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Abstract: The permeable pavement system (PPS) has effectively contributed to stormwater manage-
ment as a low-impact development (LID) technology. The suitability of clay bricks, consolidated with
waste materials, for sustainable PPS applications in urban infrastructure needs further attention. In
this study, several series of permeable clay paving bricks samples were prepared by mixing different
ratios and particle sizes of sawdust (SD) with clay soil and firing at 900 ◦C. The raw soil and SD
samples were characterized through sieve analysis, X-ray Fluorescence (XRF), X-ray diffraction (XRD),
and Fourier-Transform Infrared Spectroscopy (FTIR). The bricks were tested for their compressive
strength, bulk density, apparent porosity, water adsorption, permeability coefficient, and stormwater
treatment efficiency. The clay soil comprised 17.5% clay/silt with appropriate amounts of SiO2
(50.47%), Al2O3 (19.14%), and fluxing agents (15.34%) and was suitable for brick manufacturing. XRD
and FTIR analysis revealed that the soil predominantly comprises quartz, dolomite calcite, feldspar,
kaolinite, illite, and chlorites. The SD samples were enriched with amorphous and crystalline cellu-
lose. The compressive strength of the bricks decreased, while the permeability of the bricks increased
with an increasing percentage of SD. An optimal percentage of 10% SD achieved a 21.2 MPa compres-
sive strength and a 0.0556 m/s permeability coefficient, meeting the ASTM specifications for PPS.
The optimal size of SD, between 0.5 and 1.0 mm, achieved the desired compressive strength of the
bricks. The permeable bricks effectively removed the total suspended solids (TSS), turbidity, and
BOD5 from the stormwater, which complies with the guidelines for wastewater reuse applications.

Keywords: permeable bricks; permeable pavements; clay soil; sawdust; compressive strength;
permeability coefficient

1. Introduction

Most arid and semi-arid countries, including Saudi Arabia, are fronting multifold
climate-change-related challenges [1]. In addition, rapid urban development has caused a
drastic loss in pervious surfaces, resulting in the insufficient infiltration of surface runoff
and water pollution problems [2–4]. Even though the capacity of drainage infrastructure
in these regions was designed for short-duration low-intensity rainfalls, in recent years,
global climate change has increased the frequency of flash floods, resulting in significant
environmental and economic loss in these regions [5]. Contemporary approaches, such
as low-impact development (LID) and rainwater harvesting, are more resilient and are
swiftly substituting conventional stormwater drainage schemes [6]. Utilizing natural
and engineered infiltration and storage techniques, LID has proven to be a sustainable
technique for achieving water balance for stormwater management [7–9]. LID essentially
increases the pervious surfaces in urban areas to improve stormwater infiltration as well as
the water quality through biological, chemical, and physical (filtration) processes [10,11].
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Structural LID practices include but are not limited to: (a) bio-retention ponds, (b) green
roofs, (c) permeable pavements, (d) infiltration trenches, (e) bio-swales, (f) rain barrels,
(g) stormwater wetlands, and (d) sand filters [10].

Among the LID technologies, permeable pavement systems (PPSs) have been receiving
considerable attention for the management of stormwater because of their unique properties
for infiltrating stormwater on-site without covering space in the urban landscape [12]. PPS
is a multilayer structure primarily consisting of several sub-base and base layers with
a permeable surface on the top [13]. Acting as a stormwater reservoir, PPS has shown
great potential in controlling flash floods by reducing the peak flow discharge and runoff
volume through infiltration [14]. At the same time, the PPS is effective at removing various
pollutants from the stormwater through filtration [15]. A previous study reported that
PPS removes more than 70% of heavy metals and around 90% of hydrocarbons, while
it retains 87% of the solids from surface runoff [16]. A modified PPS with grass swale
can correspondingly reduce TSS, NO3-N, NH3-N, and TN up to 91%, 66%, 85%, and 42%,
whereas heavy metals such as Cu, Fe, Pb, Mn, and Zn can be reduced by more than 75% [17].
A recent study by Shafiquzzaman et al. [18] reported that a PPS surface made of permeable
clay bricks could reduce up to 99% TSS, 65–70% organics (BOD and COD), 70% NH3-N,
and 94% Pb from polluted stormwater.

Despite enormous progress, the effectiveness of the permeable clay bricks developed
by a mix of various materials has yet to be investigated for sustainable applications in
PSSs. Thus, further research on the quantitative and qualitative performance evaluation
of PPSs is needed. Recent studies reported that the runoff infiltration capability and the
pollutants removal efficacy of PPSs largely depend on the material properties of the PPS’s
surface [19]. Therefore, the surface layer needs to be carefully selected for the optimum
performance of the PSS. Some studies focused on evaluating permeable asphalt-based and
concrete-based pavements for runoff reduction and stormwater treatment [20,21]. The
feasibility of PPS applications has also been tested in many recent studies, such as car
parking areas, pedestrian pathways in light traffic areas, and smooth surfaces for low-speed
vehicles [22,23]. These studies reported that the factors, including the properties of the
materials used in the PPS layers, the setting of the layers, rainfall intensity, and rainfall
duration, could impact the performance of the PPS [22,23]. Nevertheless, the selection of
material compositions and PPS layer setting should be carefully considered for the PPS
design to achieve the desired performance.

As a replacement for concrete and asphalt-based PPSs, a permeable clay brick pave-
ment can be a sustainable alternative to urban stormwater management. Clay bricks made
with simple technology can be implemented and achieve the goal of a low-cost LID. In
past studies, various pore-forming waste materials were mixed with clay soil to produce
environmentally-friendly permeable clay bricks [24–26]. To date, fly ash, rice husk, rice
straw, sugarcane base waste, and many other waste materials from agricultural and indus-
trial sources have been used to develop lightweight clay-based bricks [24–29]. Mixing these
waste materials (5–30%) with soil generates pores in clay bricks. However, the applications
of such clay bricks are restricted to building materials, such as wall and floor construction.

Among the waste materials, sawdust is considered to be one of the most abundant
wastes produced by the wood/timber industry. More importantly, the average global wood
harvesting rate has increased [30], and it is estimated that the industrial wood supply will
increase by 55% by 2030 [31]. As a consequence, there are more concerns about sustainable
methods for the disposal of sawdust, which is often burned off, causing environmental
pollution [32]. Sawdust can be used as an alternative source of raw material in energy,
agriculture, and manufacturing industries [32]. Several studies have investigated the
application of sawdust-mixed fired clay bricks as building materials [33–35].

As per the authors’ best knowledge, the application of SD in the manufacturing of
permeable clay paving bricks has not been adequately studied in terms of their structural
and hydrological properties [33]. The addition of SD to the clay mixture may be used
as the pore-forming agent in the permeable bricks to achieve the desired permeability.
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Nevertheless, the ratio and particle size of SD in the clay mixture may significantly decrease
the desired strength of the bricks to be implemented in a PPS. Thus, the SD ratio and particle
size in the porous clay bricks need further investigation into their structural, hydrological,
and stormwater treatment performances. The present study aimed to develop a clay-based
permeable brick made of soil and sawdust (SD) for light traffic and pedestrian applications
in the urban areas of arid regions. Specifically, the study focused on optimizing the particle
size and mixing ratio of SD by using the following optimization parameters of the clay
bricks: compressive strength, bulk density, apparent porosity, water adsorption capacity,
permeability coefficient, and stormwater treatment efficiency.

2. Materials and Methods
2.1. Clay Soil and Sawdust

The clay soil used for the manufacturing of the bricks was collected from the Najd
Clay Brick Factory company located in the Unaizah district, AlQassim, Saudi Arabia. The
soil samples were manually screened to remove straw, shells, and other impurities, ground
with a hammer, and sieved through a 0.5 mm sieve. Figure 1a shows the soil samples used
in this study. Sawdust was selected as the main pore-forming waste material for brick
manufacturing. The primary reason for selecting SD was its frequent availability at a very
low cost in the Gulf region. SD was collected from a carpenter shop of the local market in
Unaizah, Al-Qassim. The collected SD was categorized into different particle sizes ranging
from 0.5 mm to 1.5 mm by sieving through sieves of various sizes. Figure 1b shows an
image of the sawdust used in this study.
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Figure 1. Raw materials used for manufacturing the bricks, (a) clay soil, and (b) sawdust.

2.2. Porous Clay Bricks Manufacturing Process

The porous clay bricks were manufactured in the Environmental Engineering Labo-
ratory, Department of Civil Engineering, College of Engineering, Qassim University. A
conventional brick-making method presented in Figure 2 was employed to manufacture the
porous clay bricks. All of the materials used for brick manufacturing were locally available
in the Qassim region. Figure 3 shows the laboratory steps of the clay brick manufacturing
procedure in this study. Making the bricks was initiated by weighing the soil and SD to
the desired ratios using a digital balance. Different soil and SD ratios were well mixed to
make a homogenous mixture (Figure 3a). Subsequently, tap water was slowly added to the
mixture, and it was continually mixed to form the dough until achieving sufficient plasticity
and workability (Figure 3b). The dough was then cast in a wooden mold with a standard
size of 70 × 70 × 50 cm, which was adopted from previous studies (Figure 3c) [36,37]. All
of the bricks were compacted using a manual press to ensure homogeneity and the desired
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compaction. After casting, the bricks were left under room air for 24 h. Subsequently,
the air-dried bricks were oven dried at 110 ◦C for 48 h. Alternatively, the bricks can also
be dried under the sun to reduce energy costs. In the final steps, the oven-dried bricks
were baked in a commercial furnace at Al-Fahad Construction Ltd. Uniazah, Al-Qassim,
at 900 ◦C, with a gradually increasing temperature at a rate of 10 ◦C/min for 2.5 h. This
firing temperature was selected based on the findings of past studies, which found that a
firing temperature that ranged between 900 and 1000 ◦C is suitable for the manufacturing
of clay bricks [38]. After baking, the bricks shown in Figure 3e,f were brought back to
the laboratory and kept under water for 24 h for cleaning and curing before they were
tested further.
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To optimize the size and ratio of SD in the brick’s mixture, two series of bricks were
prepared. Table 1 presents two series of bricks that were produced by mixing different
ratios and sizes of SD with soil. In the first series, the bricks were made by mixing 0%, 5%,
10%, 15%, and 20% SD (by wt.) with soil. The produced bricks were named according to
the % of SD in the mixture, as indicated in Table 1. For example, the bricks with 0% SD
were named SD0, 5% SD as SD5, and so on. In the second series, the effect of the particle
size of the SD on brick properties was investigated. In this series, 10% of selected sizes of
SD were mixed with soil (see Table 1). The selected size of the SD was 0.5 mm (SD-0.5),
0.75 mm (SD-0.75), 1.0 mm (SD-1.0), and 1.5 mm (SD-1.5).
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Table 1. Bricks made by different ratios of sawdust with soil.

Brick Name SD Size (mm) Soil
(% by wt.)

SD
(% by wt.)

SD0

1.0

100 0
SD5 95 5

Series 1 SD10 90 10
SD15 85 15
SD20 80 20

SD-S0.5 0.5 90

10Series 2 SD-S0.75 0.75 90
SD-S1.0 1.0 90
SD-S1.5 1.5 90

2.3. Characterization of Raw Soil and Sawdust
2.3.1. Sieve Analysis of Soil

To classify the soil and its characteristics, sieve analysis was performed according to
the methods described by ASTM D422-63 [39]. The percentage of each size of grain in the
soil sample was determined from the cumulative grain size distribution curve. The sieve
analysis was performed using sieves which had a mesh size of 1.18, 0.6, 0.5, 0.425, 0.3, 0.25,
0.18, 0.15, and 0.075 mm.
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2.3.2. Chemical and Morphological Characterization of Soil and Sawdust

The elemental analyses of the soil and SD samples were conducted using the X-ray
Fluorescence (XRF) technique. The crystalline structure of the soil and SD samples were
analyzed through the X-ray diffraction technique (XRD) using ULTIMA IV/Rigaku(Rigaku,
TX, USA) The main mineral phases of the samples were identified by the phase analysis
of the samples using XRD methods. The sweeping speed of the samples was maintained
at 1◦/min between 2θ = 0◦ and 60◦. The Fourier-transform infrared (FT-IR) spectrometer
(Bruker Tensor 27 FTIR spectrometer) was used to obtain the infrared absorption spectra of
the raw materials. The samples were thoroughly scanned between the wave number of
4000 and 400 cm−1.

2.4. Characterization of Raw Soil and Sawdust

After manufacturing, all of the bricks were tested to assess their structural, mechanical,
and hydrological properties for their possible application in permeable pavements. The
tests included compressive strength, porosity, water adsorption, bulk density, permeability,
and filtration capability. The details of the testing procedure of each parameter are presented
in the subsequent sub-sections.

2.4.1. Apparent Porosity, Water Adsorption, and Bulk Density

The water boiling method described by ASTM C20-00 [40] was followed to determine
the apparent porosity, water adsorption, and bulk density of the bricks. Initially, the
brick samples were oven dried at 110 ◦C for 24 h, while the volume (V) and weight
(D) were measured using a digital balance. The samples were then boiled with distilled
water for 2 h. Following this, the samples were taken out to cool until reaching room
temperature. Subsequently, the saturated mass (W) of the samples was measured. The
following equations were used to calculate these three parameters:

Porosity, % =
W − D

V
× 100 (1)

Water adsorption, % =
W − D

D
× 100 (2)

Bulk density, % =
D
V

× 100 (3)

2.4.2. Compressive Strength Tests

Compressive strength is one of the important properties that assess the brick’s load-
carrying capability. The method described by ASTM C67-05 [41] was employed to measure
the compressive strength using the Universal Testing Machine (UTM). For the test, the brick
specimens were fixed between the two pressing discs fitted in the machine and pressed to
the complete failure (breakage) of the brick. The maximum pressures at failure, as well as
the pressure distribution, were recorded in the computer connected to the UTM machine.
The compressive strengths were then calculated using the following equation:

Compressive strength , M =
Maximum applied load, P (N)

Surface area, A (mm2)
(4)

2.4.3. Permeability Test

The standard falling head method described by ASTM D2434-68 [42] was employed
to measure the permeability coefficient of the bricks. The test was carried out with a plastic
bucket. The test specimen was fixed at the bottom of the bucket using acryl glue and kept
for 72 days for drying. Subsequently, the permeability test was initiated by filling the
bucket with tap water to a height of (h1). The water was then allowed to pass through
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the bricks, and the time required to reach the water height until h2 was recorded. The
permeability coefficient was then calculated using Equation (5).

k =
a × l
A × t

ln
(

h1

h2

)
(5)

where k is the permeability coefficient (cm/s), a is the bucket cross-section area (cm2), A is
the cross-sectional area of the brick samples (cm2), and l is the specimen thickness (cm).

2.4.4. Stormwater (Runoff) Filtration Experiments

The stormwater filtration experiments were carried out using the selected bricks (SD
ratio 10%) to assess their pollutant-removal capability for stormwater and the potential for
practical field applications. The test was performed simply using a plastic bucket (20 cm
high and 20 cm diameter) with a hole at the bottom. The selected bricks were fixed at the
bottom of the bucket with acryl glue. Figure 4 shows the photograph and details schematics
of the laboratory-scale filtration experiments. The stormwater was poured into the plastic
bucket, allowing it to gravitationally filtrate through the porous bricks. The stormwater
used in this experiment was collected from a natural pond in Buriadah city, Al-Qassim,
Saudi Arabia. All of the samples were collected in high-density polyethylene (HDPE)
bottles and stored at 4 ◦C. The pH, DO, and BOD5 tests of the samples were performed
within 48 h of collection. The filtration tests were carried out continuously for three days,
and the quality of the filtrated water was analyzed on a daily basis.
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2.5. Water Quality Analysis

The water quality of both the raw stormwater and filtered water was analyzed follow-
ing the standard methods defined by the American Public Health Association (APHA) [43].
The electrical conductivity (EC), pH, and dissolved oxygen (DO) were determined using a
portable pH, EC, and DO meter provided by Hach (HACH, Loveland, CO, USA). Turbidity
was measured using a Hach 2100Q turbidity meter (2100Q, HACH, Loveland, CO, USA).
The gravimetric method was followed for measuring the total suspended solids (TSS). The
standard procedure described by the APHA [43] was employed to measure the Biochemical
Oxygen Demand (BOD5).

2.6. Statistical Analysis

A single-factor analysis of variance (ANOVA) test was performed to determine the
statistical difference of the brick properties made of different mixing ratios (%) and particle
sizes of SD. The test was carried out using Microsoft Excel analytical tools with a 95%
confidence interval.



Sustainability 2022, 14, 11115 8 of 19

3. Results and Discussions
3.1. Grain Size Distributions of Soil

The characteristics and behavior of soil largely depend on geotechnical characteristics.
The compressive strength, density, and water content have a significant impact on the
particle size distribution of the soil. Therefore, the soil used to manufacture the porous
bricks in this study was characterized by sieve analysis. According to the particle size
distribution, soil can be grouped into clays (<0.002 mm), silts (0.002–0.075 mm), fine sands
(0.075–0.42), medium sands (0.42–2.0 mm), and gravels (2.0–75 mm). The soil can behave
quite differently within these five major groups. Moreover, the soil grading can be defined
by calculating the uniformity coefficient (Cu) and the coefficient of curvature (Cc). Soil
is classified as well graded if the Cu value is more than 4. The soil classifies poorly or
uniformly graded at Cu values less than 4, and Cc values ranging between 1 and 3 classify
the soil as well graded. Compared to well-graded soils, poorly-graded soils are more
vulnerable to soil liquefaction. The grain size distribution of the soil was calculated based
on the sieve analysis, and the results are presented in Table 2. It was observed that the soil
contains 18.8% of medium-size sand, 63.7% of fine sand, and 17.5% of clay/silt. Based on
this size distribution, the soil can be classified as sandy clay soil.

Table 2. Characteristics of the selected soil based on the sieve analysis results.

Soil Characteristics Values

D10 0.06
D30 0.14
D60 0.22
Cu 3.67
Cc 1.48

Gravel (%) 0.0
Medium sand (%) 18.8

Fine sand (%) 63.7
Clay/silt (%) 17.5

The values of Cu (3.67) and Cc (1.48) in the soil sample indicated that the values are
at the boundary of well-graded (Cu > 4, Cc = 1−3) and poorly graded (Cu < 4, Cc < 1).
Therefore, the soil can be defined as medium to fine mixed-graded soils.

3.2. Elemental Compositions of Soil and SD Samples

Table 3 presents the chemical compositions of the soil and SD samples measured
by the XRF technique. The soil sample contains a suitable amount of SiO2 (50.47%) and
Al2O3 (19.14%), which are within the normal values (50–60% SiO2 and 10–20% Al2O3)
and considered to be appropriate for normal clay brick manufacturing [38]. More than
60% of SiO2 may increase the porosity of the bricks. On the contrary, if the Al2O3 amount
in the soil is more than 20%, it may decrease the compressive strength of the bricks [38].
Other fluxing agents such as Fe2O3, CaO, and MgO were present in the soil, and their total
proportion was 15.34%. The results indicated that the soil is a low refractory material, i.e.,
these fluxing agents in the soil help to lower the melting point of the bricks during the
baking process [38]. The existence of less than 6% CaO (3.2%) indicates that the soil is
non-calcareous [38]. The SD sample contents were 33.11% SiO2, 16.38% Al2O3, 9.56% Fe2O3,
and a relatively higher amount (28.08%) of CaO. Therefore, the SD sample is categorized as
calcareous and has more refractory materials.
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Table 3. Chemical compositions of soil and SD based on XRF analysis.

Compositions (%) Soil SD

Silica (SiO2) 50.47 33.11
Alumina (Al2O3) 19.14 16.38

Iron oxide (Fe2O3) 8.87 9.56
Calcium oxide (CaO) 3.2 28.08

Magnesium oxide (MgO) 3.27 0
Others 11.05 12.87

3.3. FTIR Analysis of Raw Soil and SD Samples

Figure 5 shows the FTIR spectra of the soil and SD samples. For the soil, the bands at
1084 cm−1, 741 cm−1, 699 cm−1, and 471 cm−1 indicated that the soil is quartz-rich. The
intense peaks in the region of wavenumber 800–400 cm−1 belong to feldspar, consisting
of aluminosilicates of potassium, sodium, and calcium [44]. The absorption bands at
983 cm−1 in the soil samples possibly indicated the existence of sulfates in the samples [45].
The distinct vibration bands at 741 cm−1 identified the existence of dolomite in the soil
samples [46]. The FTIR spectra of the carbonates were found at 1790–1820 cm−1 and
1400–1500 cm−1, 870 cm−1, and 741 cm−1 [46]. The vibrations observed at 440–400 cm–1

support the presence of hematite consisting of ferric oxide [46]. The absorption bands at
3688, 3624, 3615, 905, 699, and 471 cm−1 clearly specified the presence of kaolinite in the
samples [44]. The absorption spectra at 471 cm−1 signify the presence of Si-O [45]. The
distinct spectra in the area 1640–1600 cm−1 were due to the presence of OH-adsorbed
water [45] or due to the presence of magnesium-rich chlorite in both samples. The clear
bands between 3400 and 3750 cm–1, observed in the soil sample, can be attributed to
hydroxyl linkage (O–H) [45].

For the SD samples, a broad vibration band was observed at 3291 cm−1, indicating the
presence of cellulose and lignin phenol clusters in the samples [47]. The vibration band at
2850 cm−1 was due to the uneven vibrations of—CH2 and—CH3. The peak at 1587 cm−1

indicated the presence of a carboxylate cluster in the SD samples. The vibration band at
1328 cm−1 shows the presence of pectin (-COOH). The peak at 1213 cm−1 signifies hemicel-
lulose vibration. The presence of the halogen group C-X in the SD sample is identified by
the vibration bands observed at 1011 cm−1 and 1042 cm−1 [48].

3.4. XRD Analysis of Raw Soil and SD Samples

Figure 6 presents the X-ray diffraction patterns of the soil and SD samples. The inter-
planar spacing corresponding to XRD peaks observed for the clay soil-1 sample shows the
presence of quartz (Q), dolomite (D), kaolinite (K), calcite (C), and feldspar (F), illite (I),
and chlorite (ch). The results of XRD are consistent with the findings of the FTIR spectra.
The X-ray diffraction patterns of the raw SD samples showed two distinct diffraction peaks
around 2θ = 16◦ and 22◦, indicating that the SD contains both amorphous and crystalline
cellulose [49].

3.5. Properties of Bricks with Varying Percentages of Sawdust

Figure 7 presents the compressive strength, bulk density, porosity, and water ad-
sorption of bricks made of soil with varying percentages of SD. The results showed that
compressive strength and bulk density significantly decreased (p > 0.005) as the % of SD
increased in the brick specimens. In contrast, the apparent porosity and water adsorption
capacity significantly increased (p < 0.005) with the increase in the percentage of SD. With
an increase in SD% from 0% to 20%, the compressive strength decreased from 26.8 to
7.6 MPa and the bulk density from 2.01 to 1.25 g/m3. On the contrary, the corresponding
increase in apparent porosity and water adsorption ranged from 7.4% to 56.7% and 3.7% to
45.4%, respectively. The inter-particle bond between the clay particles destabilized with
the increase in SD in the clay mixture, which decreased the bulk density and compressive
strength of the bricks [50]. Furthermore, the organics present in the SD were completely
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burnt out during the firing process at 900 ◦C, which generates pores in the brick’s struc-
ture [51]. Consequently, the porosity and the water adsorption of the bricks increases when
increasing the SD% in the soil mixture, as presented in Figure 7.
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Figure 8 further correlates the experimental data of the measured brick properties
to provide insights into the brick performance. A strong positive relation was found
between water adsorption and porosity (R2 = 0.983) as well as between the compressive
strength and bulk density (R2 = 0.942). On the contrary, the strong negative correlation
of compressive strength with the water adsorption (R2 = 0.968) and apparent porosity
(R2 = 0.941) indicated that the SD% in the soil mixture needs to be optimized to balance
these properties in permeable bricks. Our data indicated that with 10% SD, the bricks
archived sufficient compressive strength (21.28 MPa), water adsorption (20.27%), and
porosity (33.23%) to meet the standards for pedestrian and light traffic paving bricks
(ASTM C 902) [52]. It is worth mentioning that the standard value of the brick’s compressive
strength for severe weather and moderate weather conditions is ≥17.2 MPa (2500 Psi) [52].
Thus, 10% SD with a 90% soil mixture by weight was selected as the optimum ratio for
permeable clay bricks in this study.
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In a further study, the effect of SD size in the clay was also investigated and the
results are presented in Figure 9. It was observed that with a 10% ratio, the SD sizes from
0.5 mm to 1.0 mm did not significantly (p < 0.05) affect the brick’s compressive strength
and bulk density. However, the compressive strength and bulk density were significantly
reduced when the SD size increased to 1.5 mm, and they did not meet the ASTM paving
specifications [52]. On the contrary, the porosity and water adsorption were increased at
1.5 mm SD. For large SD sizes, the porosity of the bricks increased, which decreased the
compressive strength. Therefore, the study results suggest that an SD size of <1 mm is
appropriate for permeable brick manufacturing.
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3.6. The Permeability Coefficient of Bricks Made of Soil with Varying % and Size of SD

The permeability coefficient is one of the key parameters that provide insight into the
stormwater filtration rate of permeable bricks. The permeability coefficient as a function
of SD% is presented in Figure 10. As the SD% increased, the permeability coefficient in-
creased significantly (p > 0.05). The permeable coefficient increased from 0.0010 cm/s up to
0.071 cm/s as the SD % increased from 0 to 20% in the soil mixture. The permeability
coefficient was achieved to 0.0556 cm/s at 10% SD, which is significantly higher than the
typical values for fully pervious pavements. For fully pervious pavements, the values
of coefficient of permeability are greater than 0.01 cm/s, and for semi-pervious pave-
ments, the values range between 0.01 and 0.0001 cm/s [53]. Therefore, the permeability
coefficient values obtained in this study suggest the use of bricks with 10% SD in the
permeable pavements.
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Figure 11 illustrates the correlation of the permeability coefficient with the compressive
strength and porosity. Positive correlations of the permeability coefficient with both com-
pressive strength and porosity were observed with R2 values of 0.68 and 0.82, respectively.
The results indicated that the permeability increased when increasing the porosity.
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Furthermore, the effect of the SD size on the permeability coefficient of the bricks
was investigated, and the results are presented in Figure 12. The permeability coefficient
gradually increased from 0.055 cm/s to 0.078 cm/s as the size of SD increased from 0.5
to 1.5 mm. All of these values of the permeability coefficient are well above the range of
pervious pavements [53]. However, the compressive strength of the bricks made of 1.5 mm
SD was significantly reduced and reached 10.2 MPa (Figure 12), which was incompatible
with the standard of permeable bricks [52]. Thus, a size of SD up to 1 mm for manufacturing
permeable clay bricks is recommended.
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Finally, the compressive strength and permeability coefficient of the bricks were
compared with the standard for permeable paving bricks in Table 4. The results presented
in Table 4 describe that the batch of bricks made by soil with SD (ratio 0–10% and size
0.5–1.0 mm) achieved the desired compressive strengths and permeability coefficient
standards for potential application in PPS. Hence, it is recommended that the bricks made
of 10% SD with a particle size of ≤1.0 mm and a 90% soil mixture (SD10) are suitable to
make permeable clay bricks.

Table 4. Permeability coefficients of bricks made of soil with varying % and size of SD. All results are
the average values of 3 brick specimens.

Brick
Specimens

Soil
(%)

SD
(%)

SD SIZE
(mm)

Permeability
Coefficient

(cm/s)

Compressive
Strength

(MPa)

Meet the
Standards

(Y/N)

SD0 100 0 1.00 0.0010 26.8 N
SD5 95 5 1.00 0.0420 23.6 Y
SD10 90 10 1.00 0.0556 21.2 Y
SD15 85 15 1.00 0.0624 9.4 N
SD20 80 20 1.00 0.0718 7.6 N

SD-S0.5 90 10 0.50 0.0554 22.5 Y
SD-S0.75 90 10 0.75 0.0601 20.8 Y
SD-S1.0 90 10 1.00 0.0724 19.8 Y
SD-S1.5 90 10 1.50 0.0785 10.2 N

3.7. Stormwater Treatment Efficiency of Selected Bricks

The bricks with SD10 (optimum ratio) were selected to conduct the filtration experi-
ments to assess the performance of removing contaminants from the stormwater. Table 5
shows the pollutant concentrations in the raw and filtered stormwater samples. While
pH, DO, EC and TDS remained unchanged after filtration, and it can be concluded that
the bricks were unable to remove the dissolved salts from stormwater. Nevertheless, the
TDS level (416.2 mg/L) in the raw stormwater was well below the recommended value
(2500 mg/L) provided by the World Health Organization [54] for the wastewater reuse
applications of restricted and unrestricted irrigation, fire protection, and toilet flushing.
The pH and DO values in the filtered water were 7.9 and 62 mg/L, respectively. The
high removal efficiency of 98.6% resulted in less than 10 mg/L TSS in the filtrate (also see
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Table 5). Likewise, the high (96.8%) turbidity removal resulted in less than 1 NTU in the
filtered water. High removal of TSS and turbidity from the stormwater indicate that the
clay bricks are efficient in removing the particulate (TSS) and colloidal (turbidity) matter
from the stormwater by a physical straining process.

Table 5. Concentrations of various pollutants in the stormwater and after filtration by permeable clay
bricks made of soil −2 with 10% SD of size 1.0 mm.

Parameters Unit Observed
Values

After
Filtration

Removal
Efficiency

(%)

Wastewater
Reuse

Standard of
KSA [55]

Wastewater
Reuse

Standard of
WHO [54]

pH - 8.1 7.9 - 6.0–8.4 6.0–9.0
TSS mg/L 549.7 7.9 98.6 10 -
EC us/cm 595.7 548.0 8.1 -
DO mg/L 6.7 6.2 7.2 -

Turbidity NTU 34.5 1.1 96.8 5 5
TDS mg/L 416.2 407.7 2.0 2500 2500

BOD5 mg/L 44 9.8 77.7 10 -
TN mg/L 7.0 5.0 28.2 40 -
TP mg/L 2.1 1.4 33.6 - -

The organic removal performance of the clay bricks was assessed by measuring the
influent and effluent BOD. BOD5 was found to be 44 mg/L in the raw stormwater, which
was higher than the desired wastewater reuse standards. The BOD removal was moderate
(68.5%) and achieved less than 15 mg/L in the filtered water. Although the biological
activities did not occur during the filtration process due to a short filtration period (3 d),
it is anticipated that the particulate fraction of the organics was removed by the physical
straining and the dissolved fraction via adsorption onto the surface of the clay bricks [56].
Relatively low removal efficiencies of TN (28.2%) and TP (33.6%) were achieved. The
filtrated water quality was compared with the standard guidelines for wastewater reuse
given in Table 5. The results showed that all of the measured pollutants in the filtered water
were well below the standard guidelines.

3.8. Comparison of the Key Properties of the Bricks between This Research and the Previous Studies

The brick quality and durability greatly depend on several factors, including the
raw materials and their compositions (ratios). These factors significantly influence the
density, porosity, water adsorption, as well as the strength of the bricks. A number of
previous studies investigated the influence of the addition of waste materials on porous
clay brick production. Table 6 summarizes the experimental results of previous studies
that have been reported in the literature and compares them with the main findings of
this study. It can be seen in the table that the results of the present study are comparable
with previous studies. It is clear from most of the studies that the addition of waste
materials to the mixture significantly increases water adsorption and porosity while it
decreases compressive strength and density. Therefore, the finding of this study revealed
that sawdust-incorporated clay bricks would be a sustainable material for permeable
pavement applications.
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Table 6. Comparison between the findings of previous studies and this research.

Waste Materials Ratio (%)
Key Properties of the Bricks

ReferencesDensity
(g/cm3)

Water
Adsorption (%) Porosity (%) Compressive

Strength (MPa)

Sawdust 0–10 1.4–1.88 9.02–27.2 15.7–39.6 4.1–36.63 [57]
Fly ash 0–20 1.85–2.07 15.2–17.5 28–32.5 16–26 [58]

Sewage sludge 35–50 0.22–0.29 6–13.8 - 8.5–12.5 [59]
Residual Pulp 0–20 1.21–1.7 13–27 - 3–11.5 [60]

Rice husk 10 - 22–27 - 7–8 [61]
Glass waste 0–30 2.21–2.24 12.9–14.5 - 35.2–48.2 [62]

Water treatment
sludge 0–20 0.74–0.97 51–91 50–67 3–18 [63]

Rice Bran 0–20 1.3–1.9 10.5–39.3 10.1–59.1 6.98–29.7 [50]
Sawdust 0–20 1.25–2.01 3.71–45 7.47–56 6.5–27.5 This study

4. Conclusions

In this study, permeable clay paving bricks made of soil and sawdust waste that can
be used as the surface layer of permeable pavements were successfully developed. The soil
used in this study contains a significantly higher % of clay/silt (17.5%) and appropriate
amounts of SiO2 (50.47%), Al2O3 (19.14%), and fluxing agents (15.34%) for clay brick
manufacturing. The soil sample primarily comprised quartz, dolomite calcite, feldspar,
illite, kaolinite, and chlorite. The SD sample was enriched with amorphous and crystalline
cellulose and contained a higher % of Cao, and was categorized as calcareous and had more
refractory materials. The mixture of soil and 10% SD (size 0.5–1.0 mm) achieved the desired
compressive strength (21.2 MPa) and permeability coefficient (0.0556 cm/s), and it was
selected as the optimal ratio for manufacturing the porous bricks. The compressive strength
and bulk density decreased with the increasing % of SD in the brick specimens. In contrast,
the apparent porosity, water adsorption, and permeability coefficient increased with the
increasing % of SD. The size of SD between 0.5 and 1.0 mm did not significantly (p < 0.05)
change the compressive strength of the bricks suggested for use at these sizes for brick
manufacturing. The total suspended solids (TSS), turbidity, and BOD5 from the stormwater
were effectively removed to below the standard limit set by the WHO for wastewater
reuse applications. The developed porous clay bricks can be applied as the surface layer
of permeable pavements as a viable stormwater management option in the urban areas of
arid and semiarid regions. Further study is recommended to test the feasibility of these
bricks by conducting field experiments with real permeable pavement layers with their
underlying structure.
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