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Abstract: Bio-based products can help us to reach sustainability goals and reduce our dependency
on fossil-based raw materials. Lignin is an abundantly available bio-based material. Recently, a
concept of an alkali–O2 oxidation (LigniOx) process for feasibly producing lignin dispersants at a
kraft pulp mill has been introduced. The oxidation process uses O2 gas to increase the anionic charge
of lignin and the final oxidized lignin can serve as a concrete plasticizer or versatile dispersant. Life
cycle assessment (LCA) is a tool widely used to holistically evaluate the environmental benefits of
various products. The goal of this study was to evaluate the versatility of the novel lignin dispersants
produced from kraft lignin and to compare the environmental performance with the synthetic
products using an attributional cradle-to-gate LCA. Results showed that LigniOx impacts were
lower than synthetic equivalents for both the end uses—superplasticizer and dispersants—in most
of the impact categories. The only negative impact was on eutrophication that arises from fly ash
purging at the kraft pulping process even without the integrated LigniOx production. In addition,
the production of LigniOx lignin appeared to be more attractive than conventionally recovered
kraft-lignin. LigniOx contributed minimally to the total impacts with the majority of impacts arising
from the kraft pulping process.

Keywords: kraft pulping; oxidation; plasticizer; dispersant; life cycle assessment; bio-based products;
product environmental footprint; bioeconomy

1. Introduction

The use of bio-based products can help in reducing our dependency on fossil-based
raw materials and reach sustainability goals [1]. After cellulose, lignin is the most abundant
biopolymer found on earth [2] and has potential as a raw material for several bio-based
products. With 100 Mt/y extracted mostly as a by-product of the pulping industry and
used for energy production at the mills [3], lignin is a crucial renewable resource for bio-
based industries. Driven by the increased biofuel production, this volume is expected to
further increase by 2030 to 225 Mt/y [4]. In addition to energy production, it is thus vital to
develop technologies that can valorize the lignin by-products into high-value products [5].
Despite this urgent need, less than 2% of the lignin produced worldwide is used to produce
bio-based value-added chemicals, such as adhesives and dispersants [4]. To fully exploit
these raw material streams, there is an urgent need to commercialize economically and
sustainably viable lignin upgrading process technologies that are adaptable to lignin side-
streams originating from different processes and raw materials.

Kraft pulping, applied to softwoods and hardwoods, is the most commonly used
pulping technology [6]. In the kraft pulp mill, lignin is usually used as fuel on site but it
can also be recovered from black liquor using carbon dioxide (CO2) precipitation followed
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by sulfuric acid (H2SO4) washing, and thereafter marketed [7]. Lignin could be used as
a replacement raw material for a variety of chemicals and fossil-based products, such as
carbon fiber, bitumen used in asphalt, syngas, bio jet fuel, marine fuel, building material
and various oxidized products [8]. However, the market of large volume lignin products
is still under development. Currently, kraft lignin is used to replace phenols in phenol
formaldehyde (PF) resins for plywood and laminate production. Furthermore, sulfonated
kraft lignin is used as a dispersant, similar to lignosulfonates [7,9]. The technical perfor-
mance of sulfonated lignin is low compared to the current state-of-art synthetic products
and only partial phenol substitution is possible in PF resins. The ultimate goal is to create
sustainable lignin products that can compete in cost-performance with the current synthetic
products, and with a market volume high enough considering the potential lignin capacity.

Recently, a concept of an alkali–O2 oxidation (LigniOx) process for feasibly producing
lignin dispersants at a kraft pulp mill has been introduced. The oxidation process uses O2
gas to increase the anionic charge of lignin and the final oxidized lignin is water soluble
and can serve as a concrete plasticizer or versatile dispersant [10].

Anionic dispersants cover most of the dispersant market. Concrete superplasticizers,
such as the fossil-based polycarboxylate ethers (PCE) or sulfonated naphthalene condensate
(SNF) are anionic dispersants that disperse cement particles to allow good workability
of fresh concrete and ensure good strength properties of the matured concrete. Similarly,
anionic dispersants, such as fossil-based polyacrylic acids (PAA) are used in preparing
paints and coatings containing a high portion of different inorganic pigments. LigniOx
dispersants have been demonstrated to work in these applications. Their performance has
been measured to be superior to commercial lignosulfonate products and even to compete
with some of the synthetic superplasticizers [11,12].

Lignin and lignin-based products have the potential to contribute to reducing the
impact of global warming by substituting a number of fossil-based products [13–15]. Life
cycle assessment (LCA) is a tool widely used to holistically evaluate the environmental ben-
efits of various products [16–18]. Several LCAs have been conducted for lignin extraction
and lignin-based products in the past e.g., [19–26].

More specially, Moretti et al. [20] found that lignin-based asphalts could reduce the
impact on climate change by 30% to 75% compared to conventional asphalts and that
using lignin from local biorefineries can reduce the climate change impact of producing
bio-based asphalt up until 45% and the environmental cost by 60% compared to that ob-
tained using kraft lignin [21]. Asphalt with 25% lignin instead of bitumen binder was
found to reduce by 6% the impact on climate change by Tokede et al. [22]. Yuan et al. [23]
showed the environmental superiority of medium-density fiber board (MDF) made using
hybrid-modified ammonium lignosulfonate as a binder compared to conventional MDF.
Hermansson et al. [24] found indications that shifting to lignin as a source for carbon fibers
in the case of carbon fiber reinforced polymer products can result in lower environmental
impact than current ones. Bernier et al. [25] showed the environmental soundness of un-
transformed kraft lignin over synthetic organic compounds of similar molecular complexity.
Culbertson et al. [26] showed the environmental potential of using lignin extracted from a
kraft pulp mill as a biopolymer.

Previous LCA studies have demonstrated that lignin-based products may be environ-
mentally preferable to synthetic organic compounds of similar molecular structures [25]. In
a review by Moretti et al. [27], the cradle-to-gate impact of producing kraft lignin ranges
between 0.1 and 2.7 kg CO2 eq/kg of dry lignin, and lignin-based products are found to
reduce the global warming impact compared to the fossil-based references between 2%
(lignin-based catechols) and 78% (adipic acid). The authors found important trade-offs
between the impact on climate change and that of other areas of protection, which makes it
difficult to generalize the results for lignin-based products.

Assessing bio-based products using LCA is challenging due to a variety of value-
based choices made in the modeling of products by individual researchers [28,29]. In the
literature, the LCAs of lignin have high variability either due to methodological choices,
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such as system boundaries, functional units, or allocation methods. Furthermore, data
uncertainties due to the lack of maturity of some of the processes related to the large-scale
manufacturing of lignin-based products and the use of laboratory measurements, such as
proxies cause uncertainty [27,30–32].

The goal of this study was to compare the environmental performance of the novel
lignin dispersant produced from kraft lignin with the synthetic references using an attribu-
tional cradle-to-gate LCA.

2. Materials and Methods
2.1. Lignin Recovery and Oxidation at a Kraft Pulp Mill

The data used for the life cycle assessment were based on a simulation conducted using
a model of a softwood kraft pulp mill located in Finland. The model comprises a single-line
mill with wood handling, continuous cooking, two-stage oxygen delignification, elemental
chlorine-free bleaching (D0-Eop-D1-P), pulp drying, seven-stage evaporation with tall oil
recovery, a recovery boiler, recausticizing, a bark-fired lime kiln and a condensing turbine.
Some outside boundary limit areas, such as chemical preparation, air separation unit and
wastewater treatment plant are excluded from this model. The reference pulp mill was
modeled using Wingems 5.3 modeling tool [33] as described in detail by Kangas et al. [34].

For the simulation of the integrated LigniOx process in an existing kraft pulping
process, the reference pulp mill was modified by placing lignin recovery, oxidation and
membrane filtration steps between evaporators at the pulp mill, as described by Kalliola
et al. [10]. In the simulation, lignin is recovered by acidifying the black liquor stream with
CO2, resulting in the precipitation of the lignin. As only 20% of the lignin is recovered, the
remaining 80% of lignin in the black liquor still covers the energy need of the mill. The
filtrate from the separation stage is directed back to the evaporation plant of the pulp mill,
while the recovered lignin continues to the oxidation stage, without needing an acid wash
step. After oxidation, the oxidized lignin solution is concentrated by membrane filtration.
A schematic representation of the kraft pulp mill including the LigniOx process concept is
presented in Figure 1. Parameters relating to lignin recovery and oxidation, as well as to
membrane filtration of the oxidized lignin solution are listed in Table 1.
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Table 1. Parameters used in production of oxidized kraft lignin (LigniOx lignin).

Parameter Unit Value

Lignin recovery
Amount of lignin [%] 20

Black liquor dry content [%] 37
CO2 charge [kg/t lignin] 275

Lignin oxidation
OWL charge [kg/t lignin] 205

NaOH charge [kg/t lignin] 220
Lignin content [%] 15

Lignin yield [%] 90

Membrane filtration
Yield, ox. lignin [%] 89
Na to retentate [%] 32
S to retentate [%] 35

Lignin oxidation was conducted by first dissolving the precipitated lignin in an alkaline
solution. Both fresh sodium hydroxide and oxidized white liquor (OWL) produced at the
pulp mill were used as a source of alkali. Next, the lignin was oxidized by introducing
pressurized O2 gas into the system. After oxidation, the solution was concentrated using
membrane filtration in two stages, of which the first includes a washing step (a diafiltration).
In order to recycle sodium (Na) and sulfur (S) back to the pulp mill, the permeate from the
membrane filtration process was merged with the black liquor stream. After membrane
concentration, the oxidized lignin solution is further concentrated by evaporation to reach
a dry content of 40%.

As concluded by Kalliola et al. [10], the integrated lignin oxidation technology using
membrane filtration does not increase fly ash purging (composed of Na2SO4 and Na2CO3)
in a kraft pulp mill, as opposed to conventional lignin recovery with H2SO4 washing.
Increased fly ash purging is unwanted due to increased environmental load and increased
costs by make-up NaOH needed in the mill to stabilize the Na/S balance. The conventional
lignin recovery process introduces excess sulfur to the mill, which increases the need for
both fly ash purging and makeup NaOH. Since unwashed lignin is used for oxidation,
such complications are avoided in the studied concept. Although NaOH is added in the
oxidation stage, its effect on the chemical balance and total sodium consumption can be
minimized by partly using oxidized white liquor as an alkali source.

2.2. Life Cycle Assessment

Life cycle assessment (LCA) is a cradle-to-grave or cradle-to-cradle analysis technique
to assess the environmental impacts associated with all stages of a product’s life. The
assessment includes the extraction of raw material through to materials processing, man-
ufacture, distribution, and use and disposal of the final product [35]. In this study, we
conducted a cradle-to-gate study for LigniOx lignin. The LigniOx product was expected
to replace some fossil-based chemicals, in this sense, the process was compared to the
impacts of the conventional materials in order to define the benefits and disadvantages of
using a bio-based product. Hence, the production of LigniOx lignin through the kraft pulp
mill route was compared with the production of a conventional concrete admixture and
a dispersant.

This study aimed to evaluate the potential environmental impacts of the LigniOx
lignin used in concrete as a plasticizer or as a versatile dispersant, e.g., in paints, inks, and
coatings. The LCA of the production of LigniOx through the oxidation process described in
Section 2.1 was compared with the production of plasticizers from fossil raw materials, such
as polycarboxylate ethers (PCE) or sulfonated naphthalene. The performance of LigniOx
lignins has been experimentally tested in comparison to PCE and sulfonated naphthalene
based superplasticizers as well as with polyacrylic acid (PAA) based dispersants. The
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results have been very promising and in some cases, LigniOx lignin has even outperformed
fossil-based products. [11,12]. Thus, the functional unit selected for this study is 1 kg of
product (LigniOx or fossil-based superplasticizers and dispersants).

This study was focused only on the production process of LigniOx lignin (Figure 2).
It was not relevant to consider all the other life cycle steps since the concrete admixture
manufacturing (assembly), as well as the commercialization step, was similar for the
LigniOx lignin and the conventional chemicals. In addition, no environmental impacts
from the LigniOx were identified during the use phase and this step was omitted. The
disposal of the product was omitted as separation of the plasticizer from concrete after use
is not seen as a viable option after the end of life. Finally, the infrastructures’ impacts were
not considered in this study either. Thus, a cradle-to-gate approach is used for this LCA. To
summarize, the steps included in this approach are:

1. The raw material supplies (softwood).
2. The transportation of raw materials to the production plant.
3. The manufacturing of the product (including the provision of energy, production of

auxiliaries and consumables and waste treatment).
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(LigniOx lignin).

As the kraft pulping process is multifunctional, several approaches can be envisaged.
Any system that produces multiple by-products needs to solve the multifunctionality prob-
lem either by applying system expansion or allocation, as referred to in ISO 14040-44 [36].
The simulated kraft pulp mill provides three coproducts: bleached pulp, crude tall oil and
LigniOx lignin amongst which environmental impacts must be allocated. The ISO standard
recommends avoiding allocation by expanding the system to include all by-products in the
functional unit or partitioning the system under investigation to mono-function processes.
If this kind of partitioning is not possible, then the allocation is conducted based on phys-
ical properties, such as mass, energy, or revenue [37]. This study adopted a mass-based
allocation between the LigniOx lignin and other by-products, as the price of the novel
LigniOx product was not fixed.

All the modeling for this study was conducted using the SimaPro software tool
(version 9.2) [38] and Ecoinvent version 3.7.1 [39] and the complete life cycle inventory is
shown in Table 2.
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Table 2. Life Cycle Inventory for the production of 1000 kg of bleached pulp, 84.2 kg of LigniOx
lignin and 38.5 kg of crude tall oil. In parenthesis the geographical representativeness of the datasets
(RER: Rest of the World; GLO: Global; FI: Finland).

Inputs Unit Kraft Mill
Integrated Case Related Dataset of Ecoinvent (v3.7.1)

Wood m3 5.7 Pulpwood, softwood, measured as solid wood under bark
(Europe without Switzerland)

Water m3 46.8 Tap water (RER)

Oxygen kg 62.6 Oxygen, liquid (RER)

Magnesium sulfate kg 3.77 Magnesium oxide (RER)

Chlorine dioxide kg 39 Chlorine dioxide (RER)

Sodium hydroxide kg 49.2 Sodium hydroxide, without water, in 50% solution state
(GLO)

Hydrogen peroxide kg 7.4 Hydrogen peroxide, without water, in 50% solution state
(GLO)

Lime kg 5.56 Lime (GLO)

Sulfuric acid kg 4.9 Sulfuric acid (RER)

Carbon dioxide kg 28.8 Carbon dioxide, liquid (RER)

Sodium sulfate kg 12.4 Sodium sulfate, anhydrite (RER)

Membrane m3 0.06 Polystyrene, general purpose (GLO); Thickness of
membrane: 250 micron; density of PS: 50 kg/m3

Electricity kWh 416 Electricity, medium voltage (FI)

Fly ash kg 12 Ash from paper production sludge (Europe without
Switzerland)

Brine kg 1.6 Sludge from pulp and paper production (Europe without
Switzerland)

Wastewater m3 19.1 Wastewater, average (Europe without Switzerland)

Wastewater m3 19.1 Wastewater, average (Europe without Switzerland)

The benchmark used for this study was a fossil-based superplasticizer consisting of
sulfonated naphthalene formaldehyde, sulfonated melamine formaldehyde, vinyl copoly-
mers and polycarboxylic ethers and a fossil-based poly sodium acrylate. The data for the
fossil-based superplasticizer were obtained from an environmental product declaration
from the European Federation of Concrete Admixture Associations [40]. The active content
noted in the eco-profile of the superplasticizer was 30–45%. Hence, an average value of
37.5% was used and all inputs and outputs were divided by 37.5% to provide the LCIA for
the superplasticizer since LigniOx lignin was evaluated at 100% active content. The poly
sodium acrylate was derived from Gontia and Janssen [41] and was used as a proxy for
fossil-based poly acrylic acid (PAA) since no detailed life cycle inventory was available for
the PAA.

3. Results

A life cycle impact assessment (LCIA) was conducted on the LigniOx lignin case and
compared with a fossil-based dispersant and a fossil-based superplasticizer. The life cycle
impact assessment for LigniOx lignin and the fossil-based products was conducted using
the Environmental Footprint method 3.0 (EF 3.0). The European Commission developed
the Product Environmental Footprint (PEF) method as a way to “Establish a common
methodological approach to enable member states and the private sector to assess, display
and benchmark the environmental performance of products, services and companies based
on a comprehensive assessment of environmental impacts over the life-cycle (‘environmen-
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tal footprint’)” [42]. The environmental footprint method provides a detailed approach to
full life cycle accounting for a product along with relevant environmental impact indicators
to measure performance. All products were evaluated for all the 16 midpoint impact
categories available in the EF 3.0 method. Of these sixteen impact categories, the impact
categories of climate change, acidification, eutrophication of freshwater and use of fossil re-
sources were chosen for comparison across the LigniOx lignin and fossil-based benchmark
superplasticizer and dispersant. A complete LCIA of all sixteen impact categories is shown
in Appendix A.

Detailed hotspot analysis of the LigniOx product was conducted to identify impacts
emanating from each impact category. The results are shown in Figure 3 and include
the impacts for LigniOx lignin in all impact categories. The hotspot analysis for LigniOx
showed that chlorine dioxide used for bleaching pulp had the highest contribution in most
impact categories. Chlorine dioxide had a greater than 50% impact on the categories of
photochemical ozone formation, acidification, use of fossil resources and the use of minerals
and metals (Figure 3). The chlorine dioxide input was used in the bleaching of pulp and
contributed the most to the environmental impact. Additional impacts arose from the use
of softwood pulpwood as the biomass for producing kraft pulp. The pulpwood had a
greater than 50% contribution to the impact categories of land use, photochemical ozone
formation and the use of water. The output of ash from the pulp mill contributed more
than 50% to the impact category of eutrophication of freshwater. The contribution analysis
showed that the LigniOx process itself had minimal impacts in this integration to the pulp
mill and the majority of impacts arose from the kraft pulp mill used to produce the lignin.
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Figure 3. Contribution analysis for the LigniOx process showing the relative contribution to the
environmental impact (EI) of each input.

A comparison with fossil-based products was conducted to evaluate all impact cate-
gories. The oxidized kraft lignin performed better than the fossil-based dispersant in the
impact categories of climate change, acidification and the use of fossil resources (Figure 4)
(normalized results are shown here and readers can refer to actual values for each impact
category for each product in Appendix A).

The impact category of freshwater eutrophication was higher for the oxidized kraft
lignin than for the fossil reference. This was due to the high ash production from the kraft
pulping process. The fossil-based dispersant performed better than the LigniOx lignin in
the eutrophication of freshwater impact category due to this.

The LigniOx lignin performed better than the fossil-based superplasticizer in all the
impact categories of climate change, acidification, eutrophication of freshwater and use of



Sustainability 2022, 14, 10897 8 of 13

fossil resources (Figure 5). Similarly to Figure 4, normalized results are shown in Figure 5
and the reader is referred to Appendix A for more detailed data.
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Figure 5. Comparison of oxidized kraft lignin (LigniOx lignin) with fossil-based superplasticizer admixture.

For the current research, it is beneficial to understand how oxidized kraft lignin per-
forms from an environmental point of view, in comparison with other bio-based alternative
products available on the market. The impact of LigniOx lignin was thus compared to
the impact of other lignin and carbohydrate-based products, in addition to the widely
utilized fossil-based dispersants—lignosulfonates, carboxymethyl cellulose and hemicellu-
lose originated poly sodium acrylate acid are used as bio-based dispersants or rheology
modifiers. The reference products used were a conventionally recovered kraft lignin from
a kraft pulp mill [26,31], hybrid modified ammonium lignosulfonate (a binder) [23], car-
boxymethylated cellulose (a rheology modifier) obtained from the Ecoinvent database
3.7.1 [39] and a bio-based poly sodium acrylate which is a proxy for bio-based PAA [43].
Yuan et al. [23] conducted the LCA on the basis of 1 m3 of a lignosulfonate-based binder.
To compare results with our work, the results provided in 1 m3 were harmonized to 1 kg of
the product by using the provided density for the product (0.86 g/cm3). LigniOx lignin
performed clearly better in the impact category of global warming than carboxymethyl
cellulose and a bio-based PAA (Figure 6). Furthermore, only the lignosulfonate-based
binder outperformed the oxidized lignin in the global warming potential.
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The results indicate that LigniOx lignin is competitive when compared with other
lignin-based products when global warming impacts are analyzed. Taking into account
that the compared studies are all cradle-to-grave and follow a mass-based allocation makes
them relatively comparable from a methodological perspective. The fact that they differ in
the production location obviously influences the results, e.g., the carbon intensity of the
energy mix is different from country to country. Due to differences in impact assessment
methods used in various studies, a complete comparison with all impact categories affecting
human health or ecosystems was not evaluated. Harmonization of all the data would be
required to conduct this study which is considered beyond the scope of this paper.

4. Discussion

Our results indicate that LigniOx performs better than the fossil-based equivalents in
most impact categories. The impact on water eutrophication was higher for LigniOx when
compared with fossil-based dispersants (PAA). This was due to the generation of fly ash
in/by the kraft pulping process already without a lignin recovery or valorization process.
The LigniOx process itself caused minimal impacts when integrated with the kraft pulping
process. However, when compared to a fossil-based superplasticizer, LigniOx lignins had
better performance in all impact categories. Furthermore, as demonstrated by the recent
study [10], the conventional production of kraft lignin (including H2SO4 washing) at a
pulp mill strongly increases the purging of fly ash when compared to the pulping process
without lignin recovery or to the integrated production of LigniOx lignin. Additionally,
when considering the data on global warming potential presented in recent studies [26,31],
the production of LigniOx lignin appeared to be more attractive than the production of
conventionally recovered kraft lignin.

Although the use of bio-based products is perceived as ecological when compared to
the fossil sourced counterparts, the increased use of bio-based products can cause negative
effects. The main negative effects include rising demand for land, owing to the increased
consumption of the biomass feedstock requiring the additional land area to be grown and
the increased risk of eutrophication of aquatic environments, which is mainly caused by the
release of fly ash [1]. Currently, there are several methods proposed for an ecological and
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economic valorization of fly ash [44]. Although the proposed technologies have yet to be
successfully commercialized, this is expectable to happen in the future. The utilization of fly
ash for sustainable applications will contribute to drastically mitigating the eutrophication
impact of lignin-based products.

It should be highlighted that care needs to be applied when interpreting these results.
The system boundary is relatively narrow since it only included the extraction of raw
materials extraction and the manufacturing phases. The LigniOx lignins do not have
any significant impacts in the use phase and the end-of-life phase and will be similar to
fossil-based products. The LigniOx lignin cannot be easily extracted from the application it
is used in and hence recycling is not an option. These barriers prevent a complete life cycle
assessment for LigniOx and hence only the raw materials extraction and manufacturing
were evaluated to maintain consistency with the comparative product. It is relevant to
mention that when bio-based products are included in building LCAs (such as concrete
superplasticizers used in building materials), limiting the system boundary to only the
manufacturing phase can lead to incomplete results [45,46]. Given the multiple possible
end uses of LigniOx lignin, a cradle-to-gate system boundary provides an opportunity to
compare across multiple products. The study also does not include the biomass growth
phase apart from not including the end of life of LigniOx even though these are critical
aspects in a life cycle study of bio-based products [47]. Nor does it tackle the issue of
multiple systems of bio-based products and claims on carbon capture in each system. The
multiple end uses of LigniOx prevent such calculations that might be possible for a product,
such as a timber beam that can either be incorporated back into forestry or can be used as a
source of heat or electricity [48,49].

The mass allocation method favors the LigniOx product over the co-products (pulp
and crude tall oil) due to the physical nature of the allocation. A sensitivity analysis with
economic allocation would be highly uncertain as LigniOx lignin is not commercially
produced and costs are variable and confidential across manufacturers. In the future, given
that LigniOx lignin is in larger scale production, accurate economic values can be obtained
for a thorough sensitivity analysis using economic allocation.

It should be noted that a majority of the impacts for LigniOx arose from the kraft
pulping process. LigniOx did not interfere with the main process and contributed minimally
to the total environmental impacts. This bodes well for future commercialization of the
product as the lignin oxidation process described in this study can be adapted for various
other cases.

The biodegradation of a dispersant plays an important role in LCA and the waste
management of the end-products. PAA is considered non-harmful to the environment
and human health. However, recent studies demonstrated that PAA could accumulate
in the environment and during biodegradation some toxic compounds could be released.
Some discussions on regulations for controlling the use and waste management of acrylic
polymers (AP) have been raised [50]. Sodium naphthalene-1-sulfonate which is utilized
for dispersant formulations was reported not to be readily degradable in nature. Based
on the ECHA information, sodium naphthalene-1-sulfonate is not persistent in the soil
environment nor in sediment in the water, and therefore, the risk to soil-dwelling animals
and the exposure risk to aquatic animals are moderate to low, respectively [51]. Additionally,
microplastic regulations will be adopted relatively soon. In some versions of the regulation,
lignin recovered from biorefineries could be considered a microplastic, due to its particle
size, insolubility and low biodegradation. Recently, the biodegradability of LigniOx lignins
in soil and the aquatic environment was followed by measuring CO2 evolution. Kraft
lignin and a lignosulfonate product were tested for comparison. The study indicated that
oxidation of lignin increases its biodegradation [52]. Moreover, LigniOx lignins are fully
soluble in water at room temperature, and therefore, they are expected to be excluded from
the coming microplastic regulations.
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5. Conclusions

An attributional cradle-to-gate life cycle assessment shows that the impacts of alkali-
O2 oxidized (LigniOx) kraft lignin, a versatile biodispersant, are lower than the synthetic
equivalents of a concrete superplasticizer admixture or a polyacrylic acid-based dispersant.
In this study, the production of LigniOx lignin was integrated into an existing kraft pulp
mill. The majority of environmental impacts of LigniOx lignin were from the main kraft
pulping process, e.g., eutrophication that originates from the fly ash purging as well as
chlorine dioxide and acidification that originate from chlorine dioxide bleaching of kraft
pulp fibers. This study indicates that the production of LigniOx lignin is more attractive
than the production of conventionally recovered kraft lignin. In addition, the results
of LigniOx lignin were better when compared with other bio-based products, such as
polyacrylic acids and carboxymethylated cellulose. The novelty and sustainability of this
unique LigniOx lignin are established through this study. Future research on various other
end-uses and their sustainability should be evaluated at a later stage when LigniOx is
commercialized at a larger scale.
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Appendix A

Table A1. Life cycle impact assessment of LigniOx lignin, fossil-based superplasticizer and the fossil-
based dispersant. The impact assessment method used is Environmental Footprint (EF) method 3.0.

Impact Category Unit Ligniox Lignin Fossil-Based
Superplasticizer

Fossil-Based
Dispersant

Climate change kg CO2 eq 3.47 × 10−1 9.32 × 100 2.16 × 100

Ozone depletion kg CFC11 eq 6.92 × 10−8 7.24 × 10−7 3.77 × 10−7

Ionizing radiation kBq U-235 eq 2.08 × 10−2 1.28 × 100 1.66 × 10−1

Photochemical ozone formation kg NMVOC eq 1.75 × 10−3 2.40 × 10−2 4.78 × 10−3

Particulate matter disease inc. 1.95 × 10−8 2.15 × 10−7 6.53 × 10−8

Human toxicity, non-cancer CTUh 8.89 × 10−9 5.76 × 10−8 2.09 × 10−8

Human toxicity, cancer CTUh 5.48 × 10−10 1.61 × 10−9 7.13 × 10−10

Acidification mol H+ eq 2.56 × 10−3 4.79 × 10−2 7.25 × 10−3

Eutrophication, freshwater kg P eq 5.99 × 10−4 1.03 × 10−2 4.78 × 10−4

Eutrophication, marine kg N eq 9.17 × 10−4 9.13 × 10−3 1.39 × 10−3

Eutrophication, terrestrial mol N eq 4.75 × 10−3 8.07 × 10−2 1.37 × 10−2

Ecotoxicity, freshwater CTUe 1.67 × 101 7.59 × 101 2.35 × 101

Land use Pt 2.76 × 102 1.59 × 101 3.34 × 100

Water use m3 depriv. 1.41 × 100 2.60 × 10−1 9.70 × 10−1

Resource use, fossils MJ 4.32 × 100 1.41 × 102 4.31 × 101

Resource use, minerals and metals kg Sb eq 4.67 × 10−6 1.41 × 10−5 1.91 × 10−5
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