryption key. The decryption reveals the function
applied over the original input.
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Definition 5 (Fully homomorphic encryption). Given one function f : {0, 1}n → {0, 1} with
n bits as input, consider a circuit class Cn,d with input length n, depth d that implements f . The
following set of algorithms represent a fully homomorphic encryption scheme:

• A first step is meant to generate keys. The corresponding algorithm produces the public key pk
and the secret key sk. We make the convention that the secret key is n bits long and the public
key has P(n) bits, where P is a polynomial.

• The encryption routinely encrypts the message M into the ciphertext CT using only the public
key pk, without knowing the secret key sk. Similarly to public key schemes, this step is
denoted Enc.

• The evaluation routine Eval transforms any ciphertext CT into CT′, by evaluating the circuit
C ∈ C over CT, given access to the public key.

• The decryption routine can be seen as an inverse process with respect to the encryption routine:
using the secret key sk, the message M is recovered from the ciphertext.

The correctness and security conditions similar to a public key encryption scheme are
not discussed here.

3.6. Leveled Homomorphic Encryption

A leveled fully homomorphic encryption scheme is in essence a fully homomorphic
encryption scheme in a setting where the user is limited in the number of computations
he will make, up to some level. It will not be described here, as it has the same syntax like
fully homomorphic encryption. Hence, such a cryptographic tool is more restrictive.

3.7. Lockable Obfuscators
3.7.1. Intuition

The main purpose of a lockable obfuscator is to receive some value x as input, apply a
(hidden) function f on x, and compare the result f (x) with some pre-computed and stored
values y. Whenever f (x) = y, a value z is revealed. As proposed, the value z can be a
multi-input value, or a binary one. The security notion requires an obfuscated program to
hide f and y, as long as y has sufficient min-entropy, given f .

In this work, the function f that is considered to be obfuscated can be represented as a
circuit having logarithmic depth in its input length—namely, f ∈ L/poly. We denote by BP
its branching program representation, which has length L, input size `in, and output size
`out; that is, f : {0, 1}`in → {0, 1}`out . In his well-known paper, David Barrington proves
that every function with its circuit representation belonging to complexity class NC1 has a
branching program representation having its size bounded by a polynomial function in the
input’s size.

3.7.2. Formal Definition

The definition of a lockable obfuscator, introduced by Goyal, Koppula, and Waters
in [3], is semantically equivalent to the notion computing and comparing obfuscators. The
second notion has been introduced in [4], by Wichs and Zirdelis.

Definition 6 (Lockable obfuscation). Let f : {0, 1}n → {0, 1}m denote a function in NC1 and
let x ∈ {0, 1}n and y ∈ {0, 1}m. A lockable obfuscator LockObf with respect to ( f , y) and inputs
x consists of the following algorithms:

LockObf .Setup(1θ , ( f , y, s)): takes as input the branching program representation of f and some
value y. Returns the lockable obfuscator LockObf [ f , y].

LockObf .Eval(x): given some input x, the LockObf [ f , y] computes f (x). If f (x) = y, then return
s. Otherwise, return ⊥.

The security definition is denoted by the term virtual black-box security.
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An obfuscator obf for the distribution class D over a family of programs P satisfies distribu-
tional indistinguishability if there exists a (non-uniform) PPT simulator S , such that for every
distribution ensemble D = {Dθ} ∈ D, we have

(obf (1θ , P), aux) ≈c (S(1θ , P.prms), aux), (8)

where (P, aux)←$ Dθ .

As a side remark, although the works of [3,4] have the same operational interface,
their constructions differ.

4. Efficiency of Decryption in Extant Public Key Schemes

Public key encryption schemes are defined in Section 3.4. As elaborated in the in-
troductory part, when coupling their decryption circuit with lockable obfuscation, it is
important to bear in mind that we want decryption to be as efficient as possible. This is
due to the fact that lockable obfuscation adds an important computational overhead on top
of the decryption circuit.

In this part, the decryption operation of some of the most well-established public
key encryption schemes are briefly analyzed, and also some of the novel ones targeting
efficiency.

4.1. The Textbook RSA Public Key Encryption Scheme

RSA [22] is one of the most commonly used public key encryption schemes. The algo-
rithm has been patented in [23].

Key Generation: Sample two large and safe primes, p and q, and obtain their product N,
which is denoted the RSA modulus. Sample an exponent e, such that gcd(e, φ(N)) = 1.
Publish (N, e) as the public key, while d = e−1 mod φ(N) is the decryption key.

Encryption: to encrypt, compute c = me mod N.

Decryption: to decrypt, compute cd mod N.

It is well known that the textbook version of RSA is not secure. This happens as
encrypting the same message twice results in identical ciphertext, making the scheme prone
to frequency attacks. However, the scheme has been standardized and randomness has
been introduced during the encryption procedure in order to counter such simple attacks.

4.2. The El-Gamal Public Key Encryption Scheme

The El-Gamal [24] encryption scheme is extremely simple, close to the original Diffie–
Hellman key exchange, is suitable for didactic purposes, and has a randomized encryption
procedure (it is semantically secure).

Key Generation: Sample a safe prime q = 2 · p + 1, where p is a prime and a generator g
of order p. Sample a secret x over Zp and publish gx as the public key, while x is kept
secret.

Encryption: To encrypt, sample a random element r ∈ Zp and release the following pair
(gr, gr·x ×M), where M is the message to be encrypted.

Decryption: The decryptor proceeds by (1) an exponentiation over the Zp, namely gr×x,
as x is known by the decryptor while gr is provided in the ciphertext; (2) an inversion
that provides (gr×x)

−1 and (3) a multiplication of m × gr×x with (gr×x)
−1, which

provides m.

As can be seen, the decryption operation provides three steps, which are all computa-
tionally expensive, as they involve exponentiation. The related standards of the scheme will
not be detailed here, as it is beyond the purpose of this work.
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4.3. Public Key Encryption from Learning with Errors

The Learning with Errors problem is recurrent in this work, as it forms the spinal
chord of the lockable obfuscation scheme. Here, a simple public key encryption scheme
described in [25] is exemplified.

Secret key: Choose a vector s uniformly at random over Zn
q . Set it as the secret key.

Public key: Sample m tuples (ai, at
i · s + ei) from the Learning with Errors distribution

under parameter regime q with Gaussian noise samples ei.

Encryption: For each bit γ within the bit decomposition of the message, choose a random
subset S in the powerset of [m] and set the ciphertext to be:

(a, b) :=

(
∑
i∈S

ai, γ · [q/2] + ∑
i∈S

bi

)
(9)

Decryption: Compute b− at · s. If it is closer to 0 than [q/2] return 0, otherwise 1.

It can be remarked that decryption is in fact a dot product multiplication of two vectors.

4.4. Public Key Encryption from the Mersenne Assumption

Remember the very simple way of encrypting a bit γ in [7]:

(−1)γ ·
(

a× c
d
+ b
)

, (10)

where all elements a, b, c, d over Zp have a low Hamming weight. The public key consists
of c

d and the secret key is d. Decryption is performed by multiplying the ciphertext with d
and determining whether the Hamming weight is small (plaintext is 0) or large (plaintext
is 1).

Secret key: Chose a Mersenne prime moduli p of the form 2h − 1, where h is itself a prime
number. Chose two elements c and d from the uniform distribution defined over Zp.
Keep d secret.

Public key: Publish c
d .

Encryption: Select two elements, a and b from Zp. To encrypt a bit γ ∈ {0, 1} release the
ciphertext:

(−1)γ ·
(

a× c
d
+ b
)

. (11)

Decryption: Multiply (−1)γ ·
(
a× c

d + b
)

with d and check whether the resulting value is
below 2h2 (i.e., γ = 0) or above p− 2h2 (γ = 1).

4.5. Discussion on Decryption Performance

Arguably, the two candidates that stand are the LWE-based encryption scheme, as well
as the one based on the Mersenne assumption. This is because both RSA and ElGamal
requires exponentiations mod N, which require repeated multiplications.

It is clear that the dot product between two vectors is a more complex operation to be
supported, compared to a single multiplication of elements. The comparison parts count as
the same.

Furthermore, the algebraic structure of the Mersenne assumption, namely the structure
of the modulus p, makes it easier to implement, and this occurs faster on all software
implementations that have been tested.

More concretely, for the envisioned obfuscation scheme considered, the structure of
the branching program representing the function mattters the most. As a general rule,
the lower the depth of the branching program, the more efficient the scheme.
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5. Lockable Obfuscation for Mersenne-Based Public Key Encryption

The central result is presented in this section. To achieve it, we start from the lockable
obfuscator presented in [3] (and concurrently by [4]) and adapt it to the decryption function
we envision.

The most important aspect related to the scheme described in Section 4.4 is the arith-
metic over Mersenne moduli. Namely, multiplying a and 2z cyclically shifts the bits of x
with z positions. To multiply and a · b, it is easier to decompose b into powers of 2 and shift
the bits of a accordingly, than perform the addition and output.

In this paper, consider a function f that can be represented as one circuit with a
logarithmic depth in its input length—namely, an NC1 circuit. We write by BP the corre-
sponding branching program representation, which has length L, input size `in, and output
size `out, that is, f : {0, 1}`in → {0, 1}`out .

5.1. Branching Program for Mersenne-Based PKE decryption

In this part, we figure out the depth of computing the decryption circuit for the
Mersenne-based public key encryption scheme put forth in Section 4.4. It is clear that we
will need to perform one multiplication and one comparison.

Luckily, the multiplication means shifting variables, and then performing an addition
between the n elements. Clearly, the addition can be done in a tree-like structure, thus
taking up to:

2 · n · log2(n) (12)

steps, where n = log2(p + 1).
Clearly, such a program has logarithmic depth, making the size of the branching

program polynom in the length of the input, using Barrington’s result. The problem that
we consider is to decrypt a ciphertext encrypting a memorable passphrase that gives the
decryptor the secret s. However, we are constrained by the fact that the passphrase must
have sufficient min-entropy. Instead of storing the passphrase, we hash it and then apply a
pseudorandom number generator over the hash’s output. The usage of the hash function is
required since we need collision resistance. On the other hand, if we assume that the hash
is pseudorandom, we will not need the PRNG. We have two man strategies. a) To build an
obfuscator for the circuit performing decryption, hash, and PRNG, or to use leveled fully
homomorphic encryption in conjunction with the universal circuit. We explore both cases
and see that relying on the PKE in [7] is beneficial.

5.2. The Lockable Obfuscator for Mersenne-Based PKE

We provide a high-level overview and assume a black-box (read generic) utilization of
a lockable obfuscator. Let Deci

d denote the decryption circuit outputting the ith bit out of p
for a [7] ciphertext. The lockable obfuscator has the following internal working:

Setup(1α, M, s):

1. Let Decd(·) be the circuit that computes the decryption in the scheme introduced in
Section 4.4, where d is the secret key.

2. Choose a pairwise independent hash function, H ∈ H.
3. Choose a low depth pseudorandom generator PRNG.
4. Set PRNG(H(M))→ β ∈ {0, 1}δ.
5. Build a circuit C that computes the circuit. (The operations to be run are decryption,

hash and PRG evaluation.):

C := PRNG ◦H ◦Decd(·) , (13)

6. Sample FHE.Setup(1θ) → (pk, sk), a pair of public private fully homomorphic en-
cryption keys. Build a fully homomorphic ciphertext C̃T that encrypts the binary
representation of the circuit C in Equation (15).



Sustainability 2022, 14, 11412 12 of 14

7. Build an obfuscator for the LWE decryption procedure:

LockObf .Setup(1θ ,FHE.Decsk(·),PRNG(H(M)), s)→ LockObf (14)

Evaluation(M):

1. Construct the universal circuit UM(·). A universal circuit is one that can evaluate any
other circuit. In this case, we define UM(C(·)), for the circuit evaluating decryption
over (−1)γ · (a · c/d + e).

2. Homomorphicaly evaluate UM() over the leveled homomorphic ciphertext C̃T and
recovering one bit of the secret s if the M is correct.

We see here that the obfuscated circuit depends on the leveled homomorphic encryp-
tion scheme. We can compare the the depth of the circuit computing leveled homomorphic
decryption with the combined depth of the circuit computing PRNG(H(Decd)).

Depth of C. We can see that the depth of performing the FHE decryption is similar to
an inner product, which has depth that is linear in the input length. Given that an inner
product is to be achieved and the inner product involves a tree of log2(n) additions, and
each addition takes log2(q) bits to perform multiplication, the branching program will have
22·(log2(n)+log2(q)) states.

The second construction. On the other hand, we consider the following scheme (high-
level, as we abstract out the implementation of the LockObf ).

Setup(1α, M, s):

1. Let Decd(·) be the circuit that computes the decryption in the scheme introduced in
Section 4.4, where d is the secret key.

2. Choose a pairwise independent hash function, H ∈ H.
3. Choose a low depth pseudorandom generator PRNG.
4. Set PRNG(H(M))→ β ∈ {0, 1}δ.
5. Build a circuit C that computes the circuit (The operations to be run are decryption,

hash, and PRG evaluation. ):

C := PRNG ◦H ◦Decd(·) , (15)

6. Build an obfuscator for the LWE decryption procedure (and also equality testing):

LockObf .Setup(1θ ,PRNG(Decsk(·))), s)→ LockObf (16)

Evaluation(M):

1. Evaluate the lockable obfuscator on input M and recover the secret bits of s.

5.3. Discussion

We obtain a lockable obfuscator for the decryption functionality within the Mersenne
public key encryption scheme. If we get rid of the pairwise independent hash function
ad rely only on the pseudo-randomness and (assumed) collision resistance of the PRNG,
we can obtain a circuit with a very low depth. For instance, one can consider PRNGs with
extremely low depth, such as PRNGs in NC0. Thus, we can obtain a much shallower circuit
and an even more reduced LockObf circuit.

Clearly, this second construction comes with a much shallower branching program,
as the depth of the circuit is reduced compared to the previous one. It would be even
more interesting to explore obtaining hash functions directly from the Mersenne Ratio
assumption, and thus to further reduce the depth of the circuit to be obfuscated.
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6. Conclusions

The current paper considers a problem of major importance for many practitioners: de-
ploying sensitive data to potentially dishonest parties, and hiding them until a notification
signaling a specific event is sent.

Given the questions about the receiver’s honesty, that it shall not know the sensitive
data a priori (this makes public key encryption alone useless), we have seen that employing
lockable obfuscation is a solution to be considered.

This work studied the decryption’s routine performance of several public key encryp-
tion schemes, and crafted a simplified lockable obfuscator by using a specific Mersenne
Assumption-based public key encryption scheme.

Future Work

The current work can be extended in several directions. First, an implementation of
the LockObf obfuscator with respect to the PKE scheme using the RMERS hypothesis can be
provided. Second, the obfuscator can be further improved, in order to minimize its number
of levels. Third, several other PKE schemes can be considered for implementation. Fourth,
the same technique can be applied to different other primitives.
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Abbreviations
The following abbreviations are used in this manuscript:

BP Branching program
H Hash function
LockObf Lockable obfuscation
LWE Learning with Errors assumption
NC0 Nick’s class 0
NC1 Nick’s class 1
PRNG Pseudorandom number generator
PUF Physical unclonable function
RMERS Mersenne Ratio assumption
(Z∗p, ∗) Multiplicative group of integers modulo prime p
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