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Abstract: Accurate monthly runoff prediction is significant to extreme flood control and water
resources management. However, traditional statistical models without multi-variable input may fail
to capture runoff changes effectively due to the dual effect of climate change and human activities.
Here, we used five multi-input machine learning (ML) models to predict monthly runoff, where
multiple global circulation indexes and surface meteorological indexes were selected as explanatory
variables by the stepwise regression or copula entropy methods. Moreover, four univariate models
were adopted as benchmarks. The multi-input ML models were tested at two typical hydrological
stations (i.e., Gaochang and Cuntan) in the Upper Yangtze River. The results indicate that the
LSTM_Copula (long short-term memory model combined with copula entropy method) model
outperformed other models in both hydrological stations, while the GRU_Step (gate recurrent
unit model combined with stepwise regression method) model and the RF_Copula (random forest
model combined with copula entropy method) model also showed satisfactory performances. In
addition, the ML models with multi-variable input provided better predictability compared with
four univariate statistical models, and the MAPE (mean absolute percentage error), RMSE (root mean
square error), NSE (Nash–Sutcliffe efficiency coefficient), and R (Pearson’s correlation coefficient)
values were improved by 5.10, 4.16, 5.34, and 0.43% for the Gaochang Station, and 10.84, 17.28, 13.68,
and 3.55% for the Cuntan Station, suggesting the proposed ML approaches are practically applicable
to monthly runoff forecasting in large rivers.

Keywords: monthly runoff prediction; machine learning; copula entropy; stepwise regression;
Upper Yangtze River

1. Introduction

Flood is a complex interplay of hydrology, climate, and human management, and it
is destructive to infrastructure, agriculture, and socioeconomic systems [1,2]. Yet water
resource management, such as water conservation, flood control, and reservoir operation,
relies heavily on accurate streamflow prediction [3–5]. In addition, streamflow is affected
by multiple variables, such as precipitation, surface temperature, solar radiation, and
atmospheric circulation, presenting the compound characteristics of strong nonlinearity,
high uncertainty, and spatiotemporal variability [6–9]. Consequently, the high accuracy
of monthly flood and streamflow prediction involving multiple impact factors has been
emphasized urgently.

Different runoff prediction models have been proposed. Generally, these models
can be divided into process-driven and data-driven models [5,10]. Process-driven models
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based on the physical conception have some modeling conventions, such as data limitations
and uncertainty for the initial conditions, process parameterizations, and computational
constraints [11,12]. Among the data-driven models, traditional univariate statistical models
only require runoff input [13], such as the autoregressive moving average (ARMA) model,
mean generating function (MGF), nearest neighbor bootstrapping regressive (NNBR) model,
and grey model (GM) [14–17]. Statistical models have been used extensively to capture
the stationary and linear links in time series but may not be appropriate for predicting
nonstationary and nonlinear runoff. Machine learning (ML) models [3], which are out-
standing at handling nonlinear data, have been widely applied in hydrological prediction,
including artificial neural networks (ANNs), support vector machine (SVM), gradient
boosted decision tree (GBDT), etc. Derived from the biological neurons, ANNs build
mapping with a vast amount of parameters to match the mapping between observation
and prediction. Many new ANNs have arisen to provide more satisfactory solutions to
time series forecasting problems, including the long short-term memory model (LSTM)
and gate recurrent unit model (GRU). Due to the weakness of the conventional ANN for
long-term dependencies, LSTM is constructed to improve the defects [18]; GRU has a much
simpler structure and thus needs less calculation than LSTM. GBDT and random forests
(RF) have been proven to be distinguished predictive models in many regression tasks
with an ensemble of decision trees [19,20]. The SVM, founded on the theory of statistical
learning as well as the principle of structural risk minimization [21], can address problems
with limited samples, nonlinearity, and impartibility in low-dimensional space.

Unlike traditional regression models, ML models have considerably upgraded the mid-
to-long-term forecasting performance of highly nonlinear streamflow time series. Many
previous studies [5,11,13,22] have shown that the traditional statistical models’ perfor-
mances stagnated at 15–20% in terms of mean absolute percentage error, demonstrating the
urgency of adopting new ML models. However, since there is no absolute optimal model
for forecasting monthly runoff, it is necessary to use multiple ML models and compare
their performances.

The identification of input variables is a critical part of the data-driven models. It
is difficult to determine a suitable set of model inputs because of the complexity of the
causes and the time lag in the runoff response to large-scale atmospheric circulation and
surface meteorological variables [23]. Many teleconnection climate indexes [3] have been
considered as alternative candidate predictive variables, including atmospheric circulation
index, SST indexes, and other indexes, such as the total sunspot number index, Pacific
decadal oscillation index, North Atlantic triple Index, etc. Besides, the antecedent runoff
and other surface meteorological factors, such as precipitation, air pressure, temperature,
wind speed, etc., are firmly connected on the grounds of physical links [24]. The methods
used in variable selection are principally the correlation coefficient method, stepwise
regression analysis, principal component analysis (PCA) [4], mutual information (MI), and
partial mutual information (PMI) [25,26]. Among the various variable selection methods,
the correlation coefficient method and the stepwise regression method are widely applied
due to their simplicity and clarity [23]. Furthermore, copula entropy, a novel entropy
concept defined by Ma and Sun [27,28] in 2008, is able to calculate the full-order correlations
among variables and handle the redundant inputs directly. Copula has been applied
in multivariate modeling with joint distributions, where two divisions, entropy copula
and copula entropy, have been broadly employed in the hydrological study [28,29]. The
entropy copula is mainly used in constructing a dependence structure with marginal
probability distribution constraints. In addition, the copula entropy, which is outstanding
in dependence analysis, has been used to study the variability of climate and hydrological
variables, mostly precipitation, temperature, and streamflow [30]. However, the copula
entropy method is rarely applied in nonlinear dependence measurement among large-scale
circulations and streamflow in monthly runoff prediction, highlighting the importance of
incorporating this method into data-driven model input variable identification [31].
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The climate in the Upper Yangtze River Basin (UYRB) in China is complex due to
complex topography and the interplay among diverse circulation systems (for instance, the
East Asia monsoon, Indian monsoon, Australian monsoon, mid-latitude westerlies, and
plateau monsoon) as well as the water conservancy projects construction [32]. The Three
Gorges Reservoir (TGR), situated in the UYRB, is the world’s largest hydropower station
in terms of installed capacity [33–35], and the power production and the overall profits
of which are heavily reliant on the upstream flows. Located in the lower reaches of the
confluence of the Dadu River and Min River [36,37], the Gaochang Station is the outlet of
the Min River basin, controlling 13.46% of the drainage area and 19.86% of the annual flow
in the UYRB [38]. The Cuntan Station is located in Chongqing City, where the Jialing River
meets the Yangtze River [39], and it controls about 60% of the water in the UYRB. Therefore,
the monthly runoff prediction study on the Gaochang Station and Cuntan Station is not
only related to the operation of TGR but also vital to human life and property in the middle
and lower reaches.

In this study, we aimed to improve the accuracy of monthly streamflow prediction in
the UYRB for the power generation in the Three Gorges Reservoir and the long-term flood
management in the middle and lower reaches. Furthermore, the role of multi-variable
inputs and the choice and performance of different predictive models are of particular
interest to us. Therefore, five multi-input ML models were employed to make the best
use of available data, combined with the stepwise regression method or copula entropy
method to select input variables with different time lags. The ML models were carried out
in two typical hydrological stations of the UYRB, and the detailed case study is presented
in the following sections.

2. Methods
2.1. Study Area and Data

The mainstream of the UYRB is 4529 km long, and it charges a watershed of 1,000,000 km2,
which covers the region from 24.30◦ N–35.45◦ N to 90.33◦ E–112.04◦ E and represents 58.9%
of the entire region of the Yangtze River [39,40]. Most of the regions in the UYRB are warm
and moist, influenced by subtropical monsoon [24]. The mean annual streamflow varies
between 700 and 2400 m3/s, and the Three Gorges Station in the mainstream reached an
annual runoff of 16,427 m3/s in 1965, and the Zipingpu Station in the Min River was less
than 265 m3/s in 2006 [41]. Here, two critical hydrological stations—Gaochang and Cuntan
in the UYRB were examined (Figure 1).

Monthly streamflow data of the Gaochang and Cuntan stations from January 1961
to December 2018 were collected in our study. One hundred and thirty monthly global
circulation indexes within the same timeframe as the streamflow observations were down-
loaded from the National Climate Center of the China Meteorological Administration
(http://cmdp.ncc-cma.net (accessed on 20 June 2022)), including 88 atmospheric circula-
tions, 26 SST indexes, and 16 other indexes. Moreover, two meteorological stations near
the selected hydrological stations were considered with complete monthly observations
spanning the period of 1961–2018, including air pressure, average temperature, maximum
temperature, minimum temperature, relative humidity, wind speed, and daylight hours,
which were supplied by the China Meteorological Data Network (https://data.cma.cn/
(accessed on 20 June 2022)).

http://cmdp.ncc-cma.net
https://data.cma.cn/
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Figure 1. The Upper Yangtze River Basin (UYRB). This study is focused on two hydrological
stations—Gaochang and Cuntan, and two meteorological stations nearby—Yibin and Shapingba.

The trend, change point, and periodicity of the monthly streamflow in the Gaochang
and Cuntan stations were detected (Figure 2). No statistically significant trend (at a
5% significance level) was observed by the non-parametric Mann–Kendall test [42] and
Sen’s slope [43], with a p-value of 0.38 at Gaochang Station and 0.28 at Cuntan Station. The
most probable change point was found to be NO. 593 (May 2010) at Gaochang Station
and NO. 448 (April 1998) at Cuntan Station by Pettitt’s Test [44], but the results did
not indicate statistical significance. The Morlet wave analysis method [45] was used to
analyze the periodic characteristics of the annual average and monthly runoff series. The
10–13 yearsoscillation period was most notable, the 3–5 years period was relatively notable
at Gaochang Station, and the principal period and the second period of monthly runoff
was found to be seven months and twelve months. While at the Cuntan Station, the
7–10 years oscillation period was most notable, and the principal period was found to be
seven months with the maximum value of wavelet variance.
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Figure 2. (a) Runoff series and trend analysis of the Gaochang Station: the blue solid line is the
runoff series and the red line shows the trend of the series. The contour of the wavelet coefficient is
displayed in (c) and the wavelet variance is shown in (e). (b,d,f) represent the same information as
(a,c,e), but for the Cuntan Station.

Based on the analysis above, the data series was divided into two periods, i.e.,
January 1961–December 2008 for model training and January 2009–December 2018 for
testing. Owing to the lag effect of climate causes on streamflow and the periodicity of the
monthly runoff in Gaochang and Cuntan stations, 1–12 months were considered as the
different lag periods when selecting the input factors in this study. Normalization of the
climate and runoff data in training and testing periods was applied to refrain from the
numerical problem.

2.2. Variable Selection

The Pearson’s correlation coefficient, stepwise regression, and copula entropy methods
were applied to select input variables with different time lags. For example, to predict the
runoff in January 2010, data from the previous 1 to 12 months were selected as forecast
variables, and Pearson’s correlation coefficient analysis first identified the top 150 variables;
then the multiple stepwise regression analysis or copula entropy analysis was carried out
to select the most relevant variables with the significance test.

2.2.1. Pearson’s Correlation Coefficient

Pearson’s correlation coefficient assesses the relationship between monthly runoff and
explanatory variables. The coefficient R is estimated by [46]:

R =

n
∑

i=1
(xi − x)(yi − y)√

n
∑

i=1
(xi − x)2

√
n
∑

i=1
(yi − y)2

(1)

2.2.2. Stepwise Regression

Stepwise regression is a multivariate regression analysis method that plays an integral
role in hydrological research and modeling. The multiple stepwise regression adds the most
significant variables one by one [11]. After adding a new variable at each step, an F-test is
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performed to determine whether certain variables will be removed without remarkably
increasing the sum of squared residuals.

2.2.3. Copula Entropy

The entropy of the copula function, CE, was used to evaluate the dependence among
variables [27]. X1 and X2 are random variables with marginal functions F(x1), F(x2),
and U1 = F(x1), U2 = F(x2), u1 and u2 represent a particular value of U1 and U2. The
definition of CE is as follows:

HC(U1, U2) = −
1∫

0

1∫
0

c(u1, u2) log c(u1, u2)du1du2 (2)

where c(u1, u2) is the copula probability density function and is identical to ∂C(u1,u2)
∂u1∂u2

.
Mutual information (MI) is denoted as [47]:

T(X1, X2) = H(X1) + H(X2)− H(X1, X2)
= −HC(U1, U2)

(3)

MI can detect nonlinear correlations between target input and output [48]. However,
this method cannot handle the redundant inputs directly [49], and to deal with this issue,
Sharma [47] proposed partial mutual information (PMI). The PMI can be derived with the
CE method:

PMI =
∫ ∫

fX′Y′(x′, y′) ln
[

fX′Y′ (x′ ,y′)
fX(x′) fY′ (y

′)

]
dx′dy′

= −HC(x′, y′)
(4)

Fernando and May [50] suggested the Hampel test as the termination criteria:

Zi =
di

1.4826d(50)
i

·di =
∣∣∣CEi − CE(50)

∣∣∣ (5)

where: Zi—Hampel distance; 1.4826—normalization variables; di
(50)—median of di;

CEi—the copula entropy of the i th variables; CE(50)—median CE values for variables set;
Based on the 3σ principle, when the Hampel distance is above 3, add the candidates to
the input.

In this paper, the R (R Core Team 2020) package ‘copent’ (https://github.com/
majianthu/copent (accessed on 20 June 2022)) was applied, which implements the non-
parametric method for estimating CE [27].

2.3. Prediction Models

The application of LSTM, GRU, GDBT, and RF relies on Python 3.9 with the “Scikit-Learn”
package, and the libsvm package in MATLAB R2020 (a) (https://www.csie.ntu.edu.tw/~cjlin/
libsvm/index.html (accessed on 20 June 2022)) was employed in the SVR prediction.

2.3.1. Long Short-Term Memory (LSTM)

The LSTM model comprises the input, hidden, recurrent, and output layers [48]. The
memory block in the recurrent layer facilitates the interaction between the three layers,
which involves multiple memory cells and three multiplier units [49]. The fundamental
construction of an LSTM memory cell is displayed in Figure 3a. These three gates serve as
filters [50]: The forget gate determines what message will be excluded, the input gate sets
what new message will be collected, and the output gate specifies the output message from
the cell condition [51].

https://github.com/majianthu/copent
https://github.com/majianthu/copent
https://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html
https://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html
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Figure 3. (a) The construction of a fundamental LSTM cell. (b) The construction of a fundamental
GRU cell. In Figure 3a, Wxi, Whi, Wx f , Wh f , Wxo, Who, WxC, and WhC are the network weights matrices.
bi, b f , bo, and bc are bias vectors. ft, it, and ot are the activation value vectors of the forget gate, the
input gate, and the output gate. Similarly, in Figure 3b, Wxr, Whr, WxZ, WhZ are the network weights
metrics, br and bZ are bias vectors. rt and Zt are vectors for the update and reset gate activation values.

2.3.2. Gate Recurrent Unit (GRU)

GRU networks were proposed to modify LSTM networks [52] with a simpler structure
and faster speed. The fundamental construction of the GRU cell is displayed in Figure 3b.
The hidden state (ht) and cell state (Ct) are merged in the GRU. There are two control
gates in the cell: the update gate (Zt) and the reset gate (rt) [53]. The update gate controls
the extent to which the message from the prior step t− 1 will be passed to the current
step t [48]. The reset gate determines how much information of the prior state is written
into the current candidate set C̃t.

2.3.3. Gradient Boosted Decision Tree (GBDT)

A GBDT regression model is constructed using various decision trees (DTs) [54]. In
every iteration, the latest DT is trained according to the residuals of the prior DTs based
on the negative gradient, which has been confirmed to be an efficient, precise, low-bias
algorithm [18,55]. This study uses the Gaussian distribution as a loss function to minimize
the squared error.
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2.3.4. Random Forest (RF)

RF is an ensemble of the decision tree model based on the bagging method [54]. As a
white-box model, RF samples the raw data and generates many training samples by bootstrap-
ping. The bagging method may address the overfitting problem of forecasting models [20,56].

2.3.5. Support Vector Regression (SVR)

Support vector regression (SVR) is employed in support vector machine (SVM) for
regression tasks [57,58]. Based on Lagrange binary theorem [22], the SVR model tacitly
transforms the original, low-dimension input into high-dimension space. In our research,
the nonlinear radial basis function (RBF) was applied as the kernel function since it has
demonstrated exemplary performance in predicting nonlinear runoff data for SVR [59].

2.4. Metrics of Performance Evaluation

Four metrics were applied to evaluate the performance of the forecasting models,
including the mean absolute percentage error (MAPE), root mean square error (RMSE),
Nash–Sutcliffe efficiency coefficient (NSE), and Pearson’s correlation coefficient (R), which
are specified as follows:

MAPE =
1
n
×∑n

i=1

∣∣∣∣∣Yi − Ŷi
Yi

∣∣∣∣∣× 100% (6)

RMSE =

√
1
n
×∑n

i=1

(
Ŷi −Yi

)2 (7)

NSE = 1− ∑n
i=1
(
Yi − Ŷi

)2

∑n
i=1
(
Yi −Yavg

)2 (8)

R =
∑n

i=1
[(

Yi −Yavg
)(

Ŷi − Ŷavg
)]√

∑n
i=1
(
Yi −Yavg

)2
√

∑n
i=1
(
Ŷi − Ŷavg

)2
(9)

where n is the amount of data, Yi and Ŷi represent the ith observation and prediction, and
Yavg and Ŷavg are the average of all the observation and prediction.

MAPE and RMSE can evaluate models’ performance, especially high streamflows;
NSE is used to test the deviation of a forecasting model, ranging from −∞ to 1 [60]; R is
adapted to evaluate the linear correlation between observation and prediction. Models
with larger R and NSE values or smaller MAPE and RMSE values indicate better predictive
performance [61].

2.5. Model Calculation Scheme

Cause-driven multivariate forecasting models reflect the relationship between vari-
ables and forecast elements regarding runoff causation [18]. The selection of variables and
forecast models are crucial when applying this approach. The model calculation scheme is
shown below (Figure 4).

First, the essential variables were chosen as the model input set. The candidate
predictive variables include one hundred thirty global circulation indexes, eight surface
meteorological data, and the antecedent runoff (Table S1). The total number of variables
is 139× 12, considering the lag time of 1–12 months. Subsequently, the selected variables
by different methods were input into five ML models, and four classical univariate time
series models were used as benchmarks. Last, four indicators were used to measure the
performance of the prediction models. Thus, the optimal monthly runoff prediction model
and a few sub-optimal models were recommended by comparing a weighted average score
of four metrics for a specific station.
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3. Results
3.1. Variable Selection

The top 150 variables were first identified by Pearson’s correlation coefficient analysis,
followed by the multiple stepwise regression analysis or copula entropy analysis to select
the most relevant variables. The calculated copula entropy and Z values of the first
150 variables are shown in Figure 5. Z represents the CE value after the Hample test, which
fluctuates more than CE at both the Gaochang Station and the Cuntan Station. Based on
the 3σ criterion, when Z is greater than 3, the candidate variable has a significant entropy
value and can be added to the input set. However, none of the variables had a Z value
greater than 3. Hence, a lower confidence level was considered in this paper and the top ten
variables in terms of Z value were identified as an input set for the forecasting models. To
keep the number of variables in the input set consistent, the top ten variables were selected
in stepwise regression analysis after the multicollinearity testing and correction.
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The variables selected by stepwise regression and copula entropy are listed in Table 1.
For the Gaochang Station, average temperature, runoff, and maximum temperature were
selected by stepwise regression and copula entropy methods. The stepwise regression
method selected more global circulation variables, such as the northern hemisphere polar
vortex central intensity index, Tibet Plateau region 1 index, Asia polar vortex area index,
and so on; while the copula entropy method selected more ground meteorological variables.
Most of the variable’s lag was 1 month, followed by 12 months and 6 months, which
is synchronous with the natural period of the water cycle. For the Cuntan Station, the
maximum temperature was the most significant variable selected both by the stepwise
regression method and the copula entropy method. Besides, runoff with 1 month, 6 months,
and 12 months’ time lag were selected, indicating a strong autocorrelation in streamflow.
Likewise, the tepwise regression tended to select more global circulation variables than the
Copula Entropy method at the Cuntan Station.
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Table 1. Variables selected by stepwise regression and copula entropy for the Gaochang Station and
Cuntan Station.

Station

Stepwise Regression Copula Entropy

Variables Lag
(Month) Variables Lag

(Month)

Gaochang

Average Temperature 7 Maximum Temperature 1
Runoff 12 East Asian Trough Intensity Index 6

Northern Hemisphere Polar Vortex
Central Intensity Index 1 Average Temperature 7

Maximum Temperature 6 Daylight Hours 2
North American Subtropical High Area Index 12 Maximum Temperature 7

Runoff 1 Runoff 6
Relative Humidity 1 Daylight Hours 1

Tibet Plateau Region 1 Index 5 East Asian Trough Intensity Index 12
Asia Polar Vortex Area Index 1 Average Temperature 1

Indian Ocean Warm Pool Strength Index 9 Runoff 12

Cuntan

Maximum Temperature 7 Maximum Temperature 7
Runoff 12 Maximum Temperature 1

Northern Hemisphere Polar Vortex Intensity Index 2 Average Temperature 7
Runoff 1 East Asian Trough Intensity Index 7

North American Subtropical High Intensity Index 12 Runoff 6
Atlantic-European Polar Vortex Intensity Index 7 Average Temperature 1

Daylight Hours 12 Runoff 12
Asia Polar Vortex Intensity Index 6 East Asian Trough Intensity Index 1
Eurasian Zonal Circulation Index 9 Daylight Hours 8

Air Pressure 3 Daylight Hours 2

3.2. Model Structure and Parameter Selection

In the development of LSTM and GRU, the num_layers and batch_size were set to
2 and 12, separately, and the hidden_size from 60 to 120 was examined to identify the
optimal networks. In addition, the epochs were set as 1000 times, and the learning rate
was set as 0.0005, while the best models were evaluated by minimum MARE in the testing
stage. For the Gaochang Station, the optimal parameters (hidden_size and epoches) of
the LSTM_Step model, LSTM_Copula model, GRU_Step model, and GRU_Copula model
were (112, 862), (94, 977), (68, 562), and (75, 788) respectively. For the Cuntan Station, the
optimal parameters of the LSTM_Step model, LSTM_Copula model, GRU_Step model,
and GRU_Copula model were (70, 357), (95, 488), (85, 273), and (106, 634). The parameter
optimization process of hidden_size in the LSTM_Copula model at Gaochang Station was
demonstrated in Figure 6a, where the model performance improved when the hidden_size
was in a range of 90~100 but decreased when the hidden_size was more than 100. The
performance of the GRU_Step model at the Cuntan Station was improved as the epochs
increased but reduced when ephochs were larger than 330 (Figure 6b).

In the modeling with GDBT and RF, the hyperparameter setting is a key step, where
randomized search and grid search were used sequentially. Firstly, the n_estimators
(the number of decision trees), max_depth (the maximum depth of decision trees),
min_samples_split (the minimum number of split samples), min_samples_leaf
(the minimum sample size of the nodes), and max_features (the maximum sampling
ratio) in the hyperparameter were set in a relatively wide range, and 200 random iterations
were performed with 3-fold cross-validation using RandomizedSearchCV.py. Based on
the result of the randomized search, a few values were selected in the nearby range, and
each match was traversed through GridSearchCV.py to search for the optimal hyperpa-
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rameter values (Figure 6c). For the Gaochang Station, the optimal hyperparameters of
the GDBT_Step model, GDBT_Copula model, RF_Step model, and RF_Copula model are
(230, 38, 9, 1, 2), (910, 50, 3, 2, 3), (380, 14, 11, 2, 4), (127, 28, 3, 2, 1) respectively. For the Cun-
tan Station, the optimal hyperparameters of the GDBT_Step model, GDBT_Copula model,
RF_Step model, and RF_Copula model are (50, 35, 6, 1, 2), (100, 22, 11, 1, 2), (90, 46, 11, 2, 4),
(270, 17, 2, 1, 3) respectively.
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The grid search method of 3-fold cross-validation is applied to find the best values
for cost (c) and gamma (g), two crucial parameters in the SVR model (Figure 6d). For the
Gaochang Station, the optimal parameters of the SVR_Step model and SVR_Copula model
are (1.41, 0.15), (0.50, 0.29), respectively. For the Cuntan Station, the optimal parameters of
the SVR_Step model and SVR_Copula model are (3.0, 0.29), (6.0, 0.42) respectively.

3.3. Comparison of Various Models’ Performance

Among the ten models examined herein, the GBDT_Step and GBDT_Copula models
achieved the best MAPE, RMSE, NSE, and R values in the training stage for the two stations
(Table S2). In the testing period, the GRU_Copula model obtains the best MAPE values of
16.68%, and the LSTM_Copula model performs better than other models in RMSE, NSE,
and R for the Gaochang Station. While for the Cuntan Station, the SVM_Step model obtains
the best MAPE values of 13.98%, followed by LSTM_Copula of 14.44%; the RF_Copula
model achieves the best RMSE values of 2616 m3/s, and LSTM_Copula accomplishes the
best NSE and R values.

The copula entropy method had a more consistent performance effect across the
months than the stepwise regression method, which was distinct in LSTM, GBDT, and SVR
models (Figure S1). For the Gaochang Station, the LSTM_Copula model outperformed
other models with better values among four evaluation metrics and a more robust effect
on different months. For the Cuntan Station, models performed differently on different
indicators, but LSTM_Copula, GRU_Step, and RF_Copula models performed better overall.

All the ML models could track the observed changes in the runoff series, manifesting
the validity of the ML models (Figures 7 and 8). For the Gaochang Station, GBDT and
SVM models were superior to the other methods because the deviations between the
observations and simulations were small, and the high flows above 6000 m3/s were better
captured. In addition, the two selection methods did not show much difference when
applied in the five ML models. For the Cuntan Station, GBDT and RF models outperformed
other models from the denser results in the scatter plots; and the Copula method performed
better in LSTM and SVR models. Given that the peak flows at two stations were not well
predicted, the ten models need to be improved in simulating hydrological extremes.

To further illustrate the advantages of using multi-variable inputs for data-driven
models, four classical univariate time series models were used as benchmarks: ARMA,
MGF, NNBR, and GM (Table S3 and Figure S2). In the testing stage, the ARMA model
outperformed other models with the best MAPE, RMSE, and NSE values for the Gaochang
Station. In addition, the ARMA model had a more concentrated distribution of monthly
average MAPE and NSE, while the MGF model outperformed on RMSE and R. For the
Cuntan Station, the ARMA model achieved the best MAPE values of 14.39% and the
best NSE of 0.84, while the MGF model outperforms the ARMA with an R-value of 0.96.
Similarly, the ARMA model’s MAPE and NSE have more concentrated distributions than
other univariate models, and the MGF model outperforms on RMSE and R. The same
results can be found in univariate models where the observed and predicted values overlap
and cluster.

Overall, the four univariate models did not predict the monthly streamflow well
enough like the ML models. For the Gaochang Station, the univariate models’ MAPE
ranged from 17.47~27.79%, the RMSE ranged from 715 to 887 m3/s, and the NSE ranged
from 0.52~0.77, except that the evaluation metric R was relatively better with a range of
0.89~0.95, whereas the ML model’s MAPE ranged from 16.68~26.26%, the RMSE ranged
from 691~844 m3/s, the NSE fluctuated from 0.58 to 0.78, the R fluctuated from 0.91~0.94,
which illustrated the improvement of the ML model over the univariate model in terms
of MAPE by 5.10, RMSE by 4.16, NSE by 5.34, and R by 0.43%. The evaluation of the four
models was quite the same for the Cuntan Station, and the improvement of the ML model
over the univariate model was more apparent, with MAPE by 10.84, RMSE by 17.28, NSE
by 13.68, and R by 3.55%.
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The performance of these 14 models was quantitatively compared based on the entropy
weight method (Figure 9). Four evaluation metrics, MAPE, RMSE, NSE, and R, were
considered comprehensively through the index weight and normalized value calculated
by the entropy method, where MAPE and RMSE were negative metrics while R and NSE
were positive metrics. It turned out that the index weights were close both in the Gaochang
Station and the Cuntan Station, ranging from 0.249~0.251. The best weighted average
score for the Gaochang Station was 0.0780 from the LSTM_Copula model, followed by the
GRU_Copula with a score of 0.0771; while the lowest score was 0.0599 in the MGF model.
For the Cuntan Station, the best weighted average score was 0.0758 in the LSTM_Copula
model, while the lowest score was 0.0570 in GM. The weighted average performance score
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for the Gaochang Station differed significantly among these 14 models, whereas for the
Cuntan Station, the ML models indicated a similar performance except for the LSTM_Step
model, and there was a significant advantage compared with the univariate models, with
an average improvement of 0.0093.
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3.4. Accuracy of Peak Flow and Low Flow Forecasts

Generally, the peak flows were not captured well, and all models failed to capture the
most severe peak flow (Figures S3 and S4). For the Gaochang Station, the peak flows in 2012
and 2018 were not captured by any of the ten ML models or the four univariate models
(Figure S3). The observed peak flow in 2012 was 8921 m3/s, but the average predicted peak
flow was only 5278 m3/s, which was even more inaccurate in 2018, with an observed peak
flow of 9366 m3/s and a predicted value of 5314 m3/s. In other years, LSTM and GRU
models tended to underestimate the peak flows to 9.58~14.34%, while GBDT, RF, and SVR
tended to overestimate the peak flows to 4.94~12.50%. For the Cuntan Station (Figure S4),
the GDBT_Copula model tracked the peak flow better than others in 2009, 2010, 2013, and
2017. The peak flow in 2012 was underestimated by all the ten ML models to an average
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of 41.06% and by the four univariate models to an average of 34.8%. The highest peak
flow in 2018 was underestimated by the ten ML models to an average of 33.01% and by
the four univariate models to an average of 29.85%. Besides, the peak flow in 2011 was
overestimated by the ten ML models to an average of 31.51% and by the four univariate
models to an average of 24.15%.

The predictions on the low flows were better than peak flows (Figures S3 and S4).
For the Gaochang Station, generally, all ML models and univariate models tended to
underestimate the low flows except the year 2010 to an average relative error of 14.49%
(Figure 10). The distributions of relative error on annual peak flow prediction were denser
than on annual low flows in the testing stage, especially LSTM_Copula model, GBDT_Step
model, and RF_Step model. Besides, NNBR and GM did not show stable performance in
predicting peak and low flows. For the Cuntan Station, the prediction performances on the
low flows were better than the Gaochang Station, given that the streamflow is higher at
the Cuntan Station. The ML models’ prediction results were close to the observation with
an average relative error of 5.76%, and the distributions of ML models were denser than
traditional statistical models. While the univariate models had a worse performance with
an average relative error of 14.58%, MGF and GM models did not show good performance
(Figure 11), indicating that the complex physical mechanism underlying extreme floods
could not be captured by simple univariate models.
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4. Discussion

Considering the effects of different variables and lag periods on runoff, we applied
five common ML models with the traditional stepwise regression method and the copula
entropy method to select the optimal variables and predict monthly streamflow for the
Gaochang Station and the Cuntan Station. We also applied four univariate models as bench-
marks to investigate the role of multi-variable input in monthly streamflow prediction.

The results revealed that input variables of different time lag influenced the prediction
performance of runoff. Interestingly, the stepwise regression method selected more global
circulation variables while the copula entropy method tended to select more ground meteo-
rological variables. At the Gaochang Station, the variables impacting the runoff process
include the northern hemisphere polar vortex central intensity Index with a lag of one
month, the North American subtropical high area index with a lag of twelve months, the
Tibet Plateau region 1 Index with a lag of one month, the Asia polar vortex area index
with a lag of one month, the Indian Ocean warm pool strength index with a lag of nine
months, suggesting that the streamflow processes in the UYRB are not only closely linked
geographically to the Tibetan Plateau with pre-summer thawing of frozen soil [62–65], but
also remotely influenced by the atmospheric circulation in the northern hemisphere, espe-
cially the East Asian monsoon circulation system, and the warm Indian Ocean condition
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and tropical SST anomalies [66–69], which can be found in the selected variables of the
Cuntan Station as well.

Generally, the ML models outperform the univariate models in both the training and
the testing stages. For instance, the LSTM_Copula model makes average improvements
of 12.25, 8.71, 10.06, and 1.12% in the MAPE, RMSE, NSE, and R values than other ML models
for the Gaochang Station and 6.59, 2.89, 5.19, and 0.66% for the Cuntan Station. In addition,
the ML models outperform the univariate models on the annual low flows with much lower
relative errors of 5.76 and 14.58% for the Gaochang Station and the Cuntan Station. However,
the performance of ML and univariate models did not look distinct when predicting the
annual peak flow, suggesting the difficulty of extreme runoff prediction. The comparative
analysis above substantiates the vital part of meteorological variables input for data-driven
models and confirms the superiority of the nonlinear and self-learning ML models.

The optimal models for monthly streamflow prediction differed between the two
stations, which explains the complexity and difficulty of medium to long-term runoff
prediction. However, some models outperformed others to a certain degree, and the
comparison results illustrated the superiority of the copula entropy method and LSTM
model. For the Gaochang Station, the LSTM_Copula model outperformed other models
with better values of evaluation metrics and a more steady and robust effect in different
months with 17.624% of MAPE, 691.492 m3/s of RMSE, 0.783 of NSE, and 0.937 of R in the
testing stage, and the LSTM_Copula model obtained the best weighted average score of
0.078, which was similar to the previous research [70] in the Gaochang Station with ANN,
ELM, and SVM models. Compared with the LSTM_Step, the LSTM_Copula improved the
MAPE, RMSE, NSE, and R values by about 3.33, 5.19, 1.68, and 1.47% in the testing stage,
respectively. Besides, it increased 20.48, 10.65, 11.49, and 3.25% in the MAPE, RMSE, NSE,
and R values in the testing stage in comparison with the GBDT_Copula model. For the
Cuntan Station, LSTM_Copula and RF_Copula models performed relatively better in gen-
eral with 14.441~16.734% of MAPE, 2616.354~2782.648 m3/s of RMSE, 0.835~0.811 of NSE,
and 0.960~0.962 of R in the testing stage, which is better in the MAPE and R values than
the previous study [71] on the Cuntan Station.

Furthermore, some aspects limit the prediction accuracy and stability in this study. On
the one hand, the ML models can theoretically reach the approximate solution, while the con-
ventional gradient-based training technique tends to be stuck in the local minimum [72–75].
On the other hand, the calibration of hyperparameters greatly influences the forecasting
models’ results. Furthermore, the computational cost of the ML models is longer than
traditional statistical models since the models’ structure is more complex and the opti-
mal parameter searching is time-consuming, which took 450~600 s for LSTM and GRU
modeling, 120~200 s for the GBDT, RF, and SVR modeling, and 30~70 s for traditional sta-
tistical modeling in personal computers with 8 CPU and dual thread in our study. Besides,
influenced by multiple variables in both the physical world and human society [76,77],
the runoff process presents knotty dynamic characteristics, making it more challenging to
predict. Accordingly, in some cases, a single model and limited input variables may not be
able to make satisfactory predictions. Multiple-model coupling is inevitable in the future,
and more work is needed to employ more input variables by novel algorithms [78–80] and to
investigate the interpretability of the chosen variables based on the developed knowledge.

5. Conclusions

The stepwise regression and copula entropy methods were applied in five ML models
for monthly streamflow prediction for the Gaochang Station and Cuntan Station in the
UYRB, including the LSTM_Step, LSTM_Copula, GRU_Step, GRU_Copula, GBDT_Step,
GBDT_Copula, RF_Step, RF_Copula, SVR_Step, and SVR_Copula. The results indicate
that the LSTM_Copula model outperformed other models in predicting monthly runoff
at the Gaochang Station and the Cuntan Station, whereas the GRU_Step and RF_Copula
models also showed satisfactory performances. Besides, LSTM and GRU models tended
to underestimate the peak flows while GBDT, RF, and SVR tended to overestimate them.
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This means that the accuracy of peak flow forecasting still needs improvement owing to
the few extreme flood samples available for learning. In addition, compared with four
univariate time series models (i.e., ARMA, MGF, NNBR, and GM), the ML models with
multi-variables input generally presented better forecasting accuracy. In conclusion, we
demonstrate that the proposed ML methods are potentially effective tools for monthly
streamflow prediction, selecting appropriate input variables and time lags simultaneously.
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//www.mdpi.com/article/10.3390/su141811149/s1, Figure S1: Observed runoff and simulated
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Observed runoff and simulated monthly runoff by univariate models for the Cuntan Station in
the testing stage; Figure S3: Annual peak flows of various models for the Gaochang Station and
Cuntan Station in the testing stage; Figure S4: Annual low flows of various models for the Gaochang
Station and Cuntan Station in the testing stage; Figure S5: The decision tree visualizing plot in the
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