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Abstract: Research on the landscape level dynamics of land cover and an understanding of the drivers
responsible for these changes are useful for formulations of sustainable land management strategies
and policy decisions. The pace and magnitude of the LCCs in Ethiopia are threatening the natural
ecosystem and creating vulnerability to environmental hazards. This study used a combination
of remotely sensed data, field interviews, and observations to examine the dynamics and identify
the driving forces of LCC from 1986 to 2020 in the Muger sub-basin, Ethiopia. Multi-temporal
satellite images were classified using supervised and unsupervised methods. Information from focus
group discussions and the variable ranking method were used to explain the drivers of the observed
changes. The study results showed a decline in forest cover from 11.80% in 1986 to 5.90% in 2020,
which indicates a loss of 49.90% of the forest cover that existed in 1986. Bare land declined from
1.15% in 1986 to 0.57% in 2020. Similarly, grazing land declined from 1.52% in 1986 to 0.41% in 2020.
Wetland also declined from 1.93% in 1986 to 0.31% in 2020. Conversely, during the same period,
the proportions of cultivated land, built-up areas, shrubland, and water bodies have risen from
68.86% to 70.44%, from 0.03% to 1.53%, from 14.39% to 20.27%, and from 0.34% to 0.56%, respectively.
Population growth and poor agricultural practices were identified as the main causes of LCC in the
sub-basin. Therefore, the findings of this study suggest that implementation of comprehensive and
integrated basin management policies and strategies will be indispensable to managing the risks and
ensuring sustainable development in the larger Abay basin.

Keywords: remote sensing; field survey; accuracy assessment; change detection; causative factors

1. Introduction

Land cover and land use assessment are important inputs for ecological studies.
However, there is confusion in the use of the terms land use and land cover. Land use is
defined as a term that describes how the land is utilized by people and is mainly related
with a functional role for economic activities, whereas land cover (LC), which is the focus
of this study, describes the physical characteristics of Earth’s surface [1,2]. Land cover
change (LCC) is one of the major factors that affects biophysical systems from the local to
the global scales [3]. LCC has direct and indirect consequences on the status of the natural
environment and human activities. Land productivity, land degradation, hydrological
cycle, biodiversity, and quality of the environment are some of the natural processes that
could be affected by LCC [4,5]. The disruption of the natural systems’ capacity to meet
human needs by changing LC exposes more people and the environment to the harmful
effects of climate change. By limiting the ecosystem benefits that could be obtained from
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the comparatively stable natural environment, socioeconomic crises and political anxiety
are also caused [3,6]. Unfortunately, the rate of local and worldwide LCC has increased in
recent years, which is the most concerning issue [4,5].

Land use systems theory is one of the pillars of studying LCC dynamics; it incorporates
two major components. These are the environmental subsystems in which the changes in
LC are studied from the perspectives of the natural environment, such as changes in any
one of the cover changes and how such changes affect the ecosystem services. On the other
hand, the social subsystem is concerned with the land use affecting the dynamics of LC
over spatial and temporal scales [7].

Dynamic LC information, which accounts for changes, offers a holistic understanding
of the interactions that are important for sustainable land resource management [8]. LCC is
driven by both natural and anthropogenic factors at both the global and the local levels.
LCCs are non-linear human–nature interactions, which involve complex processes. The
historically observed changes until now are against the natural environment. The LCC tra-
jectory worldwide for the past 300 years has been categorized by gains in human-influenced
land use, such as agriculture and settlement and losses near natural environments, includ-
ing forests, wetlands, grasslands, and shrubland [9,10]. According to [11], LCCs are
associated with the change of forestland to agriculture and urban settlements and with
other forms of deforestation.

LCC has been investigated by many researchers in Ethiopia, and their findings in-
dicated that there were significant changes during the second half of the twentieth cen-
tury [12–19]. Studies have shown that LCC has been intense in the highlands of Ethiopia.
The major causes of LCC in Ethiopia are the expansion of agriculture and urbanization
and the extraction of forest products to meet the requirements of the alarmingly increas-
ing population [17,18,20]. These studies have indicated a considerable increase in the
area of cropland at the expense of other LC types. For instance, in Ethiopia’s Central
Rift Valley area, cropland has increased at the expense of water, forest, woodlands, and
grasslands [21–25]. A reduction in forest, shrubland, and grassland was observed in the
Andassa watershed in the Abay basin between 1985 and 2015, mainly as a result of the
expansion of cultivated land [26]. Cultivated land expansion was also observed in the
hilly–mountainous areas in the central highlands of Ethiopia at the expense of pasture-
land, forestland, and woodland [27]. There were, however, conflicting accounts of the
LCC patterns. For instance, between 1985 and 2015, the Somodo watershed in southwest
Ethiopia saw a drop in the area of cultivated land while there was an increase in the extent
of grassland [12]. Additionally, grassland and shrubland in Ethiopia’s northern highlands
(Gelan sub-watershed) expanded [15].

The processes of LCC are triggered by a combination of anthropogenic and natural
drivers [12–14,16–18,28]. The drivers of LCC can be broadly categorized as biophysical,
social, economic, and political factors [18,29,30]. The main drivers of LCC in Ethiopia
have been identified as rising human and livestock populations, traditional agricultural
practices, unregulated urbanization, ongoing drought, ineffective land use policies or their
complete absence, inadequate implementation of the existing policies and strategies, and
ineffective land use planning [21,28,31–34]. The complexity of the drivers of the changes
and their effects has not been fully appreciated.

According to existing evidence, Ethiopia has experienced a number of serious environ-
mental issues owing to changes in LC, including soil erosion, land degradation, loss of soil
fertility, and deforestation [35]. In terms of natural resource endowment, the Abay basin
is the most diverse and significant river basin in Ethiopia and beyond [36,37]. However,
these resources are subjected to a variety of stresses [34,38]. Therefore, in order to ensure
sustainable development throughout the basin, it is important to have a thorough under-
standing of the state of the LC, the patterns of the LCC over time, and the rates of change,
as well as the drivers and consequences of the changes in the Muger sub-basin, one of the
sub-basins of the Abay river basin.
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Therefore, the purpose of this study is to investigate the dynamics of the LC in the
Muger sub-basin between 1986, 2003, and 2020; to quantify the landscape metrics in time
and space for the entire sub-basin to track the changes; and to identify the main factors that
are responsible for the LCCs as well as the effects of these changes.

2. Materials and Methods
2.1. Study Area

This study was the conducted in the Muger sub-basin in Oromia regional state,
Ethiopia. The Muger river flows from the southeast of the basin into the Abay river.
Geographically, the study area is located between the 9◦05′18.7′′ and 10◦01′21.7′′ N lati-
tudes and between the 37◦44′29.77′′ and 39◦01′06.7′′ E longitudes, with an area coverage of
8188 km2 and an altitude ranging from 930 to 3530 m above sea level [39,40]. The spatial
details of the study area are shown in Figure 1.
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Figure 1. Location of the study area.

2.2. Data Sources and Analysis Methods
2.2.1. Spatial Data

In this study, three Landsat images of the sub-watershed were taken at various tempo-
ral scales, and a DEM with a spatial resolution of 30 m was downloaded from the USGS
website (https://earthexplorer.usgs.gov/, accessed on 2 January 2021). The DEM was
used to delineate the sub-basin and generate the slope data. Landsat images (i.e., TM
Landsat-5 for 1986, ETM+ Landsat-7 for 2003, and OLI-TIRS Landsat-8 for 2020) were used

https://earthexplorer.usgs.gov/
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for LCC analysis. All the Landsat images were acquired in January, which corresponds
to Ethiopia’s dry season, when there is a clear sky period. During this time, the images
have the minimum cloud cover and more similarity in the reflectance values of different LC
types across the images taken at different temporal scales. The three periods selected for
LCC analysis depended on the availability of the image, the policy changes, and the other
environmental factors that had unfolded in the country. With the aid of handheld GPS,
the most recent reference data of each land cover type (i.e., those of 2020) were randomly
gathered at each sampling point. A digital camera was also employed while conducting
fieldwork to take a picture of the surroundings.

2.2.2. Socio-Economic Data

Through a socioeconomic survey, the local community’s knowledge of resource avail-
ability and usage, awareness of government decision-making procedures, and views about
LCC trends and priorities were evaluated [41]. Key informant interviews (KII) and focus
group discussion (FGD) survey techniques were used in this study. Six districts were
selected based on the proportion of their area coverage in the sub-basin and their proximity
to each other. The selected districts were Wara Jarso, Kuyu, Yaya Gulale, Sululta, Ada
Berga, and Meta Robi from the total of seventeen (17) districts in the sub-basin. A group
of researchers, including the authors and additional experts in the office of agriculture,
carried out the fieldwork. Eighteen FGDs were carried out; i.e., three FGDs for each district
of the selected districts in the sub-basin. Six to eight community members participated
in each FGD. The management of natural resources, land administration, environmental
management, and climate change monitoring were the topics discussed among the 24 KIIs
with district- and zonal-level specialists. Each district provided ancillary spatial data.

Both the KII and the FGD questions were constructed with open-ended questions. The
questions addressed issues such as their perceptions regarding major shifts in the LC and
the relationships among the components of the biophysical environment, institutions, socio-
economic activities, and demography. To learn more about the management perspectives,
assess the efforts made towards resource management, and identify their challenges,
discussions on the practices and regulations that influence land management in their locality
were held. The topic of land degradation and the urgency for immediate intervention were
also covered. The goal of the discussion and interviews was to gather information on the
LCC trends, identify the causes of the changes, and determine how the LCC would affect
the long-term socio-economic benefits and environment safety. Farmers were requested
to specify which part of the sub-basin had been altered as well as the reasons behind
those changes. The effects of such modifications on the farmers’ livelihoods and the
environment were also examined. Investigations were also conducted into how the existing
socio-economic activities affected LCC.

The analysis of the socio-economic data from the KIIs and FGDs focuses on the histori-
cal and current conditions of the LC, the forces driving the change, and the implications of
the LCC. A ranking was used to determine the main causes and effects of the changes.

2.3. Land Cover Change Assessment
2.3.1. Image Classification

Image classification is a process of categorizing all pixels from an image into LC classes
to extract useful thematic information [42]. In this study, a time series of Landsat images
of different sensor characteristics (see Table 1 for the detailed description of each image)
were classified. A supervised image classification method was employed in processing the
image, using the maximum likelihood classification algorithm, which is the most widely
used algorithm for land cover assessment [43–45]. This method is theoretically sound
and versatile enough to work with different data sources and satellite systems [46]. The
supervised classification technique is used in this study because it preserves the basic LC
characteristics [47], which are common in the study area based on the training samples of
known identity.
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Table 1. Characteristics of Landsat imagery used for the land cover (LC) analysis.

Satellite Sensor Path/Row Acquisition Date Spatial Resolution Sources

Landsat 5 (TM) 168/53 and 54
169/53 and 54 January 1986 30 × 30 m USGS

Landsat 7 (ETM+) 168/53 and 54
169/53 and 54 January 2003 30 × 30 m USGS

Landsat 8 (OLI) 168/53 and 54
169/53 and 54 January 2020 30 × 30 m USGS

The reference data of the land cover types were collected in the field and from high-
resolution images such as those of Google Earth. The reference data for the year 2020 were
predominantly collected from the field survey. However, those for 1986 and 2003 were
collected using a combination of the field survey and digitizing from the high-resolution
base maps of Google Earth. Then, for all of the datasets, the data were split into a training
set and a validation set. The training dataset was used to train the classification algorithm,
while the remaining data were reserved for verifying the classification. In this study, eight
separable LC types were considered (see Table 2 for details).

Table 2. Description of LC classes used in this study.

LC Classes Description

Bare land Non-vegetated area dominated by rock outcrops, roads, and eroded
and degraded lands.

Cultivation land
Areas of land prepared for growing agricultural crops. This

category includes areas currently under crop and land
under preparation.

Forestland Area covered by trees where the tree-cover density is greater than
10%. It includes plantation and natural forest.

Grassland Areas covered by grasses usually used for grazing and those
remaining for some months in a year.

Settlement area
Land dominated with houses and huts in rural villages and small

towns (also including commercial areas, urban and rural
settlements, and industrial areas).

Shrubland Areas covered by scattered small trees, shrubs, and bushes and
mixed with grass vegetation

Water bodies The area covered by water (ponds, lakes, and rivers)

Wetland Swamplands and wetland area with small green plants or grasses.

ArcGIS 10.8 was used to run the image classification, mapping, and change detection.
As many training samples as possible were collected for each LC class throughout the entire
image and used for training the classification algorithm. The minimum number of training
samples was 45.

2.3.2. Accuracy Assessment

Accuracy assessment indicates the degree to which the reference LC data are depicted
on the classified image. As the entire workflow of the satellite image acquisition, the
pre-processing, and the image classification introduce cumulative errors, undertaking an
accuracy assessment of the image classification is mandatory. The level of confidence in the
results of the image classification and the subsequent change detection are evaluated by
accuracy assessment [43]. Therefore, the results of the image classification were compared
with the ground truth data for validation. The reference data for 1986 and 2003 came from
Google Earth, and they were supplemented by the interpretation of the original Landsat
images used for classification and the responses from the KIIs and FGDs. Google Earth and
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field observation were used to collect the reference data for the 2020 image classification.
Random sampling was employed to distribute the sampling sites for collecting the reference
data. Handheld GPS was used to determine the location of the sample points. The
validation of each classified image employed a minimum of 30 samples per LC class.

The most effective method of accuracy assessment from remotely sensed imagery
is a confusion matrix or an error matrix [48]. It provides the measures of overall accu-
racy, user accuracy, producer accuracy, and kappa statistics, which were calculated using
Equations (1)–(4) [49,50]. The classification accuracy is considered adequate if the overall
accuracy or kappa coefficient value is more than 70% [51].

OA =
x
y
× 100 (1)

where OA is the overall accuracy, x is the number of correct samples (i.e., values along the
diagonals of the matrix), and y is the total number of samples used for validation.

The kappa coefficient is a measure of the overall agreement of a classification output
with the reference data. The peculiar characteristic of this index compared with the overall
accuracy is because the kappa coefficient takes the non-diagonal elements into account [52].
The kappa coefficient measures the difference between the actual agreement of the classified
map and the expected agreement by chance with the reference data (see Equation (2)).

K̂ =
N ∑r

i=1 xii −∑r
i=1(xi+ × x+i)

N2 −∑r
i=1(xi+ × x+i)

(2)

where K̂ is the kappa coefficient, r is the number of rows in the matrix, xii is the number
of observations in row i and column i (i.e., the number of correct classes), xi+ are the
marginal totals of row i, x+i are the marginal totals of column i, and N is the total number
of observations. User accuracy (UA) and producer accuracy (PA) can also be calculated
using Equations (3) and (4).

PA =
number of correctly classified samples for a class

total number of reference samples for the same class
(3)

UA =
number of correctly classified samples for a class

total number of classified samples for the same class
(4)

2.3.3. Land Cover Change Analysis

The LC data obtained from the selected consecutive periods were cross-tabulated and
compared with each other to examine the patterns of LCC in the sub-basin. To identify
the change trends of each LC class, conversion matrices between 1986 and 2003 and those
between 2003 and 2020 were developed [34,53,54]. Equation (5) was used to determine the
rate of LCC [55–58].

r =
(

1
t1 − t2

)
× ln

(
A1

A2

)
(5)

where r is the annual rate of change for each class per year; A2 and A1 are the class areas
(in hectares) at a later time (2) and earlier time (1), respectively; and t is the time interval (in
years) between the two periods (1 and 2).

Once the LC classifications were derived, respective LC maps were created for 1986,
2003, and 2020. Then, the areas of the LC classes were calculated and the analysis of the
LCC and the rates of the changes were computed. The total LCC between the two periods
is calculated as follows:

Total LC gain/loss = A final year−A initial year (6)

Percentage LC gain/loss =
(A final year−A initial year)
Total area of the catchement

× 100 (7)
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where A = area of the LC class.
To evaluate the LC inter-category transitions and examine the historical trend of the

LC change transaction in the sub-basin, the LCC matrices were created in ArcGIS. Change
matrices were constructed for the transitions from 1986 to 2003 and from 2003 to 2020. The
areas of gain, loss, and persistence between the LC types were estimated using the matrices.
Persistence is the LC class that does not change between the start and end times of the
change detection period.

By superimposing the slope computed from the DEM, the link between the terrain
slope and the LC was assessed. Next, the spatial raster calculator was used to determine the
distribution of LCC in the various slope classes. The analysis of the spatial patterns of LCC
along the landscape is helpful in assessing the variability in LCC along the slope gradient.

3. Results
3.1. Accuracy of Image Classification

Table 3 indicates the overall accuracy, the kappa statistics, and the producer’s and
user’s accuracy metrics of the image classification at the three temporal resolutions. For the
years 1986, 2003, and 2020, the overall classification accuracy was found to be 85.45, 88.51,
and 89.39 percent, respectively. The kappa statistics were 0.79, 0.83, and 0.83 for 1986, 2003,
and 2020, respectively. Strong agreement was evident throughout all the years according to
the kappa coefficient statistics.

Table 3. Accuracy assessment of the classified images by study periods.

LC Classes

Year

1986 2003 2020

Producer’s
Accuracy

User’s
Accuracy

Producer’s
Accuracy

User’s
Accuracy

Producer’s
Accuracy

User’s
Accuracy

BL 53.33 80.00 61.54 66.67 68.42 86.67
CL 96.85 89.78 98.57 93.24 96.77 95.54
FL 77.08 88.10 88.24 90.91 75.00 75.00
GL 66.67 75.00 64.71 84.62 75.00 60.00
SA 77.78 70.00 77.78 70.00 100.00 80.00
SL 90.32 84.85 87.50 84.00 78.95 83.33
WB 70.00 70.00 80.00 80.00 88.89 80.00
WL 70.00 70.00 80.00 80.00 81.82 90.00

Overall
accuracy (%) 85.45 88.51 89.39

Overall kappa 0.79 0.83 0.83

Note: BL = bare land, CL = cultivation land, FL = forestland, GR = grassland, SA = settlement area/urban and
built-up, SL = shrubland, WB = water body, WL = wetland.

3.2. Spatio-Temporal Distributions of Land Cover Change
Land Cover Change Dynamics

The analysis of the LC patterns in the study sub-basin revealed that over the past three
decades the cultivated land and built-up areas have increased at the expense of vegetative
cover (Table 4; Figure 2). Cultivated land has been the dominant LC type of the sub-basin
over these times, covering 68.86% of the study area in 1986, 72.42% in 2003, and 70.44% in
2020 (Table 4). Similarly, the area coverage of built-up areas, shrubland, and water bodies
increased over time (i.e., from 1986 to 2020). Built-up areas as a percentage of the overall
study area were 0.03%, 0.76%, and 1.53% in 1986, 2003, and 2020, respectively.
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Table 4. Areas of LC types and their changes between 1986, 2003, and 2020.

Area Change (Gain/Loss)

1986 2003 2020 1986–2003 2003–2020 1986–2020

LC Types Ha % Ha % Ha % Ha % Ha % Ha %

BL 9413.19 1.15 8601.39 1.05 4654.5 0.57 −811.80 −0.10 −3946.89 −0.48 −4758.69 −0.58
CL 563,823 68.86 592,957 72.42 576,806 70.44 29,134.00 3.56 −16,151.00 −1.97 12,983.00 1.59
FL 96,475.9 11.78 76,634.6 9.36 48,326.3 5.90 −19,841.30 −2.42 −28,308.30 −3.46 −48,149.60 −5.88
GL 12,482.9 1.52 28,152.5 3.44 3362.4 0.41 15,669.60 1.91 −24,790.10 −3.03 −9120.50 −1.11
SA 262.89 0.03 6182.91 0.76 12,563.5 1.53 5920.02 0.72 6380.59 0.78 12,300.61 1.50
SL 117,792 14.39 92,954.9 11.35 165,935 20.27 −24,837.10 −3.03 72,980.10 8.91 48,143.00 5.88
WB 2764.56 0.34 2066.04 0.25 4613.58 0.56 −698.52 −0.09 2547.54 0.31 1849.02 0.23
WL 15,809.5 1.93 11,274.6 1.38 2562.66 0.31 −4534.90 −0.55 −8711.94 −1.06 −13,246.84 −1.62

Total (ha) 818,823.9 100 818,823.9 100 818,823.9 100

Note: BL = bare land, CL = cultivation land, FL = forestland, GR = grassland, SA = settlement area/urban and
built-up, SL = shrubland, WB = water body, WL = wetland. Total LULC gain/loss and percentage of LULC
gain/loss were calculated using Equations (6) and (7), respectively.
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In 1986, shrubland, forestland, wetland, and grazing land accounted for 14.39%,
11.39%, 1.93%, and 1.52% of the sub-basin, respectively. During the period from 1986
to 2003, the areas of shrubland, forestland, and wetland showed the highest reduction,
whereas the size of the cultivated land increased. During the latter period (between 2003
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and 2020), forestland, grassland, and wetland showed the highest decline. Cultivated land
also decreased during the 2003–2020 period. However, the built-up areas kept expanding
across both temporal periods. The area coverage of cultivated land, built-up area, and
shrubland showed a general increase, whereas that of the forestland, grazing land, and
wetland showed a general decline across the study period (Tables 4 and 5).

Table 5. Area (in hectares) and proportion of LC and the rate of changes in the Muger sub-basin
between 1986, 2003, and 2020.

Area Change

1986 2003 2020 1986–2003 2003–2020 1986–2020

LC Types Ha % Ha % Ha %
Annual
Change
Rate (%)

LC
Change

(%)

Annual
Change
Rate (%)

LC
Change

(%)

Annual
Change
Rate (%)

LC
Change

(%)

BL 9413.19 1.15 8601.39 1.05 4654.5 0.57 0.000 −0.10 −0.036 −0.48 −0.021 −0.58
CL 563,823 68.86 592,957 72.42 576,806 70.44 0.003 3.56 −0.002 −1.97 0.001 1.59
FL 96,475.9 11.78 76,634.6 9.36 48,326.3 5.90 −0.014 −2.42 −0.027 −3.46 −0.020 −5.88
GL 12,482.9 1.52 28,152.5 3.44 3362.4 0.41 0.048 1.91 −0.125 −3.03 −0.039 −1.11
SA 262.89 0.03 6182.91 0.76 12,563.5 1.53 0.186 0.72 0.042 0.78 0.114 1.50
SL 117,792 14.39 92,954.9 11.35 165,935 20.27 −0.014 −3.03 0.034 8.91 0.010 5.88
WB 2764.56 0.34 2066.04 0.25 4613.58 0.56 −0.017 −0.09 0.047 0.31 0.015 0.23
WL 15,809.5 1.93 11,274.6 1.38 2562.66 0.31 −0.020 −0.55 −0.087 −1.06 −0.054 −1.62

Total (ha) 818,823.9 100 818,823.9 100 818,823.9 100

Note: BL = bare land, CL = cultivation land, FL = forestland, GR = grassland, SA = settlement area/urban and
built-up, SL = shrubland, WB = water body, WL = wetland. The percentage and rate of change were calculated
using Equation (5).

The spatio-temporal distribution of LC across the topographic gradient in the Muger
sub-basin is presented in Figure 2. From Figure 2, it can be seen that the cultivated and
grazing land expanded towards the highland areas of the sub-basin. Obviously, most of
the additions to the water bodies followed the routes of the tributaries of the Muger River.

3.3. Land Cover Transition Matrix

The results of the LCC analysis of the Muger sub-basin showed that the study area
experienced intricate LC transitions. Then, the net gain in area of each land cover type
was developed for the three regimes, i.e., 1986–2003, 2003–2020, and 1986–2020 (Figure 3).
This matrix is useful for indicating the directions of change, i.e., the area gain, loss, and
persistence among the LC types. During the entire study period (1986–2020), 444,264.66 ha
(54.26%) of the cultivated land remained unchanged, followed by the shrubland at 54,051.3
(6.60%), and the forestland at 26,568.09 (3.24%). The majority of the LCC is attributed to the
conversion of shrubland to cultivation at 86,677.38 ha (10.59%), followed by cultivation land
to shrubland at 56,473.38 ha (6.90%) and forestland at 52,743.24 ha (6.44%). A significant
amount of the cultivated land was also converted to built-up areas (7244.91 ha) and barren
land (2960.01 ha), while most of the barren land was converted to forest (2803.86 ha) and
cultivated land (2162.61 ha). Even though the built-up areas did not change much, an
estimated 8732.43 ha was gained from cultivated land (Figure 3).

Regarding the net persistence, the built-up areas showed the highest net change to
persistence ratio during all the study periods (i.e., 1986–2003, 2003–2020, and 1986–2020). A
high net change to persistence ratio implies a low persisting class of the LCC matrix. The
lowest persisting LC class in the Muger sub-basin was the built-up area followed by the
grassland for the 1986–2003 period, whereas the cultivated land and shrubland showed
the highest persisting LC classes (Table 6). During the 2003–2020 period, the built-up
areas and the water bodies were the lowest persisting LC classes, while the shrubland
and cultivated land were the highest persisting LC classes. During the overall study
period (i.e., 1986–2020), the built-up area and the grassland were the lowest persisting
LC classes, while the shrubland and the cultivated land were the highest persisting LC
classes. Generally, the cultivated land and the shrubland exhibited the highest persistence
of change.
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Table 6. Net change (ha) and net persistence ratio of each land cover type by temporal regime.

Land over Type
1986–2003 2003–2020 1986–2020

Net Change Net Persistence Net Change Net Persistence Net Change Net Persistence

Bareland −811.8 −0.78 −3946.86 −5.069 −4758.75 −7.69
Cultivation land 29,133.81 0.06 −16,150.41 −0.035 12,983.31 0.03

Forestland −19,841.31 −0.46 −28,308.51 −1.192 −48,149.64 −1.81
Grassland 15,669.63 9.54 −24,790.14 −13.144 −9120.51 −17.70
Settlement 5920.02 81.71 6380.55 13.763 12,300.57 326.19
Shrubland −24,836.76 −0.7 72,979.74 1.572 48,142.98 0.89
Water body −698.67 −1.91 2547.54 4.958 1848.87 1.70

Wetland −4534.92 −1.24 −8711.91 −5.307 −13,246.83 −8.36

Note that net change is the difference of gain and loss in area of a land cover class; and net persistence is the ratio
of net change to persistence or the area that remains unchanged for that class.

The results in Tables 4 and 5 indicate that the landscape was dominantly covered with
cropland (69% of the study area) in 1986. There was also remarkable cover of shrubland
and forestland, accounting for approximately 14% and 12% of the land area. There was a
small size of built-up area (0.03%) in 1986. The results of the area gain and loss of LC classes
during the period between 1986 and 2003 indicate that there have been tremendous swaps
(Table 4). Only 66.8% of the area did not undergo conversion during the time between
1986 and 2003 (Table 6). A net gain in area was observed for cropland, grassland, and
built-up area, while other the LC types in the sub-basin experienced a net loss in area. The
expansion of the built-up areas was a remarkable change observed during this period. This
has happened at the expense of almost all the other LC classes (mainly water body, wetland,
shrubland, cropland, and forestland).

Because of the observed changes during the 1986–2003 period, the share of cropland
cover in 2003 was higher than it was in 1986, accounting for more than 72% of the sub-basin.
However, a decline in cropland cover was observed during the regime between 2003 and
2020. The loss was mainly accounted for by the increase in shrubland, forestland, and
grassland, respectively. Despite a shift of LC from cropland to forests, there was a net
deforestation in the sub-basin during this period (i.e., 2003–2020). The loss of forestland



Sustainability 2022, 14, 11241 11 of 19

appears to be related to a conversion to cropland and shrubland in some parts of the
landscape. This demonstrates the amount of swap of the LC classes. The result of the
change detection has also revealed that the built-up areas doubled in area from 2003 to
2020. The conversion from the cropland, shrubland, and forestland classes contributed to
most of the increase in the area of built-up areas.

The synthesis of the results of the wider temporal regime (i.e., from 1986 to 2020)
indicated the general trend of LCC in the sub-basin. There has been a continuous decline
in bare land, forestland, and wetland over the study period. The negative values of the
net change and net change to persistence ratio for the mentioned LC types indicated
this pattern of change. On the other hand, there were general increases in the cropland,
water bodies, and built-up areas. The expansion of the built-up areas was continuous
over the time intervals, indicating that the built-up areas have a more permanent effect on
land management practices. The built-up areas had a larger magnitude of net change to
persistence ratio as the observed changes stemmed from a small area at the beginning of
the change detection period and kept expanding.

3.4. The Effect of Slope on LCC

In this study, LC was reclassified into seven slope categories, such as 0–2% gently
undulating, 2–5% undulating slope, 5–8% gently rolling, 8–15% moderately rolling,
15–30% strongly rolling, 30–60% hilly slope, and greater than 60% steep slope [56,59].
The growing demand for agricultural land use brought about changes in LC, especially
in sites with steep slopes. In 1986, a large part of the cultivated land (44.2%) was located
on gentle slopes (0% to 2%), followed by a more undulating slope (2% to 5%), and was
covered with crops. In 1986, the areas covered with forestland dominated the strongly
rolling slopes (15% to 30%), followed by the hilly slope class (30% to 60%). However,
in 2020 the remnant forestland existed in the hilly slope class (30% to 60%), followed
by a strongly rolling slope class. The expansion of cultivated land, the growth of the
built-up areas, the conversion to shrubland, and the increased water bodies on the lower
slopes have played a significant role in the shift in dominance of the forest cover from
the strongly rolling to the hilly slopes. The maximum rate of cultivated land expansion
occurred during the study period (1986 to 2020) on slope classes of strongly rolling to
extremely mountainous terrain. The amount of forestland declined in all slope ranges,
with gently undulating to moderately rolling slopes losing forests at the fastest pace.
Similarly, in all the slope classes, the area of wetland shrank.

From 1986 to 2020, the built-up areas expanded in all slope ranges, with the biggest
increment on the gently undulating slopes. Grazing land increased only in the slope ranges
of 0–5% (i.e., the gently undulating and undulating slope classes). The surface area of
the water bodies increased in all the slope ranges except in the higher slope classes. As
expected, the highest increase in the area of water bodies was shown on slope ranges of
0–2%. In contrast to the water bodies, the grassland decreased in all slope ranges except on
very hilly slope areas. The maximum decline in the area of water bodies happened in the
hilly slope class and that of the grassland was observed in the slope ranging from 8 to 15%.
The spatial distribution of LCC between 1986 and 2020 against the slope classes is given in
Table 7.
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Table 7. LC distribution of 1986 and 2020 in different terrain slope classes.

1986 Percent of Slope Class and Area Coverage, Hectares

LC Type 0–2% 2–5% 5–8% 8–15% 15–30% 30–60% >60% Total

BL 3729.78 2698.29 1805.13 970.2 191.7 5.49 12.6 9413.19
CL 275,904.9 151,292.3 78,429.24 46,172.7 10,428.84 1576.63 18.26 563,822.8
FL 23,261.94 20,925.18 20,230.65 21,388.14 9815.94 749.97 104.13 96,475.95
GL 9683.73 1761.84 524.79 372.42 112.86 11.43 15.84 12,482.91
SA 168.84 46.35 18 14.49 9.99 0.9 4.32 262.89
SL 41,565.78 30,723.03 24,139.62 16,579.26 4430.34 258.66 94.95 117,791.6
WB 1022.85 448.38 306.45 418.95 432 42.12 93.96 2764.71
WL 6699.51 4637.79 2920.23 1359.72 157.05 9.9 25.29 15,809.49

Total (ha) 362,037.3 212,533.1 128,374.1 87,275.88 25,578.72 2655.1 369.35 818,823.6

2020 Percent of Slope Class and Area Coverage, Hectares

LC Type 0–2% 2–5% 5–8% 8–15% 15–30% 30–60% >60% Total

BL 2122.92 1154.25 725.4 523.08 116.37 5.58 6.84 4654.44
CL 253,660.5 159,299.6 92,622.96 57,245.49 12,434.58 1034.59 508.37 576,806
FL 12,321.99 9095.76 8230.32 10,810.53 7105.95 663.39 98.37 48,326.31
GL 3167.01 158.49 11.34 16.56 8.82 0.09 0.09 3362.4
SA 5657.85 3386.16 1856.52 1096.92 430.74 84.24 51.03 12,563.46
SL 81,155.07 37,940.76 24,089.58 17,000.55 5307.12 279.27 162.27 165,934.6
WB 2420.64 978.12 557.46 405.27 132.21 14.4 105.48 4613.58
WL 1531.35 520.02 280.53 177.48 43.92 5.67 3.69 2562.66

Total (ha) 362,037.3 212,533.1 128,374.1 87,275.88 25579.71 2087.23 936.14 818,823.5

Note: BL = bare land, CL = cultivation land, FL = forestland, GR = grassland, SA = settlement area/urban and
built-up, SL = shrubland, WB = water body, WL = wetland.

3.5. Major Drivers of LCC

LCC is the result of a combination of different causative factors. The results of the
FGDs, KIIs, and field observations revealed that both anthropogenic and natural processes
contributed to the observed LCC in the study area. However, anthropogenic activities are
the more influential factors contributing to LCC, as compared to the natural processes.
From a range of different drivers of LCC, the respondents perceived ten of them in the study
area (Table 8). The ranks were derived based on how often the variables were mentioned by
the respondents. Consequently, the main drivers of LCC in the study area were cultivated
land expansion (17.42%), population growth (16.52%), wood extraction (14.02%), expansion
of built-up areas (12.65%), and infrastructure development (10.08%).

Table 8. Ranking of the direct drivers of LC change in the study area based on data from KIIs.

Drivers of LC Changes Percent (%) Rank

Agriculture expansion 17.42 1
Population growth 16.52 2

Wood extraction (for charcoal, fuel wood, and construction) 14.02 3
Expansion of settlement 12.65 4

Infrastructure development 10.08 5
Overgrazing 9.09 6

Absence of land use planning 6.14 7
Expansion of plantation 5.15 8

Limited capacities of the NRM sector 4.62 9
Lack of land use policies and laws 4.32 10

According to the results from the KIIs and FGDs, the underlying causes of LCC in the
study area are the complex socio-economic, institutional, biophysical, demographic, and
technological factors (Table 9). High population growth was perceived as the major driver
from the demographic factor causing LCC in the study areas (Table 8). According to the
2007 Population and Housing Census of Ethiopia, the total population of the sub-basin



Sustainability 2022, 14, 11241 13 of 19

districts was 1,827,639 [60]. The population was also projected to be 2,202,756 in 2014,
2,381,946 in 2017, and 2,523,089 in 2020 [61]. According to the information from the KIIs
and FGDs, resettlement, immigration, and natural population growth were identified as
the causes of the population increase in the sub-basin.

Table 9. Underlying causes of LC change in the study area and their ranking based on the KIIs.

Drivers of LC Changes Percent (%) Rank

Demographic 31.94 1
Economic 27.22 2

Institution and policy 16.39 3
Biophysical/natural 14.44 4

Technological 10.00 5

The results of the KIIs and FGDs showed that the attention given by the government
to building cement factories, to infrastructure development, and to the expansion of the
built-up areas was among the major socio-economic and institutional causes of LCC in
the sub-basin.

4. Discussion
4.1. Land Cover Change Dynamics

The results of the post-classification comparison satellite images of 1986, 2003, and
2020 revealed the extent of the LCCs in the Muger sub-basin in the study periods. It showed
dramatic changes in LC from one cover type to the other (Table 3; Figure 2). Cultivated
land, shrubland, and forestland were the major LC classes that altogether account for
more than 93% of the total land in all the three time intervals. However, there has been
a general increase in the area coverage of cultivated land and built-up areas, while there
has been shrinkage of the forestland and shrubland. The construction of different cement
factories, such as Ethio cement PLC, the Derba MIDROC cement plant, Dangote Cement,
Abyssinia Cement PLC, CH clinker manufacturing PLC, Inchini Bedrock cement PLC, and
the Muger cement factory, was one of the main contributing factors to the observed LCC.
A similar study conducted in the Abay basin revealed that the cultivated land expanded
at the expense of the forestland, shrubland, and grassland [62,63]. This finding was also
consistent with other research reports elsewhere in Ethiopia [14,16,23,24,64–66].

The change matrix shows that most of the loss of forestland over the entire period
resulted from the expansion of the cultivated land. In addition, the gain in cultivated
land and the objectives of the clearing of the forests, which were attributed to charcoal
making, timber extraction, and continuous fuelwood extraction, could be the reasons for
the loss of forest resources. A historical account from a 70-year-old respondent revealed that
before 1986, the lowland areas of the sub-basin (i.e., the Muger valley) had been covered
with forests, woodlands, and rangeland. He mentioned that through time, in this valley,
there had been diminishing of not only the coverage but also the quality of the forest
(i.e., a decline in the vegetation composition, especially in indigenous tree species such as
Hagenia abyssinica, Juniperus procera, Podocarpus falcatus and Acacia abyssinica). Other studies
conducted in different parts of the Abay basin in Ethiopia reported similar findings. The
findings of this study were comparable with those, for example, in the Gumera and Gelan
watersheds of the Abay basin [15,16] and in western Ethiopia [13].

The change matrix developed to assess inter-category transitions and the change
trajectories highlight the dominant dynamic events and internal conversions between the
LC classes. The highest net change to persistence ratio observed for some of the LC classes
implies the lowest persisting LC class. The built-up areas showed the highest ratio of the net
change to persistence, whereas cultivated land showed the lowest net change to persistence
ratio in the broader (i.e., 1986–2020) transition. The expansion rate of the built-up areas
increased, with the highest rate in recent years. The increments were due to the expansion
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and construction of development infrastructures such as roads, buildings of public service
institutions, factories, and residential buildings.

The expansion of built-up areas, the loss of forests, and the shrinkage of water bodies
such as rivers and wetlands manifested in the results of the image analysis were perceived
by members of the local community, as indicated in the FGDs and KIIs. We also observed
the escalating demand for agricultural and residential land in recent years. A similar
trend has also been observed in other areas of the Abay basin, for example in the Gelda
catchment [67] and the Andassa watershed [68]. The findings of this study were also in
line with those of [69], who reported a rapid urban growth in the major cities of Ethiopia
between 1987 and 2017. Unplanned urban expansion among the zonal, regional, and the
capital cities of Ethiopia was the main driver for the conversion of rural landscapes to
urban landscapes [17].

Migration from rural areas to urban centers also contributed to urban expansion in the
Muger sub-basin. For example, the total population of urban inhabitants in the Muger sub-
basin districts was 119,583 in 2007 [60]. According to the CSA projection, the population
of urban inhabitants reached 376,312 within a decade in 2017 and 438,521 in 2020 [61].
According to the survey results, migration at an individual or household level was caused
by three main factors. The three main causes of the local migration of the rural farmers, as
reported in the KIIs and FGDs, were lack or shortage of farmland, limited access to public
infrastructure, and the need to engage in petty trades and urban employment. Elders own
most of the existing farmlands, and the youth have no farmlands unless they inherit from
their families, which forces them to migrate to urban areas in search for job opportunities.
Due to a higher rate of rural poverty and very few employment opportunities in the
rural centers to absorb the rural labor, population growth is often correlated with LCC in
Ethiopia [70]. Likewise, the lack of access to public infrastructure, such as electricity and
potable water in rural areas, has forced households to move to urban areas. Relatively
wealthier farmers were also motivated to engage in petty trade and other businesses in
urban areas.

Forest cover decline and unregulated urban growth were also reported in other studies
in Africa and beyond. For example, the size of the built-up areas increased by about tenfold
at the expense of grasslands, shrublands, and woodlands in the Central Rift Valley of
Ethiopia between 1973 and 2014 [71]. A similar pattern of LCC in the Central Rift Valley
of Ethiopia was reported by [24]. A significant decline of shrubland and an increase in
built-up areas were also witnessed in Botswana between 1984 and 2015 [72]. The increase
in the area coverage of built-up areas and the reduction in forestland and fresh water
were also reported in the Upper Shire River Catchment of Malawi [73]. An increase in the
built-up areas at the expense of forestland was reported in northern Mozambique [74]. The
study on land use change and the climate of East Africa reported that landscapes covered
with agricultural crops increased and production systems were more intensified, while
forestland decreased between 1986 and 2000 [75].

4.2. Drivers of Land Cover Change

Although both natural and anthropogenic factors were described as the drivers of
LCC in the catchment area, anthropogenic causes were identified as the most common and
immediate drivers of the observed changes. The natural resource utilization pattern of the
local community aggravated the natural processes through deforestation and unsustainable
agricultural practices. Such human-induced pressures on the natural ecosystems have
widespread coverage across Ethiopia. Thus, they significantly contribute to most of the
LCCs in the country. A study conducted in southeastern Ethiopia indicated that anthro-
pogenic factors were the main causes of LCC [70]. In a country where there is unabated
population growth and escalating poverty, the human impact on the natural resources is
undoubtedly immense. A study conducted on a related topic in Ethiopia showed that the
effects of anthropogenic factors were more pronounced than the natural processes over a
small area within a short period [67]. The results of this study are in line with various stud-
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ies, which have identified that the drivers of LCC are attributed to technological, economic,
demographic, political, institutional, and cultural factors [30].

The findings of the FGDs and KIIs indicated that the local community understood the
impacts of cultivated land expansion, population growth, wood extraction, the expansion
of built-up areas, and infrastructure development in changing the LC of their surroundings.
Population growth increases the demands for more cultivated land, fuel wood, charcoal,
and infrastructural development, which leads to loss of the vegetative cover. Some of the
main factors influencing the observed LCC in the Muger sub-basin include population
increase, migration, changes in government policy, and/or regime change. These drivers of
LCC have often been mentioned in many parts of the country as well. Hence, the boost in
the human population is the main cause of LCC in the study sub-basin. Population increase
was a contributing factor to LCC in the Chemoga watershed of Ethiopia’s northwestern
highland [76], the Dendi district [77], the Dera district [78], and the Geleda catchment [67],
to name a few. In other parts of the world as well, population increase was cited as the
primary cause of LCCs [79,80].

In the study area, these drivers of LCC were triggered by the high level of poverty,
unreliable rainfall, the unaffordable cost of agricultural inputs, limited access to alternative
energy supplies, and insufficient law enforcement by the government. Existing experiences
indicate that LCC is driven by various intermingling factors, such as urban expansion,
cultivated land expansion, population growth, biophysical factors, climate change, and
land policy [65]. The results of the survey also confirmed that the expansion of built-up
areas, overgrazing, the absence of land use policy, and the lack of access to appropriate
agricultural technologies contributed to LCC. A study conducted in Munessa-Shashemene
in the Central Rift Valley of Ethiopia reported that poorly implemented social, economic,
and environmental policies and limitations in the use of technologies in the agriculture
sector contributed to LCC [28].

The expansion of the cement factory and flower farm projects and the associated
infrastructure development have displaced the rural communities from their farmlands
and forced them to resettle in other places. The displacement has been implemented
without adequate compensation. The intensified resettlement on agricultural productive
lands, coupled with the decline in productivity of the land for crop production made it
difficult for rural households to remain in their localities, forcing them to move to urban
areas. Furthermore, the lack or limited availability of rural jobs for the youth and the
emerging urban development in the catchment amplified the socio-economic activities,
which contributed to LCC. Discussion with the community representatives and the field
observations also confirmed that cultivated lands are still expanding in the steep slope
areas. Farmers living on the highlands cultivated small parcels of land situated either on
the steep slope or on flood-prone areas. A similar study showed that the construction of
dams in the Finchaa catchment has taken over many farms; many farmers have lost their
land and are left with nothing [81].

The adverse impacts of LCC were associated with the underlying factors related to
human activities. Some of the observed consequences of LCC in the basin included severe
soil erosion and land degradation in the high lands and sedimentation in the lakes, rivers,
and dams in the lowlands. Similar effects were observed in the highlands of Ethiopia [76,82].
Such effects happened because of the prevalence of unregulated agricultural expansion
and settlements at the expense of the natural environment. A reduction in the cover of
shrubland, forestland, and natural grassland plays a significant role in modifying the
characteristics of the surface hydrology and soil erosion processes in the highlands and
the sediment flow in the low altitude landscapes [83]. The LCC in this sub-basin has
consequences for the larger Abay basin in which the grand Ethiopian renaissance dam
is located. The sediment load from this sub-basin will shorten the lifetime of this huge
dam unless every part of the upper catchment area is properly managed. For instance, the
expanding cultivated land on the steep slopes, implemented without using suitable land
management techniques, may make the area more susceptible to erosion and sedimentation
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in the catchment’s water bodies. A similar study also reported that LCC has a strong
potential to lower the crop productivity of subsistence agriculture [15].

5. Conclusions

This study assessed LCC using multi-temporal remotely sensed images in the Muger
sub-basin from 1986 to 2020. FGDs and KIIs were used to identify the main drivers of
the observed LCCs in the sub-basin. Over the course of the study period, there was a
decrease in the areas of bare land (0.58%), forestlands (5.88%), grasslands (1.11%), and
wetlands (1.62%), while there was an increase in the areas of cultivated land (1.59%), urban
areas (1.5%), shrubland (5.88%), and water bodies (0.23%). Cultivated land and shrubland
showed the highest persistence of change during the study period. The spatial distribution
of LCC across the slope classes showed a continuous increase in the area coverage of
cultivated land and built-up areas and a decrease in forestlands, grasslands, and wetlands.

The increase in the human population, agricultural land expansion, wood extraction,
expansion of built-up areas, and infrastructure development were identified as the main
causes of LCC. The decline in crop productivity and animal production, biodiversity loss
and habitat destruction, land and soil degradation, water scarcity, and protracted aridity
and drought are the major impacts of the LCC perceived in the area. Careful planning
and informed intervention are required to reduce human pressure on the natural resources
found in the sloppy areas. Sustainable watershed management interventions are required
to ameliorate both the living conditions of the local community and the conservation of the
natural resources in the sub-basin.

The study of LCC, the assessment of the causative factors, and the description of the
impacts presented in this study could help decision makers by providing information that
supports integrated basin management. This study suggests that special attention should
be given to rehabilitating the degraded lands and protecting the remnant natural resources
in the sub-basin. We recommend that collaboration among potential partners, coordinated
planning, and informed decision making for the rehabilitation of the degraded lands will
ensure the reduction in the undesirable effects of the complex environmental challenges
arising from LCC in the basin.
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