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Abstract: Numerous studies have been undertaken to determine the optimal land use/cover classifi-
cation algorithm. However, there have not been many studies that have compared and evaluated
the performance of maximum likelihood (ML), random forest (RF), support vector machine (SVM),
and classification and regression trees (CART) using ASTER imagery, especially in a mining dis-
trict. Therefore, this study aims to investigate land use/cover (LULC) change over three decades
(1990–2020), comparing the performance of the ML, RF, SVM, and CART machine learning algorithms.
The Landsat and ASTER data were retrieved using Google Earth Engine (GEE). Traditional ML clas-
sification was performed on ArcGIS 10.2 software while RF, SVM, and CART classification were
undertaken on GEE. Then, thematic accuracy assessments were conducted for the four algorithms and
their performances were compared. The results showed that the largest changes in area occurred in
forest cover that decreased from 37.8 to 27.3 km2 during the three decades. The remarkable expansion
of gold mining occurred during 2005–2010 with the increases of 1.6%. The mining land rose by 2.9%
during the study period whereas agricultural land increased significantly by 10.7% between 1990
and 2020. When comparing the four algorithms, the RF algorithm gives the highest accuracy with an
overall accuracy of 95.85% while SVM follows RF with 91.69%. This study proved that RF is the best
choice for optimal land use/cover classification, particularly in the mining district.

Keywords: land use/cover change; gold mining; machine learning algorithms; maximum likelihood;
random forest; support vector machine; classification and regression trees

1. Introduction

By collecting data over broad portions of the Earth, satellite remote sensing has offered
an incredible possibility for precise mapping and monitoring of environmental processes
and land cover change [1,2]. Since 1972, the Landsat satellite mission has been collecting
the images that cover the whole world and providing a twice-a-week observation of Earth
at a resolution of 30 × 30 m, excluding Landsat-1 which has 80 meter ground resolution [3].
The USGS’s (U.S. Geological Survey) Landsat open data policy, which went into effect in
2008, enables researchers to freely mine the data and quantify land cover change in ways
that were previously impossible [4].

According to Lu and Weng [5], the outcomes of land use/cover mapping are influenced
not only by the appropriateness of imagery but also by the correct choice of classification
method. A variety of classification approaches for land use/cover assessment utilizing
remotely sensed data have been developed and evaluated in the publications. These classi-
fiers include unsupervised algorithms (such as ISODATA or K-means) as well as parametric
supervised algorithms (such as maximum likelihood (ML)) and machine learning algo-
rithms including artificial neural networks (ANN), k-Nearest Neighbors (kNN), decision
trees (DT), support vector machines (SVM) and random forest (RF), and Classification
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And Regression Trees (CART) [6–9]. Non-parametric approaches (machine-learning-based
algorithms) have received a huge amount of interest in remote sensing studies in the past
decade [10].

Several studies have been conducted to determine the best algorithm for land use/cover
classification by evaluating their performances. Their conclusions, however, are quite dif-
ferent. In a land cover classification study using Landsat TM data conducted by Dixon
and Candade [11], SVM produced good results, however, ML performed much worse.
Moreover, SVM was shown to be superior to traditional classification algorithms such as
maximum likelihood (ML), k-nearest neighbor (kNN), and neural networks (NN) in hy-
perspectral remote sensing classification according to the previous studies [12–14]. On the
other hand, according to Adam et al. [15] and Ghosh and Joshi [16], SVM and RF produced
similar results of classification. Pouteau et al. [17] also compared the performance of six
machine learning algorithms (SVM, naïve Bayes, C4.5, RF, boosted regression tree, and
kNN) using different satellite data and concluded that kNN performs best with Landsat-7
ETM+ data. When comparing naïve Bayesian, kNN, SVM, tree ensemble, and artificial
neural network using Landsat data, SVM and kNN perform better in the classification [18].
Furthermore, Lizarazo [19] and Tso and Mather [20] used SVM and RF, respectively, in both
supervised and unsupervised classification and claimed that these two classifiers give the
most accurate results.

In the comparative study on decision tree (DT), ANN, and ML, according to Pal and
Mather [21] there are no remarkable differences in classification accuracy between the
former two, whereas the manual work and computational time effort turned out to be
much more intensive for ANN. A land cover classification with ANN, SVM, DT, and ML
published by Huang et al. [12] resulted in higher accuracies of ANN and SVM as compared
to DT. Nonetheless, DT performed much faster with a calculation time of minutes compared
to hours and days, respectively, for SVM and ANN.

No one would deny that, in a mining area where numerous human activities occur,
there will be many disturbances that can change land use/land cover (LULC) [22]. Kamga
et al., (2020) [23] used the maximum likelihood algorithm and Landsat data to study the
LULC change in gold mining areas and highlighted the effectiveness of the data and the
method they used. It is difficult to track LULC dynamics in large-scale underground
mining areas where LULC heterogeneity is substantial, and there has been a long history of
disturbances. In such areas, Mi et al., (2019) [24] tested the performance of RF, SVM, ML,
and NN and proved that RF had a better performance compared to other classifiers in this
heterogeneous area.

To the best of our knowledge, only a limited number of studies comparing and eval-
uating the performance of ML, RF, SVM, and CART using ASTER imagery, particularly
in a mining district, has been published. Therefore, it is valuable for a comparison and
evaluation of the performance of ML, RF, SVM, and CART in terms of land use/cover
mapping. The objectives of this study are to assess land use/cover change in the Kyauk-
pahto mining district over the three decades ranging from 1990 to 2020 and evaluate the
performance of the four popular classifiers, ML, RF, SVM, and CART, when applied to an
ASTER image. This paper mainly contributes to the selection of a suitable classifier for land
use/cover change studies in a mining district, and it will be useful for those who conduct
similar research.

2. Materials and Methods
2.1. Study Area

The Kyaukpahto gold mine is located at Latitude 23◦48′55′′ N and Longitude 95◦56′44′′ E,
approximately 30 km east of Kawlin and 250 km north of Mandalay, in northern Myanmar
(Figure 1). The study area covers approximately 72.72 square kilometers. The mine is
accessible all year round by motor vehicle from Mandalay or by train from Mandalay to
Kawlin and then to the east along a 30 km metalled road. The area can also be reached
by boat from Mandalay to Tigyaing, 25 km east of Kyaukpahto, on the Ayeyarwady river.
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This river is also navigable all seasons. Tigyaing and Kyaukpahto are connected with an
all-season motorable road. The gold deposit lies within the north–south trending Minwun
Range and the altitude in the region varies from 250 to 400 m with isolated peaks rising
to 700 m in height. The Kyaukpahto region enjoys a sub-tropical monsoon climate with
an annual rainfall of 1000–1500 mm and is covered by deciduous forest. The study area
mainly includes four typical land use/cover classes: agricultural land, mining land, forest
cover, and water body.
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Figure 1. Location map of the study area.

2.2. Data Used

Landsat 5 and 8 and ASTER data were downloaded via Google Earth Engine (GEE) as
these data are readily available on GEE and some pre-processing works can be performed.
ASTER acquired on 7 December 2020 was used to evaluate the four classifiers while
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Landsat 5 and 8 data acquired on 15 December 2020, 16 November 2015, 10 December 2010,
5 February 2005, 8 December 2000, 2 December 1995 and 13 December 1990 were utilized
for land use/cover change analysis.

2.3. Training and Testing Sample Datasets

The training data (training and testing samples) were gathered using a manual inter-
pretation of the original ASTER data as well as high-resolution imagery from Google Earth.
ArcGIS 10.2 was used to create training and testing sample data for each land cover class.
The number of the training and testing samples per class is shown in Table 1.

Table 1. The training and testing samples for each land use/cover class.

Land Use/Cover Class Training Samples Testing Samples

Agricultural Land 258 112

Forest Cover 235 101

Water Body 82 35

Mining Land 150 65

2.4. Classification Algorithms

The three machine learning algorithms tested in this study including RF, SVM, and
CART are available in Google Earth Engine (GEE). Therefore, the classifications using RF,
SVM, and CART were completed on GEE. The traditional maximum likelihood classification
was performed on ArcGIS 10.2 software. These four classifiers are briefly explained in the
following paragraphs.

The most often used supervised classification approach is the maximum likelihood
(ML) algorithm. It is used in a variety of studies and applications including land
cove/use [25–29]. Maximum likelihood classification (MLC) is used to determine the
maximum for a given statistic from a known class of distributions. For the training samples,
a normal distribution is assumed. The probability density functions for each category are
created using the algorithm. Assigning every unclassified pixel as membership is based on
the relative likelihood (probability) of that pixel appearing within each category’s probabil-
ity density function during classification. If G specified categories exist, the unclassified
image will have m bands. The posterior probability of category k, P(Gk/x), is defined by the
Bayesian formula as,

P(Gk/x) =
P(x/Gk)P(Gk)

P(x)
(1)

where P(Gk) is the prior probability of category k, P(x/Gk) is conditional probability of
observing x from Gk (probability density function), P(x) is the same for each category. We
can presume that all categories are probable if we do not know anything about the prior
distributions P(Gk). As a result, P(x/Gk), also known as the likelihood of Gk with regard to
x, determines the likelihood function.

Breiman [30] created Random Forest (RF), a new non-parametric ensemble machine
learning algorithm. The RF algorithm has been used to solve various environmental prob-
lems. It can process a wide range of data, including satellite images and numerical data [31].
It is a decision-tree-based ensemble learning method that combines huge ensemble re-
gression and classification trees. Two factors are required to set up the RF model, which
are referred to as the base of the model. These factors are (1) the number of trees, which
‘n-tree’ can explain and (2) the number of features in each split, which ‘m-try’ can explain.
Individual voting power or vote is generated by classification trees, which provide correct
classification in managing the majority vote from trees across the forest.

Vapnik and Chervonenkis [32] were the first to propose SVM as a nonparametric
algorithm. The SVM method creates a hyperplane based on the largest gap in the given
training sample sets, then categorizes the segmented objects into one of the recognized
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LULC classes. The common kernel functions employed in SVM algorithms are linear,
polynomial, radial basis function (RBF), and sigmoid kernels (Kavzoglu and Colkesen,
2009). RBF kernel is the most commonly used one. The “cost” (C) and gamma which are
tuning parameters of the RBF kernel, influences overall classification accuracy [33].

Breiman et al. [34] developed the decision trees (DT) model, which is a common
non-parametric one. The classification and regression tree (CART) algorithm is a very
common DT used for different purposes. By splitting the training sample set into subsets
based on an attribute value test and then repeating this procedure on every resulting subset,
a tree can be developed in a binary recursive partitioning process using CART. When
no further subset splits are conceivable, the tree-growing process comes to an end. In
CART, the maximum depth of the tree is an important tuning parameter that defines the
model’s complexity. Generally, a deeper depth allows for a more complicated tree to be
built, perhaps leading to improved overall classification accuracy. Nevertheless, having too
many nodes can result in the model being overfitted.

2.5. Thematic Accuracy Assessment and Comparisons

This step used 313 validation pixels retrieved from sampling polygons, as well as their
corresponding classified pixels produced in the classification process. These data were used
as input to build the associated confusion matrixes by running the confusion function for
each of the classifiers. The overall accuracy (OA) and the Kappa index [20] were determined
using the confusion matrix. The OA is the percentage of correctly classified pixels in an
image. For all the included categories, the global Kappa index assesses the agreement
between pixels classified and class sample pixels. The OA, kappa value, user’s accuracy,
and producer’s accuracy were calculated using confusion matrixes and the comparisons
between the four classifiers were made to evaluate their performances.

3. Results
3.1. Land Use/Cover Change Analysis

The current research examines and summarizes the changes in LULC from 1990 to
2020. The land cover maps (Figure 2) utilized in this study were produced using Landsat
satellite data and the random forest algorithm (RF), which has a higher accuracy. The
thematic LULC maps derived from ASTER data are shown in Figure 3, and these data
do not cover the whole study period. Areas in km2 and percentages of each class in each
year throughout the study period are shown in Table 2. Table 3 summarizes the changes
between the LULC maps of 1990 and 2020, covering 75.8 km2 of the study area.
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Table 2. Land use/cover area coverage of each class.

Land Use/Cover
Type

1990 1995 2000 2005 2010 2015 2020

km2 % km2 % km2 % km2 % km2 % km2 % km2 %

Agricultural Land 48.9 37.1 48.1 36.5 50.7 38.4 56.8 43.0 50.9 38.6 51.9 39.3 59.6 45.2

Forest Cover 50.0 37.8 50.8 38.5 47.4 35.9 41.9 31.7 45.8 34.7 44.2 33.5 36.1 27.3

Water Body 0.4 0.3 0.7 0.6 1.2 0.9 0.2 0.2 0.6 0.4 0.7 0.5 0.7 0.5

Mining Land 0.7 0.5 0.3 0.3 0.7 0.5 1.1 0.8 2.7 2.1 3.2 2.4 3.6 2.7

Table 3. Land use/cover change in percentage (%).

Land Use/Cover Type 1990–1995 1995–2000 2000–2005 2005–2010 2010–2015 2015–2020 1990–2020

Agricultural Land −0.8 2.5 6.1 −5.9 1.0 7.7 10.7

Forest Cover 0.8 −3.4 −5.5 4.0 −1.6 −8.1 −13.9

Water Body 0.3 0.5 −1.0 0.3 0.1 0.0 0.2

Mining Land −0.3 0.4 0.4 1.6 0.5 0.4 2.9
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LULC in the Kyaukpahto mining district has changed dramatically during the study
period (1990–2020) (Table 3). The largest changes in the area occurred in forest cover. The
forest cover decreased from 37.8 to 27.3 km2 during the three decades. It is noteworthy
that the remarkable expansion of gold mining occurred between 2005 and 2010 with an
increase of 1.6%. The mining land rose by 2.9% during the study period. The reasons
behind the expansion of gold mining are the increase in foreign direct investment (FDI) in
the mining industry, the advancement of mining technology, and the stable demand for
gold. Similarly, agricultural land also increased significantly by 10.7% between 1990 and
2020. The notable decline in the water body occurred in the study area between 2000 and
2005 with −1.0%. Overall, both agricultural land mining land increased over the study
period while the declining trend can be seen only in forest cover.

3.2. Comparison of Machine Learning Algorithms

The obtained classification images derived from ML, RF, SVM, and CART classi-
fiers are shown in Figures 4–7 while Table 4 includes confusion matrices of four classi-
fiers. Table 5 shows overall accuracy (OA) and kappa values for each algorithm used in
this study.
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Table 4. Confusion matrices for each classification algorithm.

Machine Learning
Algorithms Agricultural Land Forest Cover Water Body Mining Land

Maximum likelihood
classification

Agricultural Land 139 5 0 1

Forest Cover 0 128 1 0

Water Body 2 1 8 0

Mining Land 14 6 0 8

Random forest
classification

Agricultural Land 157 5 0 3

Forest Cover 1 124 2 1

Water Body 0 0 10 0

Mining Land 1 0 0 9
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Table 4. Cont.

Machine Learning
Algorithms Agricultural Land Forest Cover Water Body Mining Land

SVM classification

Agricultural Land 159 14 0 1

Forest Cover 1 118 0 0

Water Body 1 1 8 0

Mining Land 6 2 0 2

CART classification

Agricultural Land 147 17 0 0

Forest Cover 2 124 1 0

Water Body 0 2 9 0

Mining Land 4 2 0 5Sustainability 2022, 14, x FOR PEER REVIEW 11 of 16 
 

 
Figure 6. Resulting image from the SVM classification. 

Figure 6. Resulting image from the SVM classification.
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Table 5. Overall accuracy and kappa values of for each algorithm.

Algorithm Overall Accuracy (%) Kappa Value

Maximum Likelihood 90.42 0.84

Random Forest 95.85 0.93

Support Vector Machine 91.69 0.85

Classification and Regression Trees 91.05 0.84

The random forest (RF) algorithm provides the highest accuracy with an overall
accuracy of 95.85% (kappa value = 0.93) while support vector machine (SVM) follows RF
with 91.69% (kappa value = 0.85). CART takes the third place with an overall accuracy of
91.05% (kappa value = 0.84) and the performance of ML is not good if it is compared to the
three other algorithms.

SVM and RF classifiers identified agricultural land more accurately compared to ML
and CART with the user’s accuracy (UA) (Figure 3) of 55.59% and 52.71%, respectively. On
the other hand, the higher UAs of ML (8.95%) and CART (3.51%) in terms of mining land
were also witnessed. Similarly, ML and CART provide higher UAs in identifying forest
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cover with 41.21% and 40.89%, respectively. Moreover, the performances of ML and CART
in identifying the water body are more or less the same with 3.51%.

Figures 8 and 9 show user’s and producer’s accuracies for each classification algorithm.
The producer’s accuracy (PA) (Figure 9) of SVM and RF classifiers was also relatively
higher than the ML and CART classifiers regarding the classification agricultural land. It is
noteworthy that the highest PA in terms of RF was 4.15% for mining land. Similarly, RF
gives the highest PA with 3.83% in classifying the water body. must be mentioned that the
performances of SVM and CART are bad when identifying mining land as they provide
lower PAs compared to the two other classifiers. In the classification of forest cover, CART
gives the highest PA with 46.33%.
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4. Discussion
4.1. Land Use/Land Cover Change in the Mining District

Over 14% of the forest cover was changed to different land use over the three decades
from 1990 to 2020. Agriculture (cultivation) and mining are the key drivers behind the
shift in land use and land cover (LULC) in the Kyaukpahto area, according to satellite
data analysis. During the last three decades, it is assumed that 11% of the forest cover has
been transformed to agricultural land and 3% to mining land as agriculture is the largest
driver of deforestation and mining is the second largest in the area. Previously, agriculture
has been the most common land use in the study area, but with the introduction of gold
mining, the mining and agricultural sectors began to compete for land. Increased land will
be needed to store and dispose of mine waste generated during the different phases of ore
processing as the intensity of mining in the area increases.

Land use conflicts are more common than ever at all scales. In the study area, mining
is a source that leads to conflicts. The Kyaukpahto gold mine uses the surface mining
method which requires removal of vegetation and overburden soil. The nature of the
mining method results in the loss of agricultural land and forest cover. The transformation
of land uses in the area more or less impacts local livelihoods.

4.2. Performance of Four Algorithms

A visual analysis of the classifications (Figures 4–7) reveals that the number of classes
defined is small, owing to the underutilization of the discrimination offered by the ASTER
image, which has 14 spectral bands and a spatial resolution of 15 m in three visible and near-
infrared (VNIR) bands. The sensor’s resolution is directly proportional to the variability
of the coverage, i.e., more spatial detail in the image means better sensitivity to detect
internal variations in a category. To take advantage of the ASTER image, the size of both
the training and validation samples should be larger. However, since the aim of the work
was to compare the four classifiers, this condition can be overlooked.

The visual examination also allowed us to observe that RF and CART classifications
achieved a better differentiation of mining land from other classes. On the other hand, ML
overestimated the coverage of mining land while SVM underestimated the class of mining
land. ML is the classical parametric classifier which is used during the assumption of the
multivariate normal distribution of data [35] whereas SVM provides higher accuracy and a
better classification result as its nature is non-parametric [32].

The accuracy assessment is a difficult but necessary phase in the classification and
mapping of land cover [36]. Accuracy assessment refers to the examination of a commonly
used procedure in order to determine the accuracy of a map or classification [37]. To
quantify the map quality, evaluation of various classification algorithms, identification
of errors, and accuracy assessment are carried out. Assessing and validating the land
cover map provides data quality indicators such as overall accuracy, user accuracy, and
producer accuracy. The high accuracy of the assessment indicates that the bias of land
cover classification is low. The producer’s accuracy can explain how effectively a certain
area can be classified while the user’s accuracy ensures that the image’s classified pixel
matches the category on the ground exactly [38].

The results obtained from the classifications and validation samples indicate that
the RF and SVM techniques have the fewest errors. They both have a higher number of
correctly classified pixels, which can be seen in the confusion matrix and in the results
of the Kappa index. However, the underestimation of SVM in identifying mining land is
remarkable. Therefore, it is clear that the RF classification is superior.

4.3. Recommendations for Future Studies

The use of satellite data with higher spatial resolution is recommended in future
studies for more detailed LULC classification. Moreover, the use of an object-based classifi-
cation instead of the normal pixel-based should be utilized with the use of high-resolution
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data. The frequent update of data through mapping of the Kyaukpahto mining district at
periodic times will ascertain whether or not land use practices have improved.

5. Conclusions

Historical land use/cover changes were assessed using Landsat data with the RF clas-
sifier. Beside mining activities, traditional agricultural practices are also a large contributor
to the transformation of the land use/cover of the mining district. As a result, it is necessary
to consider the combined effects of both industries in this mining district.

Four classification algorithms were compared using ASTER data as inputs. The
classification experiments were conducted in the mining district in which mining land was
included as a small but significant class. The RF achieved a higher overall accuracy and
Kappa coefficient compared to the ML, SVM, and CART algorithms. Although SVM takes
the second place in the accuracy of classification in the experiment, it does not perform
well when discriminating the mining land. On the other hand, the ML’s overestimation
of mining land affects the overall accuracy of classification. The RF obtained an overall
accuracy of 95.85%, proving that this classifier is highly reliable. Moreover, its accuracy was
relatively higher than ML, SVM, and CART. Due to these findings obtained from our study,
we recommend RF as a suitable option for precise classification of land cover, particularly
in the mining district.
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