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Abstract: The application of surface heat reflective coatings is one of the effective measures to solve
the temperature disease of concrete structures in sunlit environments. To achieve strong bonding,
high durability, and good cooling characteristics, a novel inorganic reflective thermal insulation
coating was prepared using magnesium phosphate cement (MPC) as the binder and reflective matrix,
and titanium dioxide and glass beads as the reflective thermal insulation reinforcement functional
additives. The optimum ratio of the new reflective thermal insulation coating was preferred through
laboratory irradiation test, thermal conductivity test, and spectral reflectance test. The results show
that MPC itself was a good reflection cooling material, and the surface and internal temperatures
of concrete blocks were reduced by 7.6 ◦C and 6.6 ◦C, respectively, after using MPC as the cooling
coating. When 2% titanium dioxide was added to MPC, the surface and internal temperatures
were further reduced by 6.0 ◦C and 4.9 ◦C, respectively. On top of this, the surface and internal
temperatures of the concrete were reduced by a further 3.9 ◦C and 2.2 ◦C when 8% glass beads were
added. The bond strength of the MPCTG coating to the concrete matrix reached 2.1 MPa. Finally, the
microscopic characteristics and the reflective thermal insulation mechanism of the MPCTG coating
were investigated with the aid of SEM, thermo gravimetric analysis, and XRD analysis. The results
show that the MPC in the MPCTG coating was well hydrated, and a large number of hydration
products encapsulated the unreacted MgO particles, titanium dioxide, and glass beads, forming a
dense whole with high reflection and low thermal conductivity, and the coating effectively prevented
the entry of radiant heat. At the same time, the MPCTG coating was thermally stable below 70 ◦C.
The magnesium phosphate cement-based reflective thermal insulation coating developed in this
study has potential application prospects in concrete structure cooling coatings.

Keywords: magnesium phosphate cement; reflective insulation coating; titanium dioxide; glass
beads; reflectivity; cooling effect

1. Introduction

Engineered concrete structures such as building envelopes and ballastless track slabs
exposed to the natural environment are easily influenced by solar radiation. For buildings,
reducing the thermal load in building envelopes is vital to ensure resident comfort [1]. It is
reported that 15% of the world’s electricity consumption is used to cool buildings due to
the application of air-conditioning systems [2]. Besides, the radiated heat by the exterior
envelope could also contribute to the urban heat island effect [3]. There is serious nonlinear
temperature distribution in ballastless track slabs, which can cause temperature-induced
issues such as slab warping deformation [4], cracking, and interfacial separation [5–7].
The utilization of solar reflective coating on the surface of the aforementioned concrete
structures proved to have an obvious cooling effect [8–10].

Organic solar reflective coating, in which polyurethane [11], epoxy resin [12], acrylic
emulsion [13], etc., are usually used as the base binder, is widely used in practical engi-
neering. This kind of coating is susceptible to corrosion and aging [14,15] and is prone
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to producing harmful substances in its preparation process [16]. In particular, the or-
ganic coating has poor adhesion to the concrete surface [17]. By contrast, inorganic solar
reflective coating, which is usually prepared by adding functional additives with high
solar reflectance to geopolymer [18,19] or Portland cement [20,21], features high corrosion
resistance [22] and adhesion with concrete structures [23]. However, the solar reflective
ability of these inorganic coatings generally relies on the added solar reflective filler, which
dramatically limits the improvement of the cooling effect.

By contrast, it was reported that phosphate had a very high solar reflective ability.
For instance, Zhang et al. used potassium magnesium phosphate as a binder to prepare
a metal–ceramic anticorrosion coating to cool the ballastless track [24]. Thejus et al. used
LiMg1−xCoxPO4 as an inorganic pigment to prepare solar reflective material [25]. Magne-
sium ammonium phosphate cement (MPC), which can be prepared by reacting dead-burnt
magnesium oxide (M) and ammonium dihydrogen phosphate (P), has many advantages,
such as enhanced adhesion with cement concrete [26], rapid strength development [27],
high volume stability [28], etc.

Therefore, this study aims to develop a new reflective coating, which should simultane-
ously solve five core problems: (1) the reflective coating should have a good cooling effect;
(2) reflective coating has excellent compatibility with concrete structure; (3) the reflective
coating has good interface adhesion with concrete structures; (4) reflection coating has
excellent durability; (5) the reflective coating is environmentally friendly and non-toxic at
high temperature.

In this study, an inorganic solar reflective coating is designed by adding solar reflective
additives into MPC. After determining the best ratio of MPC by adjusting the M/P ratio and
water/solid ratio, different ratios of titanium dioxide and glass beads are added to MPC to
prepare two kinds of reflective coating according to the results of the indoor radiant and
spectral reflectance tests. Finally, the composition and cooling mechanism of the optimized
coating are investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD),
and thermogravimetry (TG) analysis.

2. Experimental Procedures
2.1. Raw Materials

The raw materials in this study include M, P, borax, water, titanium dioxide, and glass
beads. The M, whose particle size is about 40 µm, is light brownish yellow powder. Its
chemical composition is given in Table 1. The P is a white powdery crystal with a purity
of more than 90%. Borax is used as a retarder. Titanium dioxide is a white powder with a
purity of more than 98%. Glass beads are a white hollow powder with a particle size of
10~180 µm.

Table 1. Chemical compositions of M/wt.%.

Composition MgO SiO2 CaO Fe2O3 MnO

M 95.1 3.22 1.32 0.27 0.09

2.2. Research Route

This study prepared MPC-based heat reflective coating through four steps. After
M/P ratio and water/solid ratio optimization, two kinds of heat reflective coating, MPC-T
(containing MPC and titanium dioxide) and MPC-TG (containing MPC, titanium dioxide,
and glass beads), were designed. The research route is shown in Figure 1.
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Figure 1. Research route.

2.3. Preparation of MPC Coating

First, all the raw materials were dried and ground, and then the raw materials were
mixed to prepare dry MPC, MPC-T, and MPC-TG powder, according to the mass ra-
tios of the above coating materials. After that, the dry powders were mixed with water
in a cement paste mixer. The fresh MPC-based pastes were poured into plastic molds
(40 mm × 40 mm × 160 mm), which were cured for 3 days in the standard condition
(temperature of 20 ◦C and humidity of more than 95%) for physical and mechanical
performance measurement.

2.4. Performance Characterization Methods
2.4.1. Fluidity and Setting Time Test

The fluidity of MPC-based paste was measured according to Chinese specification
GB/T2419-2005 [29]. The setting time of the paste was measured using a vicar apparatus
according to Chinese specification GB/T1346-2001 [30], in which the data was recorded
every 15 min. Each test was performed three times, and the results were averaged.

2.4.2. Compressive and Flexural Test

After curing for 3, 7, and 28 days, the paste specimens (40 mm × 40 mm × 160 mm)
were firstly used for a flexural strength test with a loading rate of 50 N/s using a TYA-
300B strength test instrument. Then the broken specimens were cut into cubic specimens
(40 mm × 40 mm × 40 mm) for a compressive strength test with a loading rate of 2.4 kN/s.

2.4.3. Adhesive Strength Test

The fresh pastes were coated onto concrete specimens (150 mm × 150 mm × 150 mm)
with a thickness of 5 mm. After curing for 3 days, the adhesive strength between paste
and concrete was measured with the help of a pull-off tester (PosiTest AT-M, DeFelsko
Company, New York, NY, USA). Before the test, the coating surface and spindle were
polished using sandpaper. The pull-off rate was set to be 1 MPa/s. Each test was performed
three times.
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2.4.4. Thermal Property Test

The thermal properties of the MPC-based pastes included spectral reflectance, thermal
conductivity, and TG. The spectral reflectance in the band range of 190–2500 nm was
measured using a spectrophotometer (UV-3600, Shimadzu Company, Kyoto, Japan). In
the test, the pastes specimens were cut into flake samples of 20 mm × 20 mm × 5 mm.
the thermal conductivity was measured by a DRE-2C thermal conductivity tester, based
on the transient plane heat source method. The samples used in the test had a smooth
surface to ensure the probe was in close contact with the samples. A TG analyzer (Q50, TA
Instruments Co., Ltd., New Castle, DE, USA) was used to evaluate the thermal stability, in
which the temperature increased from room temperature to 600 ◦C with an increasing rate
of 10 ◦C/min.

2.4.5. Micro Characterizations

A SEM tester (JSM-6490LV, EDAX Co., Ltd., Mahwah, NJ, USA) was used to observe
the microstructures of the pastes. The test was operated at an accelerated voltage of
20 kV. 100×, 500×, and 2000× SEM images of the pastes were obtained. An XRD tester
(D8 Advance, Bruker Co., Ltd., Billerica, MA, USA) was used to reveal the crystal structures
of the pastes with a scanning angle of 5~80◦.

2.4.6. Laboratory Irradiation Test

PT100 temperature sensors were installed in the middle of the coated concretes after
curing for 7 days to record the inner temperature distributions. The upper surface tempera-
ture was recorded using an infrared thermal imager (E6, FLIR Co., Ltd., Portland, OR, USA).
Iodine-tungsten lamps were used to simulate the sun to heat the coated concretes, which
were thermally insulated using foam plates around the sides. The laboratory irradiation
test is shown in Figure 2.
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3. Results and Discussion
3.1. Basic Ratio Determination of MPC
3.1.1. M/P Ratio Optimization

M/P ratio is one of the most significant factors which control the performance of MPC.
Theoretically, the M/P ratio by weight should be 1:3. However, due to the granular form of
M, M particles could be gradually surrounded by hydration products. To ensure the full
reaction of P, the M/P ratio was set to be in the range of 3–9. The borax ratio by weight of
M was 0.1, and the water-solid ratio was 0.15 for all the pastes. The physical properties of
different MPC pastes are shown in Table 2.
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Table 2. Physical properties of different MPC pastes.

MPC Pastes M/P Initial Setting Time/min 3D Compressive Strength/MPa 3D Flexural Strength/MPa

MPC-1 3 25 27.88 10.30
MPC-2 4 23 37.78 14.25
MPC-3 5 19 55.95 15.65
MPC-4 6 18 47.85 15.10
MPC-5 7 17 47.13 16.10
MPC-6 8 15 38.60 15.30
MPC-7 9 14 33.80 14.10

It can be seen that with the increase in M/P ratio, the initial setting time gradually
decreased, and the compressive strength and flexural strength increased first and then
decreased. By comparing all the data in Table 2, the compressive performance was the best
when the M/P ratio was 5. Therefore, the M/P ratio of 5 was selected for subsequent tests
in this study.

3.1.2. Initial Adjustment of the Water-Solid Ratio

To ensure a high reaction level of MPC and the need to add functional fillers [31],
the water-to-solid ratio was increased to 0.2–0.5, which were numbered as MPC-W1 to
MPC-W4. The effects of different water-to-solid ratios on the physical properties of MPC
pastes were studied. The test results are shown in Table 3.

Table 3. Physical properties of MPC pastes with different water-solid ratios.

MPC Pastes Water-Solid Ratio 3D Compressive Strength/MPa 3D Flexural Strength/MPa 3D Adhesive Strength/MPa

MPC-3 0.15 56.4 9.4 4.98
MPC-W1 0.2 26.55 5.5 3.19
MPC-W2 0.3 17.65 3.5 2.79
MPC-W3 0.4 8.05 2.1 2.24
MPC-W4 0.5 5.25 1.4 0.66

As seen in Table 3, with the increase in the water-to-solid ratio, all the values of
compressive strength, flexural strength, and adhesive strength decreased. The technical
specification [32] specifies that the adhesive strength of heat reflective coating should
be higher than 0.6 MPa. It can be seen that the adhesive strength of the pastes met the
requirements of the specification. It should be noted that the adhesive strength of the
pastes decreased after the addition of functional fillers. Here, the water-to-solid ratio
should not be higher than 0.4. In addition, considering that functional fillers such as glass
beads would be introduced in the next part of this study, a higher water-to-solid ratio was
required to improve fluidity. As a result, 0.4 was selected as the water-to-solid ratio of
subsequent experiments.

3.2. Effect of Titanium Dioxide Content on the Performance of MPC-T Pastes
3.2.1. Cooling Performance

Based on the above component ratios, titanium dioxide was added to MPC-W3 paste
to discuss the cooling performance of MPC coating by analyzing the temperature variation
of the coated concrete in the laboratory irradiation test. The mass ratio of titanium dioxide
was set as 2%, 4%, 6%, and 8% of M, and they were numbered as MPC-T1 to MPC-T4,
respectively. The irradiation test results are shown in Figure 3.
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Figure 3. Irradiation test results of (a) surface temperature, (b) internal temperature, and (c) tempera-
ture difference.

The surface temperature rising rates of all irradiated specimens were fast within
the first 20 min of irradiation and then gradually decreased. By contrast, the internal
temperature rising rates did not change much with time, and the curves were approximately
linear. For internal and external temperature differences, they reached the maximum value
after 20 min of irradiation and then decreased slowly during the whole irradiation period.

After irradiation for 100 min, the surface temperature, internal temperature, and
temperature difference of the MPC-W3 concrete were reduced by 7.6 ◦C, 6.6 ◦C, and 1.6 ◦C
compared with the control concrete. These results indicated that MPC-W3 coating had an
excellent cooling performance and was suitable for preparing solar reflective coatings.

After adding titanium dioxide, the cooling performance of the MPC-T coating was
further improved. After irradiation for 100 min, the surface and internal temperatures
of MPC-T1 concrete were reduced by 6.0 ◦C and 4.9 ◦C, respectively. It can also be seen
that when the titanium dioxide content increased from 2% to 8%, the surface and internal
temperatures of the four specimens differed in a very small range. The result means that
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increasing titanium dioxide content played a very small role in improving the cooling effect
of MPC-T coating.

3.2.2. Thermal Conductivity

It was reported that the thermal conductivity of reflective coating would affect the
temperature distribution inside the structure [33]. Figure 4 shows the thermal conductivity
results of MPC-T pastes with different titanium dioxide contents.
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As seen in Figure 4, the thermal conductivity of MPC-based pastes decreased due to
the addition of titanium dioxide. With the increase of titanium dioxide content from 2% to
8%, the thermal conductivity changed in a small range. This result indicates that adding
titanium dioxide in MPC would not significantly affect the temperature profile of MPC-T
pastes from the perspective of thermal conductivity.

3.2.3. Spectral Reflectance

According to the temperature profiles shown in Figure 3 and corresponding discus-
sions, MPC-W3, MPC-T1, and MPC-T4 were selected to perform a spectral reflectance test,
in which the spectrum ranged from 200–2500 nm. Using the results shown in Figure 5,
the ultraviolet, visible, and near-infrared reflectance were calculated according to the
specification [34], as shown in Table 4.

Table 4. Spectral reflectance results of MPC-W3, MPC-T1, and MPC-T4 (%).

MPC-Based Pastes Ultraviolet Reflectance Visible Reflectance Near-Infrared Reflectance Average Reflectance

MPC-W3 7.58 19.73 41.80 29.06
MPC-T1 9.69 37.19 56.12 44.40
MPC-T4 9.72 39.28 57.50 46.08

From the spectral curves in Figure 5, the reflectance spectra of MPC-T1 and MPC-T4
are very close and much higher than those of MPC-W3, indicating that the addition of
titanium dioxide could significantly improve the solar reflectance of MPC-T paste.
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It is well known that ultraviolet energy accounts for only 7% of solar energy, while
visible and near-infrared light account for about 50% and 43% of solar energy. Therefore, the
following discussion focused on the changes in the reflectance of visible and near-infrared
light. It can be seen that, compared with MPC-W3, the visible and near-infrared reflectance
of MPC-T1 increased by 17.46% and 14.32%, respectively. However, when continuing
to increase the titanium dioxide content from 2% to 8%, the visible and near-infrared
reflectance increased by 2.1% and 1.4%, respectively. This result was consistent with the
temperature results in Figure 3. Based on the temperature and spectral reflectance results,
the content of titanium dioxide was finally determined to be 2%.

This is the main reason there is little difference in the temperature reduction of MPC-
T1 to MPC-T4 by increasing TiO2 doping in the irradiation experiments. This can be
attributed to the poor dispersion of TiO2 particles and the agglomeration phenomenon
in the application. The reflective enhancement properties of TiO2 in MPC depend largely
on its distribution in a given MPC slurry volume [35,36]. It is known that TiO2 in paints
tends to aggregate [37]. This is also evidenced by the SEM diagram of 2000×, which shows
that a slight agglomeration of titanium dioxide already occurs in MPC-based pastes at
2% titanium dioxide doping. As the titanium dioxide doping continues to increase, the
agglomeration in the MPC slurry increases and does not significantly continue to improve
the reflectivity of the MPC coating. It may also have a detrimental effect on the performance
of the coating, although there are several ways to improve the dispersion of TiO2, including
the use of specially designed extenders or surfactants. However, these methods have their
limitations and often require significant reformulation efforts and costs. Given the cooling
effect of adding a 2% TiO2 doping, comprehensive consideration, the content of titanium
dioxide was finally determined to be 2% in this paper.

3.3. Effect of Glass Bead Content on the Performance of MPC-TG Pastes
3.3.1. Re-Adjustment of Water-Solid Ratio

Due to the small density of glass beads (lower than 0.5 g/cm3), segregation between
glass beads and MPC-T paste might occur. According to the discussion in the above
sections, glass beads were added to MPC-T paste with three water-solid contents of 0.2,
0.3, and 0.4. As shown in Figure 6, the MPC-TG paste was no longer layered when the
water-solid ratio was 0.2. As a result, the water-solid ratio was re-adjusted to 0.2.
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3.3.2. Cooling Performance

From Figure 4, it can be seen that MPC-based paste had higher thermal conductivity
than Portland cement paste. Reducing the thermal conductivity of MPC-based paste is
expected to further improve its cooling performance. Spectral reflectance is another factor
influencing cooling performance. Here, five mass ratios (i.e., 2%, 4%, 6%, 8%, and 10%)
of glass beads by weight of M were added to the MPC-T1, numbered as MPC-TG1 to
MPC-TG5, respectively. The temperature distributions of the coated concretes are shown
in Figure 7.
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Figure 7a shows the surface temperature profiles of the concrete coated with MPC-
T1 and MPC-TG. It can be seen that as the glass bead content gradually increased, the
surface temperature gradually started to decrease. When the glass bead content increased
to 8%, the cooling effect reached the maximum. At this time, after irradiation for 100 min,
the surface temperature of MPC-TG4 concrete was 3.9 ◦C lower than that of MPC-T1
concrete. Figure 7b shows the internal temperature profiles. The internal temperature
of the concrete also decreased as the amount of glass beads increased. For example, the
internal temperature of the MPC-TG4 concrete after 100 min irradiation was 2.2 ◦C lower
than that of the concrete coated with MPC-T1. As seen in Figure 7c, the incorporation of
glass beads not only reduced the surface and internal temperatures, but the temperature
difference also reduced, which was beneficial for reducing the temperature gradient of the
concrete structure.

The above results show that glass beads could improve the temperature reduction
capability of the coating. The thermal insulation effect theoretically makes the temperature
of the upper surface part of the coating increase and the temperature of the substrate part
below decrease. Due to the thin coating, the surface temperature of the coating surface
is the comprehensive temperature of the continuous body of the coating. It shows that
the temperature decrease below the coating is far greater than the temperature of the
increase in the coating surface, which proves that the addition of micro beads has a good
cooling effect.

3.3.3. Thermal Conductivity

As discussed above, thermal conductivity could influence the cooling effect of MPC-
based coating. The thermal conductivity results of MPC-TG are shown in Figure 8.

The addition of glass beads was equivalent to replacing part of MPC. With the increase
of glass bead content, the thermal conductivity of MPC-TG pastes gradually reduced.
When the glass bead content increased from 2% to 8%, the thermal conductivity was
reduced by 47%. The variation trend of thermal conductivity was consistent with the
internal temperature distribution shown in Figure 7b. Reducing the thermal conductivity
of MPC-based pastes could further reduce the internal temperature of the coated concrete.
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Figure 8. Thermal conductivity of MPC-based pastes with different mass ratios of glass beads.

3.3.4. Spectral Reflectance

As discussed above, both the internal temperature shown in Figure 7 and the thermal
conductivity shown in Figure 8 began to reduce when the glass bead content was increased
to 8%. To investigate the reason for the temperature difference between MPC-T1 concrete
and MPC-TG4 concrete, the spectral reflectance of MPC-T1 and MPC-TG4 was compared,
as shown in Figure 9 and Table 5.
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Table 5. Spectral reflectance of MPC-T1 and MPC-TG4 (%).

MPC-Based Pastes Ultraviolet Reflectance Visible Reflectance Near-Infrared Reflectance Average Reflectance

MPC-T1 9.41 30.37 53.04 39.56
MPC-TG4 9.60 32.08 51.37 39.69
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It can be found that the ultraviolet reflectance of these two pastes was the same,
while the visible reflectance of MPC-TG4 was slightly higher than that of MPC-T1, and the
near-infrared reflectance of MPC-TG4 was slightly lower than that of MPC-T1. Overall,
the average reflectance difference was very small. Theoretically, adding glass beads is
expected to improve the average reflectance. In fact, the addition of glass beads reduced
the amount of the hydration products of MPC, which resulted in a very small change in
the reflectance of the whole system. Combined with the results of the irradiation test and
thermal conductivity test, adding glass beads mainly played a role in reducing thermal
conductivity and improving the thermal insulation performance of the coating. Considering
that the cooling effect of MPC-TG4 and MPC-TG5 was similar, MPC-TG4 with a smaller
glass bead dosage was selected to prepare an MPC-based reflective coating to ensure better
fluidity and operability.

3.4. Performance Evaluation of Optimized MPC-Based Pastes

The ultimate mass ratios of the optimized MPC-based paste (MPC-TG4) are shown
in Table 6.

Table 6. Mass ratios of MPC-TG4.

MPC-Based Paste M/P Water-Solid Ratio Borax/M Titanium Dioxide/M Glass Bead/M

MPC-TG4 5 0.2 0.1 0.02 0.08

3.4.1. Physical Performance Evaluation

The physical performances of MPC-TG4, including compressive, flexural, and adhe-
sive strength, setting time, fluidity, and thermal conductivity, were measured using the test
methods introduced in Section 2.4. The results are shown in Table 7.

Table 7. Physical performances of MPC-TG4.

MPC Paste 3D Compressive Strength 3D Flexural Strength Adhesive Strength Initial Setting Time Fluidity

MPC-TG4 17.5 MPa 3.9 MPa 2.1 MPa 40 min 21.7 mm

MPC-W1 and MPC-TG4 had the same water-solid ratio. Compared with the data in
Table 3, it can be found that the compressive, flexural, and adhesive strength of MPC-TG4
were all lower than those of MPC-W1 because the MPC hydration products were replaced
by the functional additives (titanium dioxide and glass beads). Despite this, the adhesive
strength of MPC-TG4 reached 2.1 MPa, which was far higher than the requirement of the
technical specification [32]. In addition, the initial setting time of MPC-TG4 reached 40 min,
and the fluidity value was higher than 200 mm, showing high construction operability.

3.4.2. Phase Composition Analysis

The phase compositions of MPC-TG4 were analyzed using XRD patterns, as shown
in Figure 10.

Theoretically, MgNH4PO4·6H2O is formed when MPC is fully hydrated, and residual
MgO or ADP can be detected. However, ADP was not detected because of the mass ratio
optimization of MPC. The detected MgO and MgNH4PO4·6H2O, which had very strong
characteristic peaks, could provide high spectral reflectance for MPC. Titanium dioxide
could be seen at 25.5◦ with a weak characteristic peak because the mass ratio of titanium
dioxide was only 2% of M. Due to the amorphous characteristic of glass beads, it was not
detected in the final XRD patterns of MPC-TG4.
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3.4.3. Internal Morphology Analysis

SEM images could be used to characterize the internal morphology of the material.
100×, 500×, and 2000× SEM images of MPC-TG4 were obtained, as shown in Figure 11.
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Figure 11. SEM images of MPC-TG4.

According to the 100× image in Figure 11, some glass bead particles were broken
because the hollow structure was easily damaged under mechanical stirring when prepar-
ing MPC-based paste. Many intact glass beads could be seen, which could ensure the
excellent thermal insulation performance of MPC-TG4. As shown in the 500× image, a
large number of strip and flake hydration product crystals (MgNH4PO4·6H2O) provided
the high strength of MPC-TG4. As seen in the 2000× image, the glass beads were tightly
wrapped by the hydration products. Due to the low particle size (0.2–0.4 µm), titanium
dioxide could not be seen in the SEM images.
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3.4.4. Thermal Stability Analysis

The TG/DTG curve for MPCTG coating is shown in Figure 12.
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As shown in Figure 12, the mass loss of MPC-TG4 occurred between 60 ◦C and 130,
with the first peak at 70 ◦C. From the material properties of MPC, it can be concluded that
the mass loss was mainly due to the hydration product MgNH4PO4·6H2O. Therefore, it can
be considered that the MPC-TG4 was unstable when the service temperature was higher
than 70 ◦C, which was consistent with the conclusions by Abdelrazig et al. [38]. A second
DTG peak occurred at 110 ◦C because the hydration products of MPC were decomposed
into Mg2P2O7 in a dry nitrogen atmosphere, and deamination also occurred during the
decomposition process. The sample was stable at a temperature higher than 400 ◦C, with a
maximum mass loss rate of 16.2%. The melting points of titanium dioxide and glass beads
are usually higher than 1000 ◦C, meaning it did not need to take the decomposition of the
filler into account.

In addition, according to the TG/DTG curve of the pure Struvite measured by the
literature [39], we can see that the pattern of MPCTG coating with increasing temperature
is generally consistent with the results for pure Struvite, indicating that MPCTG is well
hydrated at M/P = 5, B = 10%, and W/C = 0.2, which is consistent with the XRD results.

4. Conclusions

Based on magnesium ammonium phosphate cement as a binder and reflex matrix,
A novel heat reflective and insulation coating (MPCTG coating) was prepared by adding
glass beads and titanium dioxide. The physical, mechanical and thermal properties of
MPCTG coating were tested, including coating liquidity, initial solidification time, pressure
resistance, folding strength, bonding strength, reflected cooling performance, etc. The
following conclusions were obtained:

(1) Magnesium ammonium phosphate cement itself has certain reflective cooling proper-
ties, and the addition of titanium dioxide can further improve the cooling properties
of MPC coating. Through the results of the 100 min irradiation test, it was determined
that the amount of titanium dioxide admixture was 2% of the mass of magnesium
oxide. At this point, in comparison to the uncoated concrete block, the surface temper-
ature was reduced by 13.6 ◦C, a reduction of 26%, and the internal temperature was
reduced by 11.5 ◦C, also a reduction of 26%. By continuing to increase the amount
of titanium dioxide at this point, the improvement in temperature reduction was no
longer significant.

(2) The reflective cooling effect of the coating was further enhanced by adding glass beads
on top of the 2% titanium dioxide. The glass beads achieved an increased cooling effect
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by reducing the thermal conductivity of the MPC-based pastes. When the amount
of glass bead admixture reached 8% of the mass of magnesium oxide, the surface
temperature continued to reduce by 3.9 ◦C, and the internal temperature continued to
reduce by 2.2 ◦C after 100 min of irradiation. At this point, continuing to add glass
beads will make the prepared coating less liquid and reduce construction operability.
Therefore, the dosage of glass beads is 8% of the mass of magnesium oxide.

(3) Based on SEM, XRD, and TG/DTG results, the MPCTG cooling coating hydrates
well, with a large amount of hydration products encasing unreacted MgO particles,
titanium dioxide, and glass bead, forming a dense monolith with high reflection
and low thermal conductivity, effectively blocking the entry of radiant heat. At the
same time, the MPCTG coating prepared is stable below 70 ◦C, while the summer
high-temperature disease of the concrete structure usually does not exceed 70 ◦C.
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