
Citation: Widera, K.; Grabowski, J.;
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Abstract: Emission of air pollutants constitutes one of the major hazards to human health and life.
Particulate matter and harmful gases emitted by residential heating, especially, occupy a significant
position among the sources of air pollution. This paper presents the research results concerning
the composition of ashes obtained from the combustion of fuel samples composed of wood pellets,
eco-pea coal, and coal pellets (trade name—VARMO) with various admixtures of waste materials.
The study stand was equipped with a boiler having a nominal power of 18 kW. Several of the
most characteristic chemical elements identified in the ash were used as the basis to classify the
combustion of waste. A model based on a statistical method was designed. Within the framework of
the research, a statistical multivariate technique, discriminant analysis, was applied. The statistical
model was constructed for two groups of ash samples and 19 chemical elements indicating their
contamination. The high prediction power of the model and the validation (fitting was 90.00% and
85.19%, respectively) confirmed the possibility of the practical application of this proprietary method.
It permitted identification of the markers (chemical elements) in the ash. It confirms that the fuel is
combusted with the admixture of waste materials in a given boiler. Based on the analyses performed,
it was found that from among the 19 elements, five, namely K, Ti, Zn, Ca, and Rb, were selected as
the markers because they are characterised by the highest discrimination ability. In addition, they are
the best indicators of the contamination level of the ash samples that were examined.

Keywords: waste combustion; mathematical model; air pollution; ashes; co-combustion

1. Introduction

Limiting air pollution has become a key issue to be addressed concerning the quality of
life of global populations [1,2]. Air pollution constitutes a problem that results from numer-
ous indicators (i.e., urban development, industrialisation, road traffic, and inappropriate
waste management) [3]. Additionally, apart from environmental damage, air pollution also
exerts a significant negative impact on the economies, including adverse health effects [4–6].
The Upper Silesia Coal Basin (Poland) is characterised by the worst air quality; ten of the
fifty European cities with the highest levels of air pollution are located in this region [7]. The
main cause of poor air quality in the Upper Silesia Coal Basin is low emission originating
from individual residential heating (domestic and communal emission), accounting for
over 50% of particulate matter (PM10) and about 90% of benzo(a)pyrene (BaP) emissions to
the air [8]. The industrial and linear emissions of air pollutants have a significantly lesser
impact. According to the Report of the European Environment Agency, it is estimated that
about 45,000 deaths annually are caused by poor air quality [9].

By the same token, in the European Union, air pollution is considered to be the greatest
hazard to the health of the EU residents. Approximately 400,000 people die every year due
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to the excessive levels of air pollution; the factor responsible for such a state of affairs is
the exposure to exceeded admissible limits of PM2.5, nitrogen dioxide, or ozone [10–12].
The populations of urban areas are especially exposed to the hazards connected with air
pollution [10,13].

The East Asia Greenpeace Report also emphasises the importance of the global prob-
lem of air pollution [14,15]. According to the report, air pollution is conducive to the
premature death of 3.2 mln to 6.2 mln people worldwide. The vast majority of the pre-
mature deaths, estimated at 2.3–3.7 million cases annually, are attributed to the exposure
to PM2.5. Ozone constitutes another air pollutant contributing to the premature deaths,
accounting for 0.6–1.4 million cases. The third most significant contributor is nitrogen
dioxide; exceeding its permissible concentrations in air is the cause of 0.3 to 1.1 mln deaths
per year [15].

The emission of PM10 and hazard gases generated by boiler plants and household fur-
naces constitutes a significant source of air pollution in Central and Eastern Europe [16–18].
Frequently, fuels such as coal, wood, or biomass are combusted ineffectively, which means
that the increased fuel consumption is incommensurate with the energy outcome, while
the combustion processes are incomplete and fragmentary, thus creating an increase in the
pollutants present in the exhaust gases. Inexpensive fuels of low heating parameters, e.g.,
floto-concentrates, coal slurries, or nonwoody types of biomass, are used, often with the
admixture of different kinds of waste [19–24].

This is not only a problem in Poland; illegal incineration of waste in household heating
furnaces is estimated at the level of 2–10% [25]. The major types of waste added to the fuel
are wood residues, furniture, plastic materials, textiles, and tires. A similar situation takes
place in Romania; research on air pollution in this country indicated that the combustion
of waste results in an excessive emission of PM10 and polycyclic aromatic hydrocarbons
(PAHs) to the atmosphere [26]. The fact that the price of basic fuels has recently been
increasing worldwide allows for the assumption that the share of waste combusted in
domestic furnaces may increase.

Eliminating the combustion of waste in household furnaces necessitates the design of
rapid, efficient, and cost-effective detection methods to assess such practices. An analysis
of the chemical composition of the exhaust gases seems to be the best analytical tool to
identify the combustion or co-combustion of waste in individual heating appliances; based
on characteristic markers, it is possible to detect the presence of prohibited materials added
to the fuel [27–29]. Unfortunately, because it is necessary to sample the exhaust gases
directly from chimney flues, the method cannot be applied in the case of combusting
waste in domestic furnaces, particularly for consolidated chimney flue installations through
which exhaust gases generated by various users are released.

The analysis of ashes appears to a promising alternative method to confirm the prac-
tice of combusting or co-combusting waste in individual household heating appliances.
This method constitutes the best available tool to identify the above practices, and, more
importantly, it is technically feasible [30]. Muzyka et al. [30] presented the analysis of
the parameters of furnace waste combined with numerical classification methods. The
classification analysis consists in examining the chemical composition of nine basic oxides,
moisture, ash content, and ignition loss. The analysis comprises a set of logical rules and
allows for classification of the examined sample to one of the three following classes:

- Class I: only pure fuel is combusted (the combustion of waste in the individual furnace
is excluded);

- Class II: the combustion of waste in the individual furnace has not been identified;
- Class III: waste has been combusted in the individual furnace.

Grabowski et al. [27] applied for the first time statistical methods for the purpose
of identifying fuels which were used in domestic heating, especially the ones with an
admixture of waste. The application of hierarchical clustering analysis (HCA) [31–35] to
interpret data concerning the chemical composition of ashes produced in the combustion
of fuels and fuels blends with waste, organised in matrices, enabled identification of the
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similarities among the respective samples in parameter space together with the similarities
among the measured parameters (content of the chemical elements in the ash) in the space
of the samples [27].

This research constitutes an attempt to apply statistical methods to design a model
that facilitates the classification of furnace combustion waste based on the presence of
several of the most characteristic chemical elements identified in the post-combustion ash
in individual furnaces. The objective of the research effort is to identify certain markers
(chemical elements) that enable determining if the fuel used was burned with added waste
in a given boiler. The markers (the elements) are selected by means of statistical methods
from among the nineteen elements present in combustion waste.

2. Materials and Methods

The experiments on the co-combustion of fuel samples with various admixtures of
waste materials were performed using a research stand including a boiler with a nominal
power of 18 kW, 1.7 m2 heating area, and 85% efficiency. The boiler was equipped with a
0.16 m3 capacity automated underfeeder, an air heater installation for heat collection, and a
measurement and control apparatus. The maximum working pressure of the boiler was
0.1 MPa, while the minimum chimney draught requirement was 16 Pa. The measurement
system comprised a combustion process temperature regulator and an Itron CF 55 thermal
efficiency meter. In addition, the research stand featured a measurement apparatus for
determining the pollutants, including a type-S Pitot tube with an automatic dust meter,
Emiotest 2598 (New York, NY, USA); DX-4000 Gasmet and Horiba PG350E (Vantaa, Finland)
exhaust gas analysers (O2, SO2, NO, NO2, CO, CO2, H2O); an LZO Signal 2000 analyser
(Oldenburg, Germany), and a velocity aspirator with internal filtration. Figure 1 presents
the schematic diagram of the research installation.
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Figure 1. Schematic diagram of the research stand for combusting samples of fuels with the admixture
of waste.

For the purpose of the study, the selected basic fuels, i.e., deciduous tree wood pellets,
eco-pea coal, and VARMO pellets, were mixed (10:90 and 50:50) with the following waste
materials: rubber, waste paper, RDF, MDF, plastic waste, textile waste, diapers, and multi-
material packaging. Relevant physicochemical parameters of the fuel and waste samples in
analytical state were determined. The combustion tests were performed by an accredited
laboratory in the Department of Environmental Monitoring at the Central Mining Institute,
Katowice, Poland.
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The analytical moisture and ash content were determined using the weight method
(according to the Polish standard PN-EN 15414-3:2011 and procedure SC-1.PB.03, respec-
tively); total sulphur, carbon, and hydrogen were determined using the method of high-
temperature combustion with IG detection according to standards PN-EN 15408:2011,
PN-EN 15407:2011, and PN-EN 15407:2011, respectively. The heat of combustion and the
calorific value were determined by means of the calorimetric method according to the
standard PN-EN 15400:2011. The results are presented in Table 1.

Table 1. Analytical characterisation of the fuel, i.e., deciduous tree wood pellets (DTW), eco-pea
coal (C), and VARMO pellets (V), and waste, i.e., rubber (R), waste paper (WP), RDF, MDF, plastic
materials (PM), textiles (T), diapers (D), and multimaterial packaging (MMP).

Parameter Unit DTW C V R WP RDF MDF PM T D MMP

Total moisture %w/w 4.62 6.63 1.81 1.92 2.86 4.16 4.68 2.81 2.66 2.81 2.64

Ash %w/w 0.64 3.69 6.81 4.17 23.92 12.36 0.92 14.15 3.36 17.19 8.79

Carbon, C %w/w 50.94 73.19 78.50 87.09 48.39 41.94 49.01 58.42 51.67 56.38 47.80

Hydrogen, H %w/w 6.36 4.65 4.68 5.36 6.69 5.51 6.36 8.11 6.04 8.39 6.99

Total sulphur, S %w/w <0.03 0.56 0.31 1.31 0.21 0.07 <0.03 0.14 0.16 <0.03 0.07

Heat of combustion kJ/kq 18,800 28,390 30,860 37,310 20,210 15,320 18,350 24,850 18,230 25,390 20,350

Calorific value kJ/kq 17,420 27,390 29,860 36,170 18,780 14,110 16,970 23,110 16,920 23,600 18,830

During the course of the combustion tests, ash samples were taken in order to deter-
mine the contents of the following oxides: SiO2, Al2O3, Fe2O3, CaO, MgO, Na2O, K2O, SO3,
TiO2, and P2O5, together with the contents of chemical elements, including heavy metals:
Cl, Mn, Cu, Zn, Rb, Sr, Zr, Ba, and Pb. The analyses were performed using a Rigaku ZSX
PRIMUS II wavelength dispersive X-ray fluorescence spectrometer. Discriminant analysis
was used to construct the statistical model for the analysis of the elemental content of the
ashes. Discriminant analysis constitutes a multivariate statistical tool applied to determine
the set of rules enabling allocation of multiattribute objects to subclasses with the smallest
possible classification error [36,37].

Numerous applications of this multivariate analysis tool are described in chemometric
papers [38–41] and in research studies exploring the biodiversity of edible plants [42]. The
analysis is also applied to create the algorithms of pattern classification [43], or errors
in industrial processes [44]. Tahmasebi et al. [45] used this technique for the alteration
separation of copper deposits, whereas Jia et al. [46] applied the method to detect flavonoids
on the basis of gold nanoparticles. While constructing the model for the identification
of chemical elements, which play the role of discriminant variables for the examined
samples, the following components of the discriminant analysis were applied: (a) the
linear discriminant function and canonical functions [47,48], which facilitate classification
of objects (ash samples) to one of two groups; (b) the coefficient of discrimination λ (Wilks’
lambda), which is used to evaluate the discriminatory power of the examined variables
(the chemical elements) [49,50]; and (c) the statistical tests to validate the model based on
Fischer distribution and χ2. In this research study, the adopted level of statistical significance
α = 0.05.

3. Results and Discussions

In the study, the composition of ash coming from the combustion of the basic fuels
(deciduous tree wood pellets, eco-pea coal, and VARMO pellets) and the fuels blended with
the waste was studied. The data were organised into a matrix X (57 × 19), where the rows
correspond to the samples of fuels/waste (see Table 2), whereas the columns characterise
the examined parameters (see Table 3). The sample list of the mixtures composed of the
basic fuels and waste is presented in Table 2.
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Table 2. List of the fuel mixtures.

Fuel Mixture Number Fuel Mixture Composition

1 Pellets

2 Pellets—90%/MDF *—10%

3 Pellets—50%/MDF—50%

4 Pellets—90%/RDF **—10%

5 Pellets—50%/RDF—50%

6 Pellets—90%/Textiles—10%

7 Pellets—50%/Textiles—50%

8 Pellets—90%/Waste paper—10%

9 Pellets—50%/Waste paper—50%

10 Pellets—90%/Plastic materials—10%

11 Pellets—50%/Plastic materials—50%

12 Pellets—90%/Rubber—10%

13 Pellets—50%/Rubber—50%

14 Pellets—90%/Multimaterial packaging—10%

15 Pellets—50%/Multimaterial packaging—50%

16 Pellets—90%/Diapers—10%

17 Pellets—50%/Diapers—50%

18 Pellets—90%/Construction waste—10%

19 Pellets—50%/Construction waste—50%

20 Eco-pea coal

21 Eco-pea coal—90%/MDF *—10%

22 Eco-pea coal—50%/MDF—50%

23 Eco-pea coal—90%/RDF **—10%

24 Eco-pea coal—50%/RDF—50%

25 Eco-pea coal—90%/Textiles—10%

26 Eco-pea coal—50%/Textiles—50%

27 Eco-pea coal—90%/Waste paper—10%

28 Eco-pea coal—50%/Waste paper—50%

29 Eco-pea coal—90%/Plastic materials—10%

30 Eco-pea coal—50%/Plastic materials—50%

31 Eco-pea coal—90%/Rubber—10%

32 Eco-pea coal—50%/Rubber—50%

33 Eco-pea coal—90%/Multimaterial packaging—10%

34 Eco-pea coal—50%/Multimaterial packaging—50%

35 Eco-pea coal—90%/Diapers—10%

36 Eco-pea coal—50%/Diapers—50%

37 Eco-pea coal—90%/Construction waste—10%

38 Eco-pea coal—50%/Construction waste—50%

39 VARMO pellets

40 VARMO pellets—90%/MDF *—10%

41 VARMO pellets—50%/MDF—50%
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Table 2. Cont.

Fuel Mixture Number Fuel Mixture Composition

42 VARMO pellets—90%/RDF **—10%

43 VARMO pellets—50%/RDF—50%

44 VARMO pellets—90%/Textiles—10%

45 VARMO pellets—50%/Textiles—50%

46 VARMO pellets—90%/Waste paper—10%

47 VARMO pellets—50%/Waste paper—50%

48 VARMO pellets—90%/Plastic materials—10%

49 VARMO pellets—50%/Plastic materials—50%

50 VARMO pellets—90%/Rubber—10%

51 VARMO pellets—50%/Rubber—50%

52 VARMO pellets—90%/Multimaterial packaging—10%

53 VARMO pellets—50%/Multimaterial packaging—50%

54 VARMO pellets—90%/Diapers—10%

55 VARMO pellets—50%/Diapers—50%

56 VARMO pellets—90%/Construction waste—10%

57 VARMO pellets—50%/Construction waste—50%
* MDF—medium density fibreboard; ** RDF—refuse derived fuel.

Table 3. List of chemical elements determined in the ashes.

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Measured parameter (ppm) Na Mg Al Si P S Cl K Ca Ti Mn Fe Cu Zn Rb Sr Zr Ba Pb

The chemical elements determined in the ashes obtained from the mixtures of the
basic fuels (wood pellets, eco-pea coal, and VARMO pellets) and the waste materials is
presented in Table 3.

Figure 2 demonstrates colour maps representing the metal contents in the samples of
ash after the combustion of pure wood pellets, eco-pea coal, and VARMO pellets, and the
samples of ash obtained from the combustion of these fuels mixed with different waste
materials (see Table 2). The colour map of the metal contents in samples of ash allows
for clearly identifying the ash samples, which are characterised by the highest level of
particular metal contamination.

It can be observed that the ashes originating from the combustion of pure wood pellets,
eco-pea coal, or VARMO pellets demonstrated low contents of all the examined metals with
the exception of parameters 16 and 17. In addition, the ashes from the combustion of all the
pure fuels were characterised by the relatively highest contents of Sr and Zr (parameters 16
and 17) of all the examined ashes derived from the combustion of the mixtures of fuels and
waste materials. It was found that the admixture of waste to the combustion process caused
an increase in the content of the selected metals in the ashes. In the case of combusting
wood pellets with the admixture of different waste materials (see Figure 2a), the highest
concentration of phosphorus was noted for samples 4, 5, 7, 12, and 16–19.

Concerning samples 5, 10, and 13, the highest concentration of chlorine (parameter 7)
of all the examined fuel mixtures was observed. Sample 9 was different from the remaining
samples of wood pellets with the admixtures of waste materials because of its highest
content of calcium (parameter 9). The highest contents of Mn, Rb, and Pb (parameters 11,
15, and 19) were observed for the ashes obtained from the combustion of samples 7, 3, and
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10. Moreover, a very high content of Cu (parameter 13) was observed in the ash from the
combustion of samples 6 and 14.
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Figure 2. Colour map of the experimental data representing the metal contents in ashes after the
combustion of (a) pure wood pellets, (b) eco-pea coal, and (c) VARMO pellets, and the ashes obtained
from the combustion of these fuels mixed with different contaminants (see Table 2).
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The analysis of the metal contents in the ashes after the combustion of mixtures of
eco-pea coal (Figure 2b) and VARMO pellets (Figure 2c) with the admixture of waste was
analogous. Based on the analysis of the results presented in Figure 2b, the highest contents
of phosphorus in the ash (parameter 5) were observed for samples 24, 26, 27, 32, and
38. Additionally, high contents of chlorine were observed for samples 21, 24, 30, and 32.
Particularly evident is the increase in the content of Mn and Cu (parameters 11 and 13)
in the ash after the admixture of waste to eco-pea coal. In the case of Mn content, it is
especially noticeable for samples 21, 26, 28, 29, 31, 32, and 35–38. As for parameter 13 (the
content of Cu), the highest values were observed for samples 23, 24, 27, 32, 33, 35, and 38.

Furthermore, it can be seen that sample 22 was characterised by the highest content
of Rb (parameter 15) of all the examined mixtures of eco-pea coal and waste. In turn,
samples 23, 27, and 29 and 34 in particular were characterised by the highest content of Pb
(parameter 19). Based on analysis of Figure 2c, it was found that the samples of VARMO
pellets mixed with the waste materials were characterised by relatively higher contents of
phosphorus, sulphur, and chlorine (parameters 5–7) in comparison with the ash samples
obtained from the combustion of pure VARMO fuel.

In addition, samples 41, 45, and 55 were characterised by the highest contents of
Rb, Mn, and Cu (parameters 15, 11, and 13) of all the examined VARMO mixtures. It
was also observed that samples 47 and 48 differed because of the highest contents of
Pb (parameter 19).

The application of the colour map of the experimental data enables identification of
the similarities and differences among the examined ashes obtained from the combustion
of pure fuels and the fuels with the admixtures of waste materials. Unfortunately, this
simple analysis does not indicate the markers (metals) explicitly, and, in consequence,
does not provide the answer if waste has been co-combusted in a given boiler. Therefore,
based on the results of the measurements of the 19 chemical elements occurring in the
post-combustion waste, building a model was attempted to facilitate the classification of
the objects (the combusted samples of fuels with different admixtures of waste materials)
into two groups of relevant levels of the contaminant contents. The general characteristics
of the objects are presented in Table 4.

Table 4. General characteristics of the examined objects (combusted samples of fuels with different
admixtures of waste materials).

Group Number Fuel Content in the
Sample (%)

Waste Material
Content in the

Sample (%)
Group Population

1(0) 90 10 27

2(1) 50 50 30

The discriminant analysis statistical tool was applied to build a model indicating the
features (variables), which in a possibly optimal way would classify the examined objects
(samples) into the groups shown in Table 4. In this research study, the chemical elements
determined in the ash samples (see Table 3) constituted these features (variables). Concern-
ing the analysed objects (ash samples), it was indicated which discriminant variables were
decisive in allocating the objects to the group of ashes obtained from the combustion of
the fuel with a smaller (90/10—group 1(0)) or a larger (50/50—group 2(1)) share of the
waste materials. The calculations were performed using Statistica software. In the first
phase of the statistical model design, it was determined which of the variables constitute
the best discriminants (predictors). On this basis, the second phase consisted in validating
the discrimination performed on the first set of objects by means of classifying the novel
objects. In the designed model, the variables were (a) the dependent (grouping) variable
of a qualitative and dichotomous character constituting the percentage share of waste
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in the examined object (sample): Y =

{
0 10%
1 50%

waste admixture in the fuel; and (b) the

independent variables, from the set of which the discriminant variables were selected.
The set of the potentially discriminant variables included 19 chemical elements (Na,

Mg, Al, Si, P, S, Cl, K, Ca, Ti, Mn, Fe, Cu, Zn, Rb, Sr, Zr, Ba, and Pb) whose contents in
the examined objects (samples of fuels blended with the waste materials) was determined
using X-ray fluorescence spectroscopy (XRF). The 57 objects (combusted samples of fuels
with different admixtures of waste materials) were divided into two subsets, the training
sample and the test sample.

3.1. Design of the Model Using a Training Sample

Table 5 presents the populations of the particular groups used to select the discriminant
variables.

Table 5. Description of the sample used to build the so-called learning model.

Group Number Fuel Content in the
Sample (%)

Waste Material
Content in the

Sample (%)
Group Population

1(0) 90 10 15

2(1) 50 50 15

The model determining the variables, which in a possibly optimal way would classify
the examined ash samples into the groups, was built by applying the training set described
in Table 5 and using the Statistica software. The results of the discriminant analysis of the
initial set of 19 variables are presented in Table 6.

Table 6. Results of the discriminant analysis for the training sample.

n = 30 Wilks’
Lambda

Partial Wilks’
Lambda

F Removed.
(1,34) p-Value Tolerance 1-Tolerance (R2)

K 0.7417 0.5078 23.262 0.0001 0.2144 0.7856

Ca 0.4973 0.7573 7.690 0.0106 0.6815 0.3185

Ti 0.7560 0.4982 24.175 0.0001 0.3561 0.6439

Zn 0.5333 0.7063 9.981 0.0042 0.6547 0.3453

Rb 0.4470 0.8427 4.480 0.0449 0.4868 0.5132

The value of the Wilks’ lambda (λ) coefficient is within the range [0; 1]. The lower the
value of coefficient λ, the greater is the contribution of a given variable to the discrimination
of a set of the objects.

In the final model used for the discrimination, five variables were taken into consider-
ation: K, Ca, Ti, Zn, and Rb. All of the variables revealed significant discriminant power as
the calculated values of F-statistics and the corresponding values of p-value were lower
than the assumed level of statistical significance α = 0.05. Within the course of further
analysis, the discriminant power of the estimated discriminant function was examined and
a canonical analysis was performed, the results of which are given in Table 7.

Table 7. Results of canonical analysis for the training sample.

Removed Own Value Canonical R
Value

Wilks’
Lambda χ2 DF p-Value

0 1.6550 0.7895 0.3767 24.8994 5 0.0002
Source: own, based on Statistica software (StatSoft, Tulsa, OK, USA).
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The low value of Wilks’ lambda coefficient, 0.3767 (see Table 7), indicates great dis-
criminant power of the model described by the variables compiled in Table 6. All of the
variables in Table 6 achieved the status of discriminant values in the model due to the fact
that the calculated value of χ2 = 24.8994 and the corresponding p-value are lower than the
assumed level of statistical significance α = 0.05.

Equation (1) describes the discriminant function and includes raw coefficients of the
estimated canonical function of discrimination:

di = 0.8789 + 2.4640·K − 0.0883·Ca − 2.6647·Ti − 0.315·Zn − 93.9848·Rb (1)

In the next step, the coefficients of two classification functions for the tested objects in
the training sample were calculated, given by Equations (2) and (3):

k1i = −1.7079 + 2.1445·K + 0.0220·Ca − 0.7925·Ti + 0.0035·Zn − 22.3379·Rb (2)

k2i = −3.8927 − 3.9803·K + 0.2415·Ca + 5.8312·Ti + 0.7882·Zn + 211.2796·Rb (3)

Then, based on the values obtained from the linear classifying functions, the objects
from the training sample were allocated to one of the two groups. The results of the
classification are presented in Table 8.

Table 8. Classification matrix constructed for the training sample.

Percent Correct Group 1(0) Group 2(1)

Group 1(0) 100% 15 0

Group 2(1) 80% 3 12

Total 90% 18 12

The classification analysis of the objects (ash samples) in the training sample presented
in Table 8 demonstrates 90% accuracy of group allocation. Only three samples, i.e., 20% of
group 2(1), were falsely classified. Therefore, it is possible to state that the constructed
model performs the classification task on the training sample correctly because the accuracy
was as much as 90%.

The discriminatory model shown in Tables 6 and 7 reveals a good fit to the data
used for its construction. However, the more important feature of the model is the actual
predictive power of discrimination. Hence, it is necessary to check how the constructed
model handles the classification of objects (the combusted fuel samples with different
admixtures of waste materials) outside the training sample consisting of 30 objects (see
Table 5). Data concerning the test sample for the validation of the classifying capability of
the constructed discrimination model are presented in Table 9.

Table 9. Description of test sample used to validate the constructed model.

Group Number Fuel Content in the
Sample (%)

Waste Material
Content in the

Sample (%)
Group Population

1(0) 90 10 12

2(1) 50 50 15

3.2. Validation of the Constructed Model on Test Sample

The discrimination model built for the training sample was validated by means of
classifying the data of the test sample. The allocation of the examined objects to the training
and test samples was conducted according to the sequence of their combustion. The results
concerning the prediction accuracy (classification) for the test sample are presented in
Table 10.
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Table 10. Results of the classification for the test sample.

Percent Correct Group 1(0) Group 2(1)

Group 1(0) 83.33% 10 2

Group 2(1) 86.67% 2 13

Total 85.19% 12 15

Comparing the results of the classification for the training sample (see Table 7) with
the results for the test sample (see Table 10), it was observed that there was a slight decrease
in the percentage of the total correct classifications. The classification accuracy for the test
sample for the discrimination model obtained for the training sample was 85.19%. This is
likely caused by the small population of the test sample. However, the primary objective of
this research study was to demonstrate the possibility of applying the discriminant analysis
to unambiguously determine the chemical elements (variables), and, in consequence, to be
able to assess into which group the object (actual ash sample coming from the combustion
of the basic fuel with the admixtures of different waste materials) can be classified.

Table 6 compiles the variables (chemical elements) that play the role of the discriminant
variables in the model validated by means of the data presented in Table 7. This data set
includes elements such as K, Ca, Ti, Zn, and Rb. As demonstrated, the particular value
of Wilks’ lambda λ provides the information concerning their discriminant abilities. The
standardised coefficients of the canonical function of discrimination whose raw values
were given in Equation (1) constitute supplementary information. These coefficients are
interrelated in a similar way as the standardised coefficients of the linear regression function.
The higher absolute value shows which of the variables became the best predicator (stronger
discriminant variable than the remaining ones) to the analysed groups of objects (combusted
samples of fuel with the admixtures of waste material). Table 11 presents the discriminant
variables according to the discriminant power of the examined objects.

Table 11. Standardised canonical discriminant function coefficients.

Variable (Chemical Element) K Ti Zn Ca Rb

Value of the standardised coefficient 1.9193 −1.5036 −0.84834 −0.7558 −0.7200

It was found that K, Ti, Zn, Ca, and Rb were the chemical elements (variables) which
demonstrated the discriminant power of the group of ash samples in terms of the content
of contaminants; but the first two revealed decidedly the greatest discriminant power.

4. Conclusions

# This study involved conducting systematic research on the combustion of fuel samples
such as wood pellets, eco-pea coal, and VARMO pellets with different admixtures of
waste materials (10 and 50%w/w). The tests were performed using a research stand
equipped with a heating boiler of a nominal power of 18 kW.

# Significant differences in the content of the 19 examined chemical elements in the
ashes were observed, depending on the quality of the combusted fuel.

# Based on the discriminant analysis, a statistical model was constructed to classify
the ash samples obtained from the combustion of fuels with different admixtures of
waste materials.

# Based on application of the discrimination function and two functions of classification,
the objects from the training sample were allocated. A validation was performed on
the test sample. Both the learning model and the test model demonstrated a good fit
of the data to the model, and, more importantly, a good prediction power for the new
samples from the test set.

# Using the standardised coefficients of the canonical function of discrimination in the
last step of the statistical analysis, it was found that potassium, zinc, calcium, and
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rubidium constitute the chemical elements that had the greatest discriminatory power
to classify the examined objects into the following two groups: ashes coming from the
combustion of the fuel with a smaller share (90/10—group 1(0)) of waste materials
and with a larger share (50/50—group 2(1)) of waste materials.

# On the basis of examining the elemental content of ashes, the empirical tests using
the statistical discriminant analysis show the usability of the constructed model to
identify the combustion of waste.

Author Contributions: Conceptualisation, K.W., J.G. and A.S.; methodology, K.W. and J.G.; formal
analysis, K.W., J.G. and A.S.; investigation, K.W., J.G. and A.S.; data curation, K.W.; writing—original
draft preparation, K.W. and J.G.; writing—review and editing, A.S.; visualisation, K.W.; supervision,
A.S. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Ministry of Science and Higher Education, Poland (grant
number 11152019-335).

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tan, X.; Han, L.; Zhang, X.; Zhou, W.; Li, W.; Qian, Y. A review of current air quality indexes and improvements under the

multi-contaminant air pollution exposure. J. Environ. Manag. 2020, 279, 111681. [CrossRef]
2. Zhan, D.; Kwan, M.-P.; Zhang, W.; Yu, X.; Meng, B.; Liu, Q. The driving factors of air quality index in China. J. Clean. Prod. 2018,

197, 1342–1351. [CrossRef]
3. Torkayesh, A.E.; Alizadeh, R.; Soltanisehat, L.; Torkayesh, S.E.; Lund, P.D. A comparative assessment of air quality across

European countries using an integrated decision support model. Socio-Econ. Plan. Sci. 2022, 81, 101198. [CrossRef]
4. Landrigan, P.J. Air pollution and health. Lancet Public Health 2016, 2, e4–e5. [CrossRef]
5. Edwards, L.; Wilkinson, P.; Rutter, G.; Milojevic, A. Health effects in people relocating between environments of differing ambient

air pollution concentrations: A literature review. Environ. Pollut. 2021, 292, 118314. [CrossRef]
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