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Abstract: Combineingplant diseases identification and deep learning algorithm can achieve cost-
effective prevention effect, and has been widely used. However, the current field of intelligent
plant diseases identification still faces the problems of insufficient data and inaccurate classification.
Aiming to resolve these problems, the present research proposes an image information contribution
evaluation method based on the analysis of inter-class similarity. Combining this method with the
active learning image selection strategy can provide guidance for the collection and annotation of
intelligent identification datasets of plant diseases, so as to improve the recognition effect and reduce
the cost. The method proposed includes two modules: the inter-classes similarity evaluation module
and the image information contribution evaluation module. The images located on the decision
boundary between high similarity classes will be analysis as high information contribution images,
they will provide more information for plant diseases classification. In order to verify the effectiveness
of this method, experiments were carried on the fine-grained classification dataset of tomato diseases.
Experimental results confirm the superiority of this method compared with others. This research
is in the field of plant disease classification. For the detection and segmentation, further research
is advisable.

Keywords: plant disease identification; smart agriculture; few-shot learning; fine-grained classification;
inter-class similarity

1. Introduction

At present, smart agriculture and digital agricultural technology have provided a lot
of help in improving crop production and scientific planting [1]. One important application
is the identification of plant diseases, the existence of pests and diseases has seriously
affected the world’s food production. Timely control and prevention can avoid losses to
the greatest extent. Generally speaking, the identification of pests and diseases needs to
be entrusted to experts, which will cost a lot. In addition, if it is not discovered, entrusted,
and prevented in time, will expand the loss [2]. Therefore, intelligent agriculture and
digital agriculture have been well developed. Combining the plant disease identification
and computer vision methods, can prevent timely and accurately. Finally, the purpose of
reducing costs is achieved [3,4]. In general, the combination of deep learning and plant
disease identification has been widely used [5–9], and has achieved many good results.
However, plant disease identification combined with deep learning also faces the problems
of insufficient data and inaccurate classification of fine-grained similar classes [10,11].

In order to solve the problem of insufficient data, scholars have proposed many deep
learning methods based on few-shot learning. Active learning is a technology to solve the
shortage of images in the field of high image labeling costs [12–14]. The process of active
learning is that the network selects the most valuable images to improve the performance
of the model from unlabeled images according to the image selection strategy [15–18].
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The most widely used active learning image selection strategies are methods based on
uncertainty [19,20], diversity [21–23], and model parameters change [24]. The method
based on uncertainty is to select the images with the most inaccurate network prediction.
The method based on diversity is to select the images with the lowest redundancy with the
existing images. The method based on model parameters change is to select the images that
can most affect the model parameters. In addition, the existing few-shot learning methods
are mainly based on data enhancement and metric learning [25,26].

The method based on data enhancement is to use the existing image to create more
images, so that the neural network can achieve a better generalization effect, which is
often applied in the network training stage [27]. The few-shot learning method based on
metric learning completes the classification task by measuring the distance between the
images in the train set and the images in the test set. Prototype network [28] is a metric
learning method proposed by Snell. It calculates the average value of the characteristics of
all images in each class of image as the characteristic prototype representing this type of
image, and calculates the Euclidean distance from the image characteristics in the test set to
the characteristic prototype to predict the label of this image. The relationship network [29]
is proposed by Sung. Through the relationship network composed of two modules, the
similarity scores of the two images are calculated, and the similarity scores are used to
judge whether the two images are from the same class.

Fine-grained image classification is a more detailed sub-classification of coarse-grained
classes. Take the identification of tomato leaf diseases as an example. All the images belong
to the coarse-grained class of tomato leaves. It is needed to specifically subdivide whether
they are healthy leaves or which disease leaves. The classification and recognition of
plant diseases is mostly based on the nuances of the same species, which will bring to the
classification problem [30–32]. In order to solve the fine-grained classification problem of
specific classification of sub classes under such a large class, researchers have proposed
some methods base on the models. The initial method is to widen and deepen the network
for fine-grained classification, and to improve the representation ability of the network
for fine-grained image classification. On this basis, some people also use the method
of network integration [33,34] to improve the accuracy of fine-grained classification and
discrimination by using multiple neural networks. They also proposed the high-order
coding method of convolution features [32,35,36] to convert the CNN features to high-order
and then classify them.

In general, in order to improve the accuracy of intelligent recognition of plant diseases
and pests, we need to pay attention to few-shot learning and fine-grained classification
at the same time. The existing model-based fine-grained classification problems do not
take into account the number of images and the image information quality. Fine-grained
classification is the process of further classifying samples with high similarity. From the
perspective of image information quality, adding images near the decision boundary of
the more confusing category is more helpful to establish a clearer decision boundary. The
present research proposes an image contribution evaluation method based on the analysis
of inter-class similarity. This method first calculates the similarity between the various
classes of images, then evaluates the information contribution of the images according to
the inter-class similarity relationship. At the same time, the image information contribution
evaluation method is combined with the active learning strategy. This few-shot learning
method of plant diseases can use fewer images to achieve a better recognition effect.

Our contributions are as follows:

(1) We propose an image information contribution evaluation method, which focuses on
the inter-class similarity, defines the images located on the decision boundary between
high similarity classes as high contribution images. This can effectively alleviate the
problem of inaccurate fine-grained classification of plant disease identification.

(2) We combine the image information contribution evaluation method with the active
learning image selection strategy, which can effectively solve the problem of insuffi-
cient data for plant disease identification.
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(3) We have carried out experiments on plant disease datasets. This method has achieved
better experimental results than the traditional active learning methods. It can also
achieve better experimental results with fewer data, which can provide guidance for
the collection and annotation of plant disease datasets.

2. Materials
2.1. Dataset

In the plant disease classification, most of them encounter fine-grained image classi-
fication. In order to facilitate the verification of the effect of this method on fine-grained
plant disease classification, we selected the tomato disease dataset. The data of this dataset
is selected and sorted out from PlantVillage dataset [37]. In order to distinguish, we call the
newly established dataset tomat10 dataset (T10 dataset). Some data of the T10 dataset are
shown in Figure 1.

Figure 1. T10 dataset. The leaf dataset of ten tomato diseases. The mild diseases in each kind of
disease are above, and the serious diseases of each kind of disease are below.

T10 dataset contains 10 categories of tomato leaves, including 1 category of healthy
leaves, 4 fungal diseases (Tomato early blight, Tomato leaf mold, Tomato septoria leaf spot,
Tomato target spot), 1 bacterial disease (Tomato bacterial spot), 1 mold disease (Tomato late
blight), 1 mite disease (Tomato spider mites two-spotted spider mite) and 2 viral diseases
(Tomato mosaic virus, Tomato yellow leaf curl virus). Each class of T10 dataset contains
500 samples, a total of 5000 images. The pixel size of each image is adjusted, and the size is
128 × 128.

Characteristics of tomato diseases mainly focus on the color and shape of leaves.
Tomato early blight and tomato late blight are the two typical tomato diseases. The disease
spots of tomato early blight have obvious concentric rings, which appear dark green or
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yellow at the beginning, and grow a black mold layer when it is wet. The disease spots of
tomato late blight are dark green at first, irregular water stains, and gradually expanded to
brown. According to the color and shape of tomato leaf disease spots, the types of tomato
leaf disease can be better distinguished. Figure 1 also shows that each tomato leaf disease
has its own characteristics.

2.2. Dataset Segmentation

First, we divide 5000 images into pool set and test set according to the ratio of 4:1, take
20% of the pool set as the initially labeled dataset, and set the budget of each tag to 20%
of the pool set. For the first time, 800 images are randomly selected for training, and then
800 images are screened and added to the train set according to different methods each
time. In other words, the data of the test set is 1000, the data of the five train sets are 800,
1600, 2400, 3200 and 4000.

The special note is that the number of images in the test set and the initially labeled
dataset is balanced. The remaining image selection methods default to no label information,
and the number of each class of images may be different when added. This is more in line
with the actual dataset collection and labeling process.

3. The Proposed Method

We propose an image information contribution evaluation method for fine-grained
classification of plant diseases. This method fully considers the similarity difference be-
tween image categories in fine-grained image classification, evaluates the similarity con-
tribution of unlabeled images according to the similarity difference of image categories.
Select and label pool images in combination of the evaluation results and labeling budget.
The final training set is composed of the initially labeled dataset and the labeled images
selected from the pool set. The image selection strategy is shown in Figure 2.

Figure 2. Method overview. Combine the image information contribution evaluation method with
the active learning image selection strategy.

Next, we will introduce the construction method of active learning fine-grained image
classification dataset based on the inter-class similarity. In Section 3.1, we will introduce
the inter-class similarity evaluation method, in Section 3.2, we will introduce the image
information contribution evaluation method.

3.1. Inter-Class Similarity Evaluation

The inter-class similarity evaluation is to obtain the similarity matrix between various
images by using the statistical characteristics of the initially labeled dataset. When calculat-
ing, first calculate the core area of each class, and then calculate the statistical characteristics
of other images entering the core area. After normalization, obtain the similarity matrix
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between various images. Then calculate the overall similarity between each image class
and other images according to the similarity matrix. The specific calculation method is
as follows:

First, the feature prototype ci is calculated by using the characteristics of images f (k)i
in each class in the initially labeled dataset as the center of this class:

ci =

ni
∑

k=1
f (k)i

ni
(1)

where, f (k)i represents the characteristic of the k-th image in class i, ci represents the center
of class i and ni represents the number of class i images.

The core area radius of a class is expressed by the mean of the distance from the image
feature to the prototype of the class of images:

cri =

ni
∑

k=1
||ci − f (k)i ||2

ni
(2)

Calculate the entry of each image into other core areas in the initially labeled dataset:

d( f (k)i , cj) = || f
(k)
i − cj||2 (3)

m(x(k)i , c(j)) =

{
1, d( f (k)i , cj) < cri

0, d( f (k)i , cj) ≥ cri

(4)

Get the statistical characteristics of inter-class similarity:

mij =


ni
∑

ki=1
m(x(ki)

i , Ij) +
nj

∑
kj=1

m(x
(kj)

j , Ii), i 6= j

0, i = j
(5)

Secondly, normalize the inter-class similarity matrix of images in the dataset:

m
′
ij =

mij
n
∑

i=1

n
∑

j=1
mij

(6)

M = Mn∗n = (m
′
ij)n∗n (7)

where, n is the number of classes of images in the dataset.
Finally, measure the similarity between each class of images and all other classes

of images:

si =
n

∑
j=1

m
′
ij (8)

s
′
i =

si
n
∑

i=1
si

(9)

S = Sn∗1 = (s
′
i)n∗1 (10)

3.2. Image Information Contribution Evaluation

High information contribution refers to the image that can provide more information
for the network. If task indicators are oriented, it is the high information image that can



Sustainability 2022, 14, 10938 6 of 13

better serve the model training. On the contrary, low information contribution has a large
overlap with the existing images in the train set, or the image itself can provide less help
for network classification. For low information images, if task indicators are oriented, they
are images that help less to improve the performance of model classification tasks.

The core idea of unlabeled image information contribution evaluation is to evaluate
the contribution of adding this image to the train set to the establishment of the class
decision boundary without supervised information. It is more inclined to select images that
enter the core area of more classes and the core area of class that is more easily confused
with other classes for labeling. The implementation method is as follows:

First, calculate the distance between the unlabeled image feature vector gk
i and the

centers of each class:

d(g(k)i , Ij) = ||g
(k)
i − cj||2 (11)

Secondly, compare the distance with the radius of the core area, and get the situation
that the image enters the core area of each classes:

B = Bn∗1 = (bj)n∗1 (12)

bj =

{
1, d(g(k)i , Ij) < cri

0, d(g(k)i , Ij) ≥ cri

(13)

Finally, add the similarity evaluation results of the classes where the image is located
at the decision boundary to obtain the similarity contribution of the image:

Dj = B ∗ ST (14)

4. Experiments
4.1. Experimental Parameter Setting

In the present research, training is carried out on a 3.2-GHz CPU and a Titan Xp
GPU. In each cycle, the model is trained for 200 epochs with cosine annealing learning
rate. Resnet-18 [38] is used in both feature extraction network and training network. Pay
attention to ensure that the batchsize in the comparative experiment is consistent with the
training enhancement method to ensure the effectiveness of the comparative experiment.

4.2. Validation Experiment of Image Contribution Evaluation Method

In the present research, we propose an image information contribution evaluation
method, which is based on the results of inter-class similarity evaluation. When calculating
the image contribution, we believe that the image between the two classes of images with
high similarity is a high information contribution image, and the image between the two
classes of images with low similarity, or within a class of images is a low contribution image.
In order to verify the effectiveness of the image contribution evaluation method proposed
in the present research. Under the same budget, we compare the experimental results of
high contribution images, low contribution images, and randomly selected images. Each
experiment is repeated 3 times, and the experimental result is the average value of these
three experiments. The experimental results are shown in Table 1.

Table 1. Validation experiment on T10.

Method 20% 40% 60% 80% 100%

Randomly
84.13%

88.27% 91.17% 92.70%
93.97%High information contribution 90.87% 93.03% 93.87%

Low information contribution 87.03% 89.73% 91.77%
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Through the analysis of the results in Table 1, it can be seen that the experimental effect
of selecting high contribution images is the best, and the experimental effect of selecting
the low contribution images is the worst.

In addition, the experimental effect of screening 40% of the high contribution images is
better than that of selecting 60% of the low contribution images, and the difference between
the number of labeled training data is more than 800. Using this method to select and
label data, we can achieve a higher test accuracy with less labeled data. It fully proves
the effectiveness of the image information contribution evaluation method based on the
inter-class similarity proposed in the present research.

4.3. Comparative Experiment

The image information contribution evaluation method based on inter-class similarity
evaluation proposed in the present research can be combined with active learning strategies,
we compare this method with traditional active learning methods. The experimental
methods involved in the comparison include uncertainty based method [20] and diversity
based method [21]. Each experiment is repeated 3 times, and the experimental result is the
average value of these three experiments. The comparative experimental results are shown
in Figure 3.

Figure 3. Comparative experiment on T10 dataset. The image information contribution evaluation
method based on inter-class similarity evaluation proposed in the present research can be combined
with active learning strategies, we compare this method with traditional active learning methods.
The experimental methods involved in the comparison include randomly based method, uncertainty
based method [20], and diversity based method [21].

Through the analysis of the comparative experimental results, it can be seen that the
test accuracy of all active learning image selection methods is higher than that of random
selecting methods, and the image selection strategy formed by the image information
contribution evaluation method based on the inter-class similarity evaluation proposed in
the present research has the best experimental effect.

5. Discussion

In the discussion part, we will discuss the motivation and reasons.

5.1. Motivation

In terms of agricultural plant disease control, digital and intelligent methods such as
deep learning are needed. However, the method combined with deep learning faces the
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problems of insufficient data and inaccurate fine-grained classification. Most of the existing
fine-grained classification methods are implemented by enhancing the network, and the
consideration of image information quality is still insufficient. In order to supplement this
research, it is necessary to propose an image information quality evaluation method for
fine-grained classification to guide the collection and annotation of data.

5.2. Reasons

The reason why this method can achieve good results is that it fully considers the
image inter-class similarity, and assigns higher information contribution scores to the
images near the class decision boundary with high similarity. At the same time, the images
around the more class decision boundary have higher contribution scores. In this section, it
will be further analyzed in combination with the experimental results.

5.2.1. Class Similarity Calculate Results

Figure 4 shows the similarity evaluation results between classes calculated from the
initially labeled dataset. In order to more intuitively understand the similarity evaluation
results, we analyze the similarity between classes from the perspective of maximum and
minimum values. The analysis results are shown in Figure 5.

Figure 4. Evaluation results of class similarity calculated from the initially labeled dataset.

Figure 5. Statistics of maximum and minimum values of class similarity evaluation results.
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From the results of similarity evaluation, the prominent characteristics are as follows:
For the images of “Healthy” (Class 0), the inter-class similarity evaluation results between
them and the images of “Tetranychus urticae” (Class 9) are the largest, and the two classes
of images are the most similar. For the images of “Target spot” (Class 4), the inter-class
similarity evaluation results between them and the images of “Tetranychus urticae” (Class 9)
are the largest, and the two classes of images are the most similar. For the images of
“Tetranychus urticae” (Class 9), the inter-class similarity evaluation results between them
and the images of “Target spot” (Class 4) are the largest, and the two classes of images are
the most similar. The inter-class similarity evaluation results between “Healthy” (Class 0)
images and “Septoria leaf spot” (Class 3) images are the smallest, and the two classes of
images are the most dissimilar.

Figure 6 shows the actual situation of tomato leaves, which is consistent with the
inter-class similar evaluation results.

Figure 6. Comparison and analysis between figures.

5.2.2. The Models Test Results

Figure 7 shows the test results of the models which are trained on the initially labeled
dataset. Figure 8 shows the mean value of the test results of three training times for three
classes of images in the initially labeled dataset and marks the maximum and minimum
values of the number of false predictions.

Figure 7. The test results of training 3 times of the initially labeled dataset.
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Figure 8. The mean value of the test results of 3 training times for three classes of images in the
initially labeled dataset. Mark the number of false predictions from small to large, and focus on the
maximum and minimum values.

Comprehensively consider the mean value of the test results of the three models. Class
0 (“Healthy”) images will be easily predicted as Class 9 (“Tetranychus urticae”). Class 4
(“Target spot”) images will be easily predicted as Class 9 (“Tetranychus urticae”). Class 9
(“Tetranychus urticae”) images will be easily predicted as Class 4 (“Target spot”). There
is no misclassification between images of Class 0 (“Healthy”) and Class 3 (“Septoria leaf
spot”). It is basically consistent with the results of the inter-class similar evaluation.

5.2.3. Different Budget Test Results

Figure 9 shows the test results of the model trained with different size train sets formed
according to the random method and the method proposed in this paper. Table 2 is the
mean value of the number of images misclassified between the above confusing classes
under different budgets. Compare the test results between the random method and the
method proposed in this research.

Figure 9. Test results of models training under different budgets. The labeled budget is gradually
added from left to right. The results in the first row are the test results randomly added according to
the budget, and the results in the second row are the test results added according to the budget using
the method of this research.
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Table 2. Comparison of the mean value of the number of images misclassified by different methods.

Truth = 0 & Prediction = 9 Truth = 4 & Prediction = 9 Truth = 9 & Prediction = 4

Randomly Proposed Randomly Proposed Randomly Proposed
15.00 6.00 10.67 7.67 2.67 2.67

From the results analysis, it can be seen that compared with random addition, the
recognition accuracy of confusing classes will be higher by adding images with the method
in this paper. According to the above analysis, our method can evaluate the inter-class
similar well. Adding images near the decision boundary of Class 4 (“Target spot”) and
Class 9 (“Tetranychus urticae”) is more conducive to fine-grained image classification than
adding images near the decision boundary of Class 0 (“Healthy”) and Class 3 (“Leaf mold”).
The images near the decision boundary of Class 4 (“Target spot”) and Class 9 (“Tetranychus
urticae”) are high information contribution images.

6. Conclusions

In the work of the present research, in order to solve the problems of insufficient data
and fine-grained classification accuracy in plant disease classification, we propose a new
image information contribution evaluation method based on inter-class similarity analysis.
In order to verify the effectiveness of the method, an active learning image selection
experiment was carried out. Experiments on fine-grained tomato classification datasets
show that the proposed method can achieve better fine-grained classification results than
the existing methods under the same budget. The effectiveness of this method shows that in
the task of fine-grained image classification, we can not only research from the perspective
of strengthening network performance, but also from the perspective of data analysis.
In the future, we will continue to study few-shot learning and fine-grained classification
problems, carry out data-centric image information quality evaluation methods. Strive to
achieve better results with less labeled data, provide efficient sampling guidance in the
field of digital agricultural data acquisition and labeling, and improve the overall effect
of datasets. Propose more image information quality evaluation methods to promote the
development of smart agriculture and digital agriculture.
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