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Abstract: The implementation of cutting-edge agricultural practices provides tools and techniques
to drive climate-smart agriculture, reduce carbon emissions, and lower the carbon footprint. The
alteration of climate conditions due to human activities poses a serious threat to the global agricultural
systems. Greenhouse gas emissions (GHG) from organic waste management need urgent attention to
optimize conventional composting strategies for organic wastes. The addition of various inorganic
materials such as sawdust and fly ash mitigate GHG during the vermicomposting process. This paper
critically investigates the factors responsible for GHG emissions during vermicomposting so that
possible threats can be managed.

Keywords: vermicomposting; greenhouse gas emissions; carbon sequestration

1. Introduction

The changing temperature conditions, precipitation variability, and the incidence of
extreme weather events are increasing day by day throughout the world, including the
Indian subcontinent [1]. The Paris Climate Conference (COP21) created the goal of limiting
the amount of heat-trapping gases, i.e., carbon dioxide (CO2), methane (CH4), nitrous oxide
(N2O), and fluorinated gases (F-gases) emitted globally. The largest climatic impacts will
be greatest in those regions where agricultural production is vital for securing livelihoods
and promoting economic growth [2]. Soil is a major source and sink of greenhouse gases,
producing approximately one-fifth of global CO2 emissions [3], roughly one-third of global
CH4 emissions, and two-thirds of N2O emissions [4]. The green revolution has increased
global food production which indirectly increased the dependence of farmers on synthetic
chemical fertilizers, pesticides, and insecticides. The repetitive use of chemical fertilizers
causes severe environmental and land degradation. Vermicomposting is an integrated
biological process of converting organic waste into vermicast by employing earthworms
and naturally occurring microbes under a mesophilic environment. Vermicomposting has
been reported as a sustainable technique for the treatment and management of different
organic wastes [5]. Earthworms increase the bacterial abundance in the soil as their gut
conditions are favorable for the multiplication of bacteria and the suppression of fungi [6].

The burrowing action of earthworms efficiently maintains anaerobic conditions in
vermibeds and thereby lowers greenhouse gas emissions [7]. The emission of greenhouse
gases during vermicomposting has only been documented recently [8–10]. The effects of
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the presence of earthworms during vermicomposting on greenhouse gas emissions have
not been analyzed specifically, but a study reported that the vermicomposting of household
waste emitted more CO2 and CH4, but less N2O than traditional composting [11]; how-
ever, Yang et al. reported the positive role of earthworms in reducing gaseous emissions
in vermicompost [12], resulting in fewer emissions of NH3 and total greenhouse gases
(8.1 kg CO2-eq/t DM) than those from thermophilic compost. The earthworm addition dur-
ing composting showed less gas emission from animal manure [13,14], however, another
study [15] reported more greenhouse gas emissions compared to conventional composting.
Thus, the aim of the present review is to provide an inclusive outline of the factors and con-
ditions accountable for greenhouse gas emissions during the vermicomposting process so
that this environment-friendly process can be optimized with comparatively less emission.

2. Vermicomposting

Vermicomposting is an eco-friendly technique that utilizes earthworms, soil microbial
flora, and a few endemic gut flora of earthworms to convert solid and other agri-waste
into vermicast. The earthworm gut is anoxic and has an elevated amount of water, sugars,
organic and amino acids, thus providing the best environment for various microbial flora
such as cellulitic, denitrifying bacteria, chitin degraders, ammonia oxidizers, and nitrogen
fixers, etc. The decomposition of organic waste into nutrient-rich vermicast is mediated
by the burrowing, gut digestion, casting, and mucus secretion of earthworms during the
vermicomposting process [16]. Several studies have reported that vermicompost is a rich
source of P, N, K, Mg, Ca, and S that, in turn, improves soil health and that plants can easily
uptake these nutrients [17]. Vermicompost also acts as a biocontrol agent as it contains
antagonistic microorganisms to control phytopathogens [18]. The tremulous urbanization
thrust toward worldwide economic development leads to the huge production of both
municipal and industrial waste per capita and creates an uncomfortable situation for waste
management. Waste management in landfills releases huge greenhouse gases around 3640
mg CO2-e/m2/hour, whereas vermicomposting emits only 463 mg CO2-e/m2/hour [19].
The Australian Bureau of Statistics in 2005 reported that 17 million tons of greenhouse gases
were emitted in Australia due to landfills in the year 2005. Waste management practices
were next to agriculture in enhanced greenhouse gas emissions (GHG) that need urgent
attention [7]. Vermicomposting of various organic wastes emits unpredictable amounts
of CO2, CH4, and N2O based on their C and N content. Though vermicomposting is an
environmentally friendly and sustainable approach on a large scale, it is still associated
with the high emission of greenhouse gases. There are reports that vermicomposting
lessen methane emissions in comparison to composting [20,21] and it was reported that
the emission of CH4 and N2O reduced to 32% and 40%, respectively, with high moisture
content, whereas the emission reduced to 16% and 23% at low moisture condition [13].
A recent study by [22] explained that earthworms played a positive role in soil carbon
mineralization by employing a statistical model and revealed a 24% increase in carbon
mineralization in the presence of earthworms with 1.95 mg/g soil dry mass earthworm
density. Two important factors that affect soil carbon mineralization are earthworm density
and time from their inoculation [22]. Greenhouse gas emissions could be mitigated by
maintaining aeration, moisture content, and temperature in the vermicomposting peats.
The greatest advantage of vermicomposting over conventional thermophilic composting is
that it can be used immediately after its production.

3. Greenhouse Gas Emissions by Organic Waste Management

Greenhouse gas emission is one of the foremost problems connected with waste
management; CO2 is generated under strictly aerobic conditions, whereas CH4 and N2O
are produced from the anaerobic mineralization of organic waste [23]. The COP21 Paris
climate change conference established the desire to reduce GHG in all sectors [24]. China
had the highest CO2 emissions from agriculture, forestry, and other land use in 2014,
followed by the United States, the European Union, India, the Russian Federation, and
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Japan (Figure 1). Greenhouse gas emissions have many detrimental ecosystem impacts such
as the melting of glaciers, rise in sea level, global warming, acidification of the ocean, etc.
Many studies reported that the Earth’s temperature increased by 1 ◦C in the last 100 years
and the “Intergovernmental Panel on Climate Change” (IPCC) predicted that the global
average temperature would increase by 5.8 ◦C by the end of 2100. There are reports that
by maintaining aerobic conditions during the composting process, GHG emissions can be
mitigated up to a certain extent [25,26]. The mixing of waste material in vermicomposting
beds at regular intervals, size reduction, and mandatory aeration reduce CH4 emission to a
substantial extent.

Figure 1. Various carbon dioxide (CO2) emissions from countries in 2014 (Source: [27]).

3.1. Mitigating GHGs Emission during the Vermicomposting of Waste

The mitigation policies to lessen the GHG emission during vermicomposting comprise
the following: use of C-rich amendment material such as sawdust [28], red mud and
fly ash [29], inorganic material [30], and an aeration system. The selection of a bulking
agent is based on locally available agricultural residues such as wood chips [31], corn
stalks [8], and spent mushrooms and cotton gins [32]. The role of biochar in mitigating
greenhouse gas (GHG) emissions has been documented in many pieces of literature [29,33].
Greenhouse gas emission during composting and vermicomposting is controlled by various
factors such as aeration, the addition of a bulking agent, pH, temperature, and C/N
ratio [34]. Many studies suggest that the incorporation of sewage sludge and cow dung
significantly reduces greenhouse gas emissions [35]. Wang et al. found that a reed straw
addition to duck dung reduces N2O generation. However, manure cannot be used in
vermicomposting as it enhances GHG production [34]. Greenhouse gas emission is linked
with the carbon content of the waste used. Vermicomposting can be used for reducing the
methane emission from the sewage sludge with an additive of pelletized wheat straw [36].
There are reports that worm composting reduces CH4 emissions in comparison to controlled
conditions due to the aerobic environment maintained in the pile by the earthworms. The
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increased aeration period and suitable maintenance reduce CH4 emissions during the
vermicomposting process. Moisture is also an important factor that regulates greenhouse
gas emissions during vermicomposting. Excess moisture in worm composting bins causes
the death of worms, increases N2O emission by enhancing the process of nitrification and
denitrification, and induces CH4 emissions by supporting the growth of methanogenic
bacteria in vermibeds.

The center of the anoxic earthworm gut contains the highest concentration of
N2O [37,38]. An increase in the radius of the earthworm might increase the probabil-
ity that the N2O is further reduced to N2 before it leaves the alimentary canal [39]. There
are reports that gut passage time and competing redox processes may be important factors
for the in vivo emission of N2O and N2 by earthworms [40]. The passage through the
earthworm gut accelerates the decomposition of organic matter due to mineralization,
fragmentation, and the consequent increase in microbial activity (Figure 2) thus, higher C
storage occurs with the physical protection of soil organic matter inside cast aggregates [41].
The feeding ratio is also an important parameter for the determination of GHG emissions
during vermicomposting (Table 1).

Figure 2. Vermicomposting in climate-smart agriculture.
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Table 1. Parameters mitigating GHGs emissions during vermicomposting.

S. No Parameters

Vermicomposting Reactor Composting Reactor

ReferenceMethane
[CH4]

NitrousOxide
[N2O]

Carbon
Dioxide

[CO2]

Duration
Days

Methane
[CH4]

Nitrous
Oxide
[N2O]

Carbon
Dioxide

[CO2]

Duration
Days

1

Earthworm species

(i) Eisenia fetida, Perionyx
excavatus, Eudriluseuginaeand
Lumbricusrebellus

(ii) Eisenia andrei and Eisenia
foetida(Red mud addition)

(iii) Eisenia fetida

4.76
kg mg−1

0.033
(µg g−1 h−1)

2.28
(kg CO2-eq t¡1

DM)

1.17
kg mg−1

0.012
(µg g−1 h−1)

5.76
(kg CO2-eq t¡1

DM)

1675
kg mg−1

16.5 %
decrease in

CO2 emission
N.M

30–60
56
50

2.2
kg mg−1

0.024
(µg g−1 h−1)

10.52
(kg CO2-eq t¡1

DM)

1.5
kg mg−1

0.007
(µg g−1 h−1)

12.29
(kg CO2-eq t¡1

DM)

882
kg mg−1

519–730
(mg g−1)

N.M

30–60
56
50

[11]
[29]
[12]

2

Waste characteristics

(i) Municipal solid waste
(ii) Home waste
(iii) Source segregated

Household waste

2.2 × 10−3

kg mg−1

4.76
kg mg−1

0.02–0.38
kg mg−1

N.D
1.17

kg mg−1

0.12–1.5
kg mg−1

N.M
1675

kg mg−1

N.M.

240
30–60

84

1.4
kg mg−1

2.2
kg mg−1

0.05–6.6
kg mg−1

1.2 ppm
kg mg−1

1.5
kg mg−1

0.005–0.37
kg mg−1

N.M
882

kg mg−1

N.M.

240
120
84

[42]
[11]
[15]
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3.2. Effect of Feeding Ratio on Greenhouse Gas Emission (GHG)

The feeding ratio is the ratio of substrate added over earthworm biomass [43]. The op-
timum feeding ratio helps in decreasing GHGE by 23–48% as compared to non-earthworm-
treated composting. A low amount of GHGE during vermicomposting is because of many
factors such as (i) earthworms help to increase aeration due to the continuous turning of
the substrates [11,16] and (ii) stabilization of the substrate after passing through the gut
of the earthworm [44]. In case of a high feeding ratio, the conditions are reversed and
GHGE increases. The findings for GHGE during vermicomposting are contradictory; for
example, [15,45] had a different view than that of [8,11,16]. This difference in result can be
well explained in terms of the feeding and burrowing behavior of earthworms [45], carbon
quality and nitrogen content [16,44], temperature, and scale of the experiment [11,44]. The
denitrification process that takes place inside the earthworm gut is the main physiological
process for N2O emission in anecic earthworms [45]. A high feeding ratio decreases the
conversion rate of fresh materials into vermicompost. Previous studies revealed that more
food supply decreases the biomass and reproduction of earthworms [44]. However, a
low feeding ratio increases the mineralization of nitrogen compared with a high feeding
ratio [43]. A high feeding ratio increases temperature and obstructs air circulation in the
pile [45], both of which influence GHG emissions. At a supra-optimal feeding ratio per unit
of earthworm biomass, increased temperature in piles also causes earthworm mortality
and larger GHG emissions. There are reports that the high moisture content reduces CH4
and N2O emission in vermibeds by 32% and 40% but low moisture reduces the emission
only by 16% and 23% [44]. The analysis of various factors affecting the rate of emission
of greenhouse gases will enhance our understanding to develop experimental models to
lessen GHG emissions.

3.3. Role of Earthworms in Soil Carbon Sequestration

Carbon sequestration is a process to fix and store atmospheric carbon dioxide and
results in the mitigation of global warming. Soil organic matter (SOM) is formed due to
litter decomposition and plays an indispensable role in soil carbon (C) sequestration [39].
In the comparison of systems without earthworms and with earthworms, a sequence
of events takes place that actually deals with carbon cycling and carbon sequestration.
From Figures 3 and 4 it is well understood that the earthworms decrease the potentially
mineralizable carbon and increase the readily mineralizable carbon and stabilized carbon. A
study reported that earthworms increased the carbon mineralization in straw by employing
C13 labeling [46] and creates a priming effect by inducing organic matter mineralization [47].
There is a report that soil organic C stock and carbon sequestration increased to a small
extent due to the addition of vermicompost at a 5 t ha−1 rate [48]. This little augmentation
in the soil organic C stock may generate large impacts in reducing the concentration of
atmospheric C. The presence of earthworms adds vermicast to soil and enhances the soil’s
physicochemical and biological properties which favor the growth of plant roots in the
deeper layer of soil and gather more C in the soil [48]. The increase in organic C in soil
maintains a sustainable agriculture system and behaves as a potent sink of atmospheric
CO2 [49]. Reduced tillage, improving soil biodiversity, managing wastes/vermicompost,
micro-aggregation, and mulching can play a significant role in decreasing CO2 emissions
and enhancing soil C sequestration [50]. The net carbon sequestration mainly depends on
the pool size of the activated carbon and its utilization in the formation of stabilized carbon
and mineralized carbon [51]. Earthworms have various impacts on the C cycle, based on
soil organic carbon content, and do not play a significant role in CO2 emission but increase
net C sequestration as huge amounts of C, i.e., earthworm-activated C, are present and
stabilized by earthworms [51].
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Figure 3. Carbon sequestration in a system without earthworms.

Figure 4. Carbon sequestration in a system with earthworms; BC: basal activated carbon; PMC:
potentially mineralizable carbon; SBC: stabilized carbon; and RMC: readily mineralizable carbon.

An earthworm affects net C sequestration due to unequal amplification of carbon
stabilization in comparison to C mineralization and generates an earthworm-mediated
carbon trap (Figure 5). The changes in the chemical composition of soil organic matter
over a longer period of time in earthworm treatments lower C loss and creates greater
C sequestration. Earthworms enhance C stabilization in macro and micro-aggregates
formed in their casts. A similar kind of observation was made by [52] that 35% of new C
is augmented in biogenic aggregates, compared to a conventional system. The scale and
method of C dynamics in an agroecosystem are greatly influenced by the earthworms [53].
The feeding manner of earthworms can differentially change the integration of fresh organic
material (OM) into biogenic aggregates. This might have significant consequences for C
protection and extended soil organic carbon (SOC) storage [54].
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Figure 5. The earthworm-mediated carbon trap (modified from [51]) conceptualized interpretation of
the effect of earthworms.

4. Conclusions and Future Perspective

Earthworms, while burrowing, ingest soil, add various biodegradable compounds
such as proteins, sugars, etc., and egest this mixed mineral soil as a nutrient-rich cast.
The vermicast is a good source of phosphorous and nitrogen due to the higher activity
of microorganisms in it. The presence of bioavailable compounds in the cast increases
the carbon use efficiency of microorganisms and developed microbial necromass which
becomes stabilized inside vermicast aggregates. The presence of earthworms influences
the soil structure, porosity, nutrient dynamics, and microbial activity which increases plant
growth, yield, and percentage of photosynthesized carbon. In sustainable agricultural
practices, vermicasts can be used as a natural amendment to improve soil conditions and
increase nutrient content in the soil; it also helps to meet the nutritional requirements of
plant species [55]. An experiment performed with a greenhouse pot revealed that the appli-
cation of vermicast alone (100%) or 75% vermicast with added Mycorrhizal fungi was toxic
to plants, due to high chemical nutrient concentrations, compared to the addition of 25% or
50% vermicast [56]. Vermicast is rich in beneficial microorganisms, essential nutrients, hu-
mic and non-humic substances, and growth-promoting hormones with desirable physical
properties [57–59]. The large surface area of vermicast granules provides more microsites
for microbial activity and nutrient retention [60,61]. This leads to slow nutrient release
for an extensive time period. The availability of scientific literature regarding nutrient
mineralization and pattern of release is limited [62]. Despite many studies on the effect of
earthworms on the soil microbial community, it is still not clear whether the earthworm has
its own microbiota or if it originates from the soil. Further research is needed to understand
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the shift of microorganisms and the activation of microbial genes induced by earthworm
activity. This mini-review indicates that there is a research gap in determining the exact
GHG emissions during the vermicomposting process. Worm composting with different
additives and earthworm species should be investigated, along with the impact of seasons
on GHG emissions during vermicomposting. Large-scale research on vermicomposting
is scant due to various challenges in accurate GHG measurement methods. The measure-
ment, mitigation, and perspectives on the emission of commonly known GHGs during
composting and vermicomposting have been reviewed in detail by [34]. Further research is
essential to find out the most accurate method for large-scale GHG measurement.
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