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Abstract: This study aims to compare the grain yield, gross return above fertilizer cost (GRAFC:
(paddy sales)–(fertilizer cost)), and several parameters relating to the quality of white rice cultivated
with different soil-specific nutrient management in 14 provinces where different soil types are
distributed. The grain yield tended to increase with increased fertilizer application; however, the
relationship between the fertilization rate and the yield was not linear in areas where clay soil
dominates. In cases of popular varieties cultivated from the northern to southern province, the
amount of fertilizer applied was up to 163 kg ha−1 (sum of N-P2O5-K2O), and the GRAFC and the
fertilization rate showed a nonlinear relationship, with a peak of around 120 kg ha−1 fertilization.
The nitrogen concentration recognized as a negative factor for the quality of rice tended to increase
with an increasing fertilization rate, and the carbohydrate concentration and carbohydrate/protein
ratio that are a positive factor for the quality were related negatively with the fertilizer rate. The
amylopectin concentration in white rice was positively related with the carbohydrate concentration,
which decreased with an increasing fertilization rate. The levels of fertilizer application required to
achieve a higher yield, GRAFC, and the maintenance and improvement of parameters relating to
grain quality were different.

Keywords: carbohydrate; fertilizer; grain yield; gross return above fertilizer cost; protein; production cost

1. Introduction

Cambodia produced 10.96 million tons of paddy rice, and exported 502,373 tons of
milled rice in 2020, the 10th and 9th highest in the world, respectively, according to the Food
and Agricultural Organization of the United Nations statistical data (FAOSTAT, 2022) [1].
In Cambodia, rice is grown on 3.1 million ha, of which, 75.6% is rainfed (Ministry of
Agriculture, Forestry and Fishery, Phnom Penh, Cambodia, 2017) [2]. Recently, in response
to local and international demand [3], the Royal Government of Cambodia (RGC) has been
promoting the production of rice with good quality by sustainable agriculture methods. The
RGC has an ambition to turn Cambodia into a key “rice—white gold” exporting country
in the international market [4]. For promoting Cambodian rice exports, evidence-based
information about rice quality is very important [5].

Most soils in the rainfed lowlands of the Mekong region are infertile, and the rice yield
is limited by this poor fertility (Bell and Seng, 2004) [6]. During the 1990s, 82% of Cambodian
rice farmers applied fertilizer (Ouk et al., 2001) [7]. Potash fertilizer is not popular, and most
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farmers used N and phosphate fertilizers in Cambodia according to Mutert and Fairhurst
(2002) [8], and Ouk et al. (2001) [7]. Although P and K application rates for wet-season rice
in Cambodia are usually still low, Kong et al. (2019) [9] demonstrated the importance of
these nutrients for improving the country’s rice production. On the other hand, Kong et al.
(2019) [10] reported that the amount of fertilizer applied to achieve a higher gross return
above fertilizer cost (GRAFC) will be much less than that for maximizing the grain yield in
Cambodia’s wet-season rice (rainfed rice).

The authors previously aimed to compare the quality of rice among the eight samples
of six different indica lowland rice varieties from different producers/suppliers in Cambo-
dia using some sensing equipment—such as a grain scanner (image processing device), a
rice taste analyzer for white rice, and a taste analyzer for cooked rice—that measures fresh-
ness, hardness, stickiness, and visual taste value, and a near-infrared transmission sensor
was used to measure the taste value with conventional chemical analysis [4]. Although the
taste values used for white rice and cooked rice were developed using equipment origi-
nally intended for temperate japonica, a short-grain rice variety, the taste value showed
a negative relationship with protein and amylose concentrations in white rice of indica
varieties in the previous study [5]. The taste values determined by the analyzer unit for
cooked rice showed a positive relationship with the visual taste value and stickiness, and a
negative relationship with hardness [5]. The authors [5] also reported that the C/N ratio
in the white rice also showed a positive relationship with the taste value of cooked rice.
A large national soil survey classified Cambodia’s soils into 11 groups according to their
nutrient management requirements, and these groups are easily distinguishable by local
people without requiring any equipment [11]. Depending on the province where different
soil types dominate, the appropriate amount of fertilizer to achieve greater benefits for
farmers may vary. Thus, this study aims to compare the grain yield, GRAFC, and sev-
eral parameters relating to the quality of white rice cultivated in farmers’ rainfed paddy
field with different nutrient managements during the wet season in 14 provinces where
nine different soil types are distributed in northern to southern Cambodia to investigate
the economic efficiency in fertilizer management focused on qualitative traits, as well as
quantitative traits, with the intention of sustainable crop production.

2. Materials and Methods
2.1. Research Sites and Plant Materials

We selected 14 provinces where rainfed rice cultivation is widely observed among
24 provinces in Cambodia, considering suggestions from the Provincial Department of
Agriculture, Forestry and Fisheries (PDAFF) as follows: Banteay Meanchey, Battambang,
Kampong Thom, Pursat (Posat), Siem Reap, Kampong Chhnang, Kampong Speu, Kam-
pot, Kampong Cham, Tboung Khum, Kandal, Takeo, Prey Veng, and Svay Rieng. Nine
different soil types (clay: Toul Samroung (TS), Krakor (Kr), Kampong Siem (KaS), Kein
Svay (KSv), Kbar Po (KP); silt: Bakan (Ba), Koktrap (Ko); and sandy: Prateah Lang (PL),
Prey Khmer (PK)) are distributed in the selected 14 provinces. Our research sites consist of
100 rainfed lowland fields managed by core farmers, and 37 lowland rice varieties in total
were cultivated. The maturity and the date of flowering of the varieties, including cited
information [12], are shown in Table 1.

Table 2 shows the characteristics of 9 soil types collected from the PDAFF in the
provinces and our previous papers [9,10] with the other references [6,13–16]. Depending
on the variety and soil type in each area, the amount of fertilizer (using urea, DAP, and
KCl) applied varied (0–96 kg N, 0–114 kg P2O5, 0–90 kg K2O ha−1) (Table 3). There were
various cases in the proportion of fertilization application, such as 100% basal dressing,
divided application into basal and top dressing, 100% top dressing given once or a few
divided doses, and so on (see Supplementary Table S1). As above, depending on the site
and the variety, there were large variations in the amount of fertilizer and combinations of
nitrogen, phosphorus, and potassium application with their proportion as basal and top
dressing. Although low soil fertility is a major constraint on rainfed lowland rice yields,
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nutrient management under fluctuating hydrological conditions is also challenging (Kato
and Katsura, 2010) [17]. We followed core farmers’ practices in each province and sought
to grasp the actual situation at the real production sites with the PDAFF.

Table 1. Variety used.

Variety Maturity/Date of Flowering (1) Days from Sowing to
Harvesting (2)

Remark
(Year Released/Registered, Origin)

Early maturing
CAR15 95–105 93–107 2015, IRRI origin
Chulasa 95–110 99 1999, IRRI origin
IR66 105–115 94 1990, IRRI origin
IR504 110–115 105–138 1992 (4), IRRI origin
Jasmine 85 95–110 107 2020 (3), IRRI origin
OM5451 95–105 95–102 2011 (4), IRRI origin
Sen Kra Ob 105–115 102–112 2019, Cambodian improved
Sen Pidao 110–120 105–111 2002, IRRI origin
Srop Ngar 120–130 129 2006, Cambodian improved
Thmor Krim 10–17 October 128 Cambodian traditional

Medium maturing
Ka Ngork Pong 10–20 November 125–152 Cambodian traditional
Krasang Teap 10–25 October 154–158 Cambodian traditional
Malis Chin 10–20 November 123 Cambodian traditional
Neang Krim 10–27 October 130 Cambodian traditional
Phka Ampil 10–20 November 128 Cambodian traditional
Phka Chan Sen Sar 25 October–5 November 152–157 2010, Cambodian improved
Phka Doung 10–26 October 154 Cambodian traditional
Phka Malis 10–20 November 123–128 Cambodian traditional
Phka Mealtey 10–15 October 118 2017, Cambodian improved
Phka Romeat 10–25 October 155 2007, Cambodian improved
Phka Rumdeng 10–25 October 156 2007, Cambodian improved
Phka Rumduol 10–25 October 125–153 1999, Cambodian improved
Somaly 10–20 November 125 1978, Cambodian improved

Late Maturing
Angkareach 10–15 November 181 Cambodian traditional
CAR4 8–15 November 185 1995, Cambodian improved
CAR6 9–16 November 193 1995, Cambodian improved
CAR8 19–26 November 193 1996, Cambodian improved
CAR9 10–17 November 191 1996, Cambodian improved
Kong Chheng 11–15 November 159 Cambodian traditional
Krochork Chab 10–20 November 181 Cambodian traditional
Neang Ek 10–26 November 176 Cambodian traditional
Neang Khon 10–23 November 154–169 Cambodian traditional
Phka Knhy 10–15 November 164 Cambodian traditional
Pong Rolork 15–20 December 188 Cambodian traditional
Raing Chey 5–11 November 143–186 1999, Cambodian improved
Smar Prum 5–11 November 158 1999, Cambodian improved
Tror Norng 5–10 December 178 Cambodian traditional

(1) Information about maturity or date of flowering from CARDI (2017) [12] and the PDAFF. (2) Data from each
site in this study. (3) Year registered in Cambodia. (4) Cultivation year started in Mekong Delta.
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Table 2. Characteristics of 9 soil types. The numerals in the parentheses are the serial numbers of
references, and indicate the source of data.

Soil Type Depth
(cm)

pH
(H2O)

Total C
(g kg−1)

Total N
(g kg−1)

Avail. P
(cmolc kg−1)

Avail. K
(cmolc kg−1)

CEC
(cmolc kg−1)

Clay
(%)

Silt
(%)

Sand
(%)

Clay
Toul

Samroung 0–20 [9] 5.4 [9] 8.33 [9] 0.73 [9] 5.97 [9] 0.16 [9] 18.77 [9] 49.3 [9] 29.0 [6] 14.3 [6]

Krakor 5–20 [6] 5.9 [6] 9.10 [6] 1.00 [6] 4.60 [6] 0.24 [6] 15.10 [6] 48.0 [6] 18.0 [6] 28.0 [6]
Kampong

Siem 10–25 [13] 6.5 [13] 0.91 [13] 0.07 [13] 11.00 [13] 0.03 [13] 6.35 [14] 41.0 31.0 29.0

Kein Svay 18–60 [15] 6.5 [15] 0.52 [15] 0.04 [15] 20.00 [15] 0.30 [15] 10.36 [14] 45.0 32.0 18.0
Kbar Po 0–20 [6] 5.9 [6] 9.10 [6] 1.00 [6] 4.60 [6] 0.24 [6] 15.10 [6] 48.0 [6] 18.0 [6] 28.0 [6]

Silt
Bakan 0–20 [16] 5.2 [16] 0.40 [16] 0.02 [16] 4.00 [16] 0.03 [16] 4.84 [14] 16.0 49.0 35.0

Koktrap 0–25 [6] 4.0 [6] 10.90 [6] 1.10 [6] 2.60 [6] 0.10 [6] 8.09 [6] 23.0 [6] 41.0 [6] 36.0 [6]
Sandy

Prateah Lang 0–20 [9,10] 5.3 [9,10] 7.1 [9,10] 0.67 [9,10] 4.20 [9] 0.11 [9,10] 5.27 [9,10] 8.0 [9,10] 37.0 [6] 71.0 [9]
Prey Khmer 0–20 [9] 4.6 [9] 9.30 [9] 0.90 [9] 8.10 [9] 0.02 [9] 0.70 [9] 6.0 [9] 22.0 [6] 81.0 [9]

2.2. Data Collection

The authors cooperated with the PDAFF in 14 provinces to collect paddy samples
during the harvesting period in November and December 2019. The grain yield (t ha−1)
was calculated from the weight of filled grains at about 14% moisture content harvested
from all hills in each field using a combine harvester. The drying process was performed by
rice millers or sellers. The precipitation data during the rice cultivation season from June to
December 2019 with that in 2016 to 2018 were collected from the meteorological station
in each province. The cropping pattern, seeding rate in the paddy field for broadcasting
(B) and drum seeding (D) or in the nursery for transplanting (T), planting space for drum
seeding (D) and transplanting (T), sowing date, transplanting date, and harvesting date
are shown in Table 1 and Supplementary Table S1. The maturity days from the sowing to
harvesting of each variety at each site was from the PDAFF.

The harvested rice grains were used as white rice after milling for agronomic, chemical,
and morphological measurements. The economic returns from applying the fertilizer
regimes as the gross return above fertilizer cost (GRAFC) were determined in the same
manner as in our previous studies [9,10]: by subtracting the total cost of the fertilizer
used from the paddy sales. The specific cost for fertilizers at each site was calculated by
multiplying the amount of each fertilizer by the fertilizer price during the cultivating season
in 2019. The income for each site was calculated by multiplying the grain yield by the
paddy price in 2020. These prices represented the local market prices at that time.

The physical properties for rice grain grading were determined by using a grain
scanner (Satake RSQI 5 10B, Japan). When measuring rice, the individual image list order
can be changed based on the shape. The classification of grains was conducted based on
the user settings. The system imaged approximately 100 to 500 rice grains placed on the
scanner. The RSQI 5 10B scanner was calibrated to the Cambodian Rice Standard [18]. This
results in determining the classification of the grain quality (≥6.2 mm long).

The nitrogen concentration in white rice was measured by the Kjeldahl method, and a
specific conversion factor (N × 5.95) was used to measure the protein concentration. The
carbohydrate concentration in white rice was determined by the conventional procedure
as a quantitative analysis of glucose using the Lane–Eynon method after HCl hydrolysis,
and the starch concentration was determined as glucose multiplied by 0.9, in accordance
with the method of Honma and Kawabata (1989) [19]. The amylose concentration in the
white rice was measured by Juliano’s method [20], and the amylopectin concentration was
determined by subtracting the amylose content from the starch content.
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Table 3. Soil type, soil texture (C: clay soil, Si: silt soil, Sa: sandy soil), variety used, cropping pattern (B: broadcasting. D: Drum seeding, T: transplanting),
fertilization rate, grain yield, and GRAFC.

Province Soil Variety N P2O5 K2O Yield GRAFC Province Soil Variety N P2O5 K2O Yield GRAFC

Soil Type Text. (kg ha−1) (t ha−1) ($ ha−1) Soil Type Text. (kg ha−1) (t ha−1) ($ ha−1)

1. Banteay Meanchey Province 8. Kampot Province
TS C 44. Raing Chey B 9.0 23.0 0.0 2.60 502.5 PL Sa 1. Phka Rumduol B 62.5 56.0 7.5 2.30 615.5
TS C 46. Neang Khon B 9.0 23.0 0.0 3.50 682.5 PL Sa 2. Phka Malis B 62.5 56.0 7.5 2.50 674.5
TS C 49. Phka Knhy B 10.0 10.0 7.5 2.80 546.2 PL Sa 3. Sen Pidao B 40.0 40.0 30.0 2.30 623.1
TS C 50. Srop Ngar B 67.0 42.0 7.5 3.50 643.6 PL Sa 4. Krochork Chab B 47.0 24.0 18.0 2.20 423.7
TS C 51. Malis Chin B 67.0 42.0 7.5 3.80 798.6 PL Sa 5. Phka Romeat B 47.0 24.0 18.0 2.30 635.8
PL Sa 45. Sen Kra Ob B 87.0 46.0 30.0 3.70 754.2 PL Sa 6. Pong Rolork B 47.0 24.0 18.0 2.20 423.7
PL Sa 47. Phka Rumduol B 55.0 0.0 0.0 3.00 652.5 PL Sa 7. Malis Chin B 47.0 24.0 18.0 2.30 635.8
PL Sa 48. IR504 B 58.6 32.2 30.0 4.20 781.7 9. Kampong Cham Province
2. Battambang Province KaS C 91. Raing Chey B 46.0 0.0 0.0 2.00 399.1
TS C 15. Phka Rumduol B 39.5 30.5 7.5 2.70 823.1 KaS C 93. CAR6 B 46.0 0.0 0.0 2.00 399.1
TS C 16. Sen Kra Ob B 52.8 64.4 30.0 4.00 1200.7 KaS C 94. Phka Rumduol B 23.0 0.0 0.0 2.00 572.6
TS C 17. Malis Chin B 62.5 30.5 7.5 3.85 1180.5 KSv C 89. IR66 B 23.0 0.0 0.0 2.00 408.6
TS C 18. Srop Ngar B 43.3 46.0 15.0 4.30 845.8 KSv C 90. Sen Kra Ob T 23.0 0.0 0.0 2.00 572.6
TS C 19. CAR15 B 71.1 23.0 15.0 5.50 1099.0 PL Sa 92. OM5451 B 46.0 0.0 0.0 2.00 399.1
TS C 21. Neang Khon B 36.5 34.5 0.0 3.00 591.3 10. Tboung Khmum Province
TS C 22. OM5451 B 48.5 53.5 7.5 4.23 828.3 KaS C 75. IR504 B 27.6 0.0 0.0 3.00 612.7
TS C 20. Raing Chey T 32.0 23.0 30.0 3.80 752.3 KaS C 77. CAR9 B 40.2 0.0 0.0 2.30 461.9
3. Kampong Thom Province KaS C 80. CAR15 B 32.0 23.0 0.0 2.40 472.3
Kr C 8. OM5451 B 96.0 69.0 30.0 3.00 555.2 KaS C 76. Thmor Krim T 23.0 0.0 0.0 2.30 469.0
Kr C 13. CAR8 T 0.0 0.0 0.0 3.00 651.0 KaS C 78. Phka Rumduol T 38.9 23.0 0.0 3.00 840.3
TS C 9. Phka Mealtey T 55.0 23.0 0.0 3.50 971.7 KaS C 79. Raing Chey T 27.6 0.0 0.0 2.30 467.1
TS C 10. Raing Chey T 41.2 23.0 0.0 3.50 728.8 KaS C 81. Sen Kra Ob T 32.0 23.0 0.0 3.00 843.1
TS C 12. Phka Rumduol T 32.0 23.0 0.0 3.00 837.1 11. Kandal Province
TS C 14. Phka Chan Sen Sar T 55.0 23.0 0.0 2.50 683.7 Ba Si 32. CAR4 B 16.0 11.5 0.0 2.80 577.3
PL Sa 11. Sen Kra Ob B 55.0 23.0 0.0 4.00 1115.7 Ba Si 33. Angkareach B 0.0 0.0 0.0 2.70 569.7
4. Pursat Province Ba Si 34. Phka Rumduol B 23.0 0.0 0.0 2.20 648.4
Ba Si 37. Somaly B 36.6 23.0 0.0 3.20 784.0 Ko Si 35. Raing Chey T 23.0 0.0 0.0 1.80 370.4
Ba Si 38. Phka Rumduol B 41.2 23.0 30.0 3.50 843.3 KSv C 31. OM5451 B 72.4 32.2 0.0 6.00 1217.0
Ba Si 40. Sen Kra Ob B 78.0 23.0 0.0 3.40 817.8 KSv C 36. IR504 B 55.0 23.0 0.0 6.00 1229.7
Ba Si 42. Phka Doung T 32.0 23.0 0.0 2.50 608.1 12. Takeo Province
Ba Si 43. Neang Ek T 32.0 23.0 0.0 2.40 582.7 PL Sa 95. IR504 B 15.0 15.0 15.0 4.30 966.4
PK Sa 39. Krasang Teap B 36.6 23.0 0.0 2.60 460.0 PL Sa 97. Sen Kra Ob B 53.5 7.5 7.5 4.80 1270.6
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Table 3. Cont.

Province Soil Variety N P2O5 K2O Yield GRAFC Province Soil Variety N P2O5 K2O Yield GRAFC

Soil Type Text. (kg ha−1) (t ha−1) ($ ha−1) Soil Type Text. (kg ha−1) (t ha−1) ($ ha−1)

PK Sa 41. CAR9 B 0.0 0.0 0.0 2.70 507.6 PL Sa 98. Raing Chey B 33.0 10.0 7.5 4.00 1060.7
5. Siem Reap Province PL Sa 99. Tror Norng B 78.0 23.0 60.0 4.30 913.2
PK Sa 85. Phka Malis B 0.0 0.0 0.0 3.00 846.0 PL Sa 96. Phka Rumduol T 55.0 0.0 0.0 4.20 1115.7
PK Sa 86. Phka Rumdeng B 19.0 33.0 7.5 2.90 786.5 KP C 100. OM5451 B 33.0 10.0 7.5 5.40 1218.7
PK Sa 87. Somaly B 19.0 37.5 7.5 2.80 755.6 13. Prey Veng Province
PK Sa 88. Phka Rumduol B 0.0 0.0 0.0 2.00 564.0 PL Sa 23. IR504 B 60.0 60.0 45.0 3.50 707.9
PL Sa 83. OM5451 B 45.0 115.0 0.0 2.90 565.1 PL Sa 24. Krasang Teap B 39.0 16.0 8.0 3.00 648.4
PL Sa 82. Sen Pidao T 10.0 10.0 7.5 2.00 550.2 PL Sa 25. OM5451 B 39.0 16.0 8.0 3.40 738.8
PL Sa 84. Sen Kra Ob T 45.0 115.0 0.0 2.90 730.4 PL Sa 26. Sen Kra Ob B 48.2 16.0 8.0 3.20 888.2
6. Kampong Chhnang Province PL Sa 28. Raing Chey B 25.3 0.0 42.0 2.30 488.4

PK Sa 53. OM5451 B 41.0 46.0 0.0 3.20 611.6 PL Sa
29. Ka Ngork
Pong B 41.0 18.0 11.5 2.30 486.4

PK Sa 58. IR504 B 46.0 0.0 0.0 3.20 637.1 PL Sa 27. Phka Rumduol D 87.0 46.0 30.0 3.10 814.5
PK Sa 52. Phka Rumduol T 41.0 46.0 0.0 3.00 810.6 PL Sa 30. CAR 15 D 87.0 46.0 30.0 3.50 712.7
PK Sa 54. Sen Kra Ob T 41.0 46.0 0.0 3.40 924.6 14. Svay Rieng Province
PK Sa 57. Phka Chan Sen Sar T 20.0 20.0 15.0 2.30 627.8 PL Sa 60. Raing Chey B 54.5 20.0 15.0 3.15 881.1
PK Sa 59. CAR15 T 20.0 20.0 15.0 3.40 669.3 PL Sa 61. IR504 B 58.0 86.0 60.0 5.05 1071.3
PL Sa 56. Raing Chey B 23.0 0.0 0.0 2.10 421.1 PL Sa 62. Phka Ampil B 54.5 20.0 15.0 2.95 822.5
PL Sa 55. Neang Krim T 32.0 9.0 0.0 2.00 391.5 PL Sa 63. Phka Rumduol B 40.0 20.0 15.0 2.73 764.0
7. Kampong Speu Province PL Sa 64. Jasmine 85 B 78.0 23.0 90.0 5.05 1085.9
PK Sa 68. Kong Chheng B 35.6 32.2 0.0 2.83 560.4 PL Sa 65. Krasang Teap B 53.0 30.0 22.5 2.85 613.1
PK Sa 69. Chulasa B 52.5 46.0 0.0 3.00 580.9 PL Sa 66. OM5451 B 78.0 23.0 90.0 4.95 1062.6
PK Sa 70. Ka Ngork Pong B 50.2 46.0 0.0 1.86 342.4 PL Sa 67. Sen Kra Ob B 53.0 30.0 22.5 3.25 901.3
PK Sa 71. Sen Kra Ob T 41.0 46.0 0.0 3.00 870.6
PK Sa 72. Phka Rumduol T 35.6 12.6 0.0 3.40 1014.8
PL Sa 74. Phka Malis B 56.8 27.6 0.0 3.80 1119.2
PL Sa 73. Smar Prum T 35.6 32.2 0.0 3.25 648.6
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2.3. Statistical Analysis

All data were processed using Microsoft Excel 2019, and then a statistical analysis was
performed using SPSS (Ver. 28.0.1.0 (142), Chicago, IL, USA).

3. Results and Discussion
3.1. Grain Yield

In Table 1, the grain yield at each cultivation site is listed and categorized depending
on the geographical distribution from the northwest and in the opposite direction while
considering the major soil type in each province, such as clay-soil-dominant areas (1. Ban-
teay Meanchey, 2. Battambang, 3. Kampong Thom, 9. Kampong Cham, and 10. Tboung
Khum), silt-soil-dominant areas (4. Pursat and 11. Kandal), and sandy-soil-dominant
areas (5. Siem Reap, 6. Kampong Chhnang, 7. Kampong Speu, 8. Kampot, 12. Takeo,
13. Prey Veng, and 14. Svay Rieng). Cambodian clay soils, such as Toul Samroung, Krakor,
Kampong Siem, Kein Svay, and Kbar Po, consist of 41 to 49% clay; silt soils, such as Bakan
and Koktrap, consist of 41% to 49% silt; and sandy soil, such as Prateah Lang and Prey
Khmer, consist of over 70% sand (Table 3). In the study by Kong et al. (2019) [9], the
sand content was negatively correlated with the clay content, CEC, and available K, and
it was considered that a high sand content decreases the soil’s ability to retain nutrients.
Homma et al. (2003) [21] and Sharama et al. (2019) [22] suggested that the rice yield in the
unfertilized plots reflected the inherent soil fertility or nutrient-holding capacity. According
to White et al. (2000) [11], the Toul Samroung soil will be comparatively fertile. In this
study, there were five unfertilized sites: ‘CAR8’ (sample no. 13) in Krakor soil (clay) in
Kampon Thom Province, ‘Angakareach’ (sample no. 33) in Bakan soil (silt) in Kandal
Province, ‘CAR9’ (sample no. 41) in Pray Khmer soil (sandy) in Pursat Province, ‘Phka
Malis’ (sample no. 85), and ‘Phka Rumduol’ (sample no. 88) in Pray Khmer Soil (sandy) in
Siem Reap Province. According to Fukai and Ouk (2012) [23], many rice farmers in rainfed
lowlands of the Mekong region will grow old and tall cultivars, such as ‘Phka Rumduol’
in Cambodia, that respond less well to soil nutrients than high-yielding cultivars in the
irrigated lowlands. The five varieties cultivated without fertilization in this study were
medium-to-late maturing, and their days from sowing to harvesting were 193 (no. 13), 181
(no. 33), 191 (no. 41), 130 (no. 85), and 125 (no. 88).

The paddy samples in this study were collected from rainfed fields; thus, the effect of
each region’s rainfall on the grain yield was investigated first. The relationship between
the monthly base cumulative precipitation during the cultivation period of each variety at
each site and the grain yield was significantly negative (r = −0.278, p = 0.005) (Figure 1a).
However, behind the relationship between the precipitation during the cultivation period
and the yield, another factor, its intervention, was considered. The cumulative precipitation
during the cultivation period is reflected by the length of the cultivation period. After
examining the possible factors, the grain yield showed a significant negative correlation
with the maturity days from sowing to harvesting (r = −0.395, p < 0.001) (Figure 1b). The
negative relationship between the maturity and grain yield suggests that longer maturity
cases may not easily achieve a higher yield, genetically and/or environmentally. The
plant samples that have shorter maturity, around 100 days, showed large variation in
the yield (Figure 1b). The grain yield at the five unfertilized sites mentioned above was
2.0 to 3.0 t ha−1 (Table 1), the difference of which did not show any specific relations with
the maturity or soil type among the file varieties cultivated without fertilizer.
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and (e) grain yield. ***: Significant at 0.001 probability level, NS: not significant.

To clarify the influence of precipitation on the grain yield, a partial correlation analysis
when the degree of association between the cumulative precipitation during the cultivation
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at each site and grain yield, with the effect of days for maturity removed, was employed.
The partial correlation coefficient (r(precipitation during cultivation period)(grain yield)(days for maturity))
was −0.190, and nonsignificant (p = 0.590), which indicated that the effect of cumulative
precipitation during the cultivation was small in 2019. Moreover, there was no specific
relationship between the precipitation data in the wet rice season from June to December as
the cumulative value in each province and the grain yield (r = −0.150, p = 0.136) (Figure 1c).
The range of precipitation during the cultivation from June to December in 2019 was 0 mm
(December in 9 provinces) to 711.4 mm (August in Kampot Province), which tended to be
high at the early stage of growth, and at a low level at harvesting season in comparison
with the average from 2016 to 2019, 5 mm (December in Banteay Meanchey Province) to
460.3 mm (August in Kampot Province) (see Supplementary Table S2). The climate in this
region is tropical monsoonal, with a wet season (from June to November) followed by
a prolonged dry season, and irregular rainfall both from year to year and within years
(Kong et al., 2019) [9]. Rice is grown mostly during the wet season, but with frequent
intermittent drought (Tsubo et al., 2007) [24]. However, the difference in the cumulative
precipitation between 2019 (1048.4 mm, on average, in 14 provinces) and the average from
2016 to 2019 (1174.6 mm) was about 10% and not so large. It was, therefore, considered that
the rice varieties adapted to the environment at each site in each province performed their
usual growth at the level of an average year. In December 2019, the environment tended be
dry rather than an average year, but it was in or after harvesting season, and its influence
might be negligible.

From the investigations above, it was understood that other factors should be consid-
ered. As a result of another correlation analysis, the relationship between the seeding rate
(the weight of seeds used in a nursery for a 1-ha paddy field in case of transplanting) and
the grain yield was significantly positive (r = 0.335, p < 0.001) (Figure 1d). Contrarily, the
fertilizer application amount, in total (the sum of constituents (elements) such as N, P2O5,
and K2O in each fertilizer applied), showed a positive relation with the grain yield, and
its correlation coefficient was 0.446 (p < 0.001) (Figure 1e); the coefficient was much higher
than the other cases mentioned above.

The grain yield showed a mostly positive relationship with the mount of fertilizer ap-
plied: with the total amount of fertilizer or nitrogen in clay- (Figure 2a,d), silt- (Figure 2b,e),
and sandy-soil (Figure 2c,f) dominated areas; with phosphorus in clay- (Figure 2g) and
silt-soil (Figure 2h) dominated areas; and with potassium in clay- (Figure 2j) and sandy-soil
(Figure 2l) dominated areas. The relationship between the grain yield and phosphorus
application in sandy-soil-dominated areas (Figure 2i) or potassium application in silt-soil-
dominated areas (Figure 2k) was not clear. On the other hand, there were many sites
with zero potassium application, and the grain yield there showed a comparatively large
variation (Figure 2j–l). Thus, we investigated the possible factors influencing the grain yield
under no potassium application. As the result, only in silt-soil dominated area, the seeding
rate showed a highly positive correlation (r = 0.816, p = 0.001) with the grain yield without
potassium application. In silt-soil dominated areas, potassium was mostly not applied
(12 sites among 13 sites) (Figure 2k); therefore, the relationship between the seeding rate
and the grain yield might be apparent under the zero-potassium condition.
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Figure 2. Relationship between the amount of all fertilizers. (a–c) Nitrogen, (d–f) phosphorus, (g–i),
and potassium (j–l) applied, and the grain yield in areas where clay soil (a,d,g,j), silt soil (b,e,h,k),
or sandy soil (c,f,i,l) dominates. *, **, ***: significant at 0.05, 0.01, 0.001 probability level. NS: not
significant.

Depending on the province, the lineup of cultivated rice varieties varies, which may
account for farmers’ preferences and consumers’ needs. ‘Phka Rumduol’, ‘Sen Kra Ob’,
and ‘Raing Chey’ are popular varieties that were cultivated in areas of all three categories—
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areas where clay, silt, or sandy soils are dominant—with a comparatively wide range of
fertilizer quantities applied (Table 1). These three popular varieties—‘Phka Rumduol’,
‘Sen Kra Ob’, and ‘Raing Chey’—were found in more than 70% of our target provinces (in
14, 12, and 10 provinces, respectively). The three varieties showed grain yield variation
associated with the amount of fertilizer applied. The relationship between the total amount
of fertilizer applied (N + P2O5 + K2O) showed a significant positive linear correlation with
the grain yield in one hundred samples pooled, as shown in Figure 2b. Moreover, in the
case of the three popular varieties that draw attention from both farmers and consumers,
the relationship between the total amount of fertilizer applied and the grain yield was
positive (r = 0.455, p = 0.005), but the coefficient determination was higher in the quadratic
regression (R2 = 0.371, p < 0.001) than in the linear regression (R2 = 0.207, p = 0.005). Thus,
we showed the quadratic regression equation and approximation curve for the relationship
between the total amount of fertilizer applied and the grain yield in Figure 3a, and from the
curve, the grain yield looked saturated at over 120 kg (N + P2O5 + K2O) ha−1 in the three
popular varieties. More Cambodian rice farmers are beginning to apply more fertilizer to
their fields [11], and the total fertilizer consumption in Cambodia has increased from 7873 t
N in the period of 2002–2005 to over 63,784 t after 2012, from 12,512 t P2O5 in 2002–2005
to 17,112 t after 2012, and from 1033 t K2O in 2002–2005 to 3926 t after 2012 [1]. Although
much additional research is anticipated, the concept of optimizing fertilizer use efficiency,
considering the importance of using a balanced NPK fertilizer (Seng et al., 2001) [25], should
be emphasized for contributing to sustainable agricultural production.
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3.2. Gross Return above Fertilizer Cost

The fertilizer cost increased as the amount of fertilizer applied increased in all cases,
including different varieties and/or soil types, and the gross return above fertilizer cost
(GRAFC: (paddy sales) − (fertilizer cost)) varied depending on the fertilizer cost (Table 1).
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When we focused on the three popular varieties, the relationship between the total amount
of fertilizer applied and the GRAFC was positive (r = 0.401, p = 0.015), but the coefficient
determination was higher in the quadratic regression (R2 = 0.320, p = 0.002) than in the
linear regression (R2 = 0.160, p = 0.016). Consequently, we show the quadratic regression
equation and approximation curve for the relationship between the total amount of fertilizer
applied and the GRAFC in Figure 3b; the curve peaks at around 120 kg ha−1 total elements
applied (Figure 3b). This means that there may be an appropriate amount of fertilizer to
achieve greater benefits for farmers. For one variety, ‘Sen Kra Ob’, the application of more
than 160 kg total might be considered excessive. In a previous study [10], the N-P2O5-K2O
rate of 60–30–15 kg ha−1 was the best application rate for the GRAFC of wet-season rice in
sandy soil areas of southern Cambodia. However, in various soil types, including clay- and
silt-dominant areas, preferable total amounts and combinations of N-P2O5-K2O application
for a higher GRAFC varied, depending on soil type [9] and cultivating season [26]. The
other nutrients may also influence the growth and yield of the rice plant and the quality of
white rice, and additional investigations will be needed as further subjects. However, we
only considered the cost of nitrogen, phosphorus, and potassium this time; therefore, we
concentrated the current study on the influence of the major three nutrients. In any case,
the optimal rate for maximizing farmers’ incomes should be carefully considered, along
with fertilizer cost.

3.3. Quality Parameters Relating to White Rice

The percentage of quality rice was 60% (≥6.2 mm) in the majority of white rice samples
(83%). From examining the relationship between the percentage of quality rice and the
other parameters of white rice, we found no specific relationship with parameters such as
the amount of fertilizer applied (r = 0.141), yield (r = −0.036), nitrogen concentration in
white rice (r = 0.047), carbohydrate concentration (r = 0.060), carbohydrate/protein ratio
(r = 0.079), amylose concentration (r = −0.005), amylopectin concentration (r = 0.008), or
amylopectin/amylose ratio (r = 0.051). Although the relationship between the amount of
fertilizer applied and the nitrogen concentration in white rice was not clear when all sam-
ples were pooled, it was significantly positive in the three popular varieties (Figure 4a,b).
On the other hand, the carbohydrate concentration showed a significantly negative correla-
tion with the amount of fertilizer applied in all the samples, as well as in just the popular
varieties (Figure 4c,d). The carbohydrate/protein ratio was negatively related to the amount
of fertilizer applied in all samples used (Figure 4e,f), results that reflect the responses of
nitrogen and carbohydrate concentrations mentioned above. Okadome et al. (1999) [27]
reported that the protein concentration in white rice showed a significant negative correla-
tion with taste. In our previous studies [3,5], we also found a negative relationship between
the nitrogen or protein concentration in white rice and the taste of cooled rice, and another
negative relationship between the ratio of total carbon to total nitrogen (C/N) in white rice
and cooked rice taste as well. Former reports by Morita et al. (2005) [28] and Morita and
Nakano (2011) [29] suggested the importance of the smooth accumulation of nonstructural
carbohydrates for maintaining rice grain quality. Considering these results, we investigated
the carbohydrate concentration and carbohydrate/protein ratio as described above. From
former reports and current findings, we understood that the carbon concentration in white
rice is just as important as that of nitrogen and the balance of N and C and protein and
carbohydrates; in other words, when we consider the nutrient management of wet-season
rice, it is, unfortunately, possible that the application of more fertilizer for attaining higher
yields may also bring the continuing presence of higher nitrogen (protein) and a decrease
in the carbohydrate concentration, as well as the carbohydrate/protein ratio in white rice.
In our former analysis of white rice [3,5], the coefficient of variance in the C/N ratio among
eight samples cultivated with conventional management was 7.1%, and the C/N ratio
showed a significant positive correlation with the taste value of cooked rice (r = 0.767,
p = 0.026). In this study, the coefficient of variance in the carbohydrate/protein ratio was
33.2%, 20.3%, and 23.9% in ‘Raing Chey’, ‘Sen Kra Ob’, and ‘Phka Rumduol’, respectively.
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Considering these levels of variation in the carbohydrate/protein ration among different
soil types with fertilizer management, a sensory test will be our further subject to make
clear the effect of soil fertility and fertilization on the taste of cooked rice.
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carbohydrate concentration (c,d), and carbohydrate/protein ratio (e,f) in white rice. *: significant at
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In Figure 5, the relationships between the amount of fertilizer applied and the amy-
lopectin concentration (subtracting the amylose from the starch) in white rice are shown,
but there was no specific relationship in either the case of all samples or the three vari-
eties only. In the relationship between the amount of fertilization and the amylopectin
concentration, there was no specific tendency (r = 0.167, not significant for all the sam-
ples; r= 0.125, not significant for the three varieties). In Figure 6, the relationships be-
tween the carbohydrate concentration and the amylopectin concentrations in white rice
are shown. The amylopectin concentration showed a significantly positive linear cor-
relation with the carbohydrate concentration. According to the MAFF of Japan (https:
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//www.maff.go.jp/j/heya/kodomo_sodan/0304/01.html) (accessed on 16 June 2022), the
amylose concentration in white rice is an index of hardness. In the report of Okadome
et al. (1999) [27], the hardness of cooked rice whole grains showed a negative correlation
with the taste of rice. They also stated that comprehensive taste (an overall evaluation) is
closely and negatively related with the protein concentration in white rice, and is closely
and positively related with the balance (stickiness/hardness) of cooked rice [27]. On the
other hand, Yamashita et al. (1993) [30] suggested that the amylopectin contents or the
proportion of amylose to amylopectin was considered to affect the eating quality of cooked
rice among cultivars rather than the amylose contents. In our current study, we found a
highly significant positive relationship between the amylopectin concentration and carbo-
hydrate concentration, which decreased with heavier fertilization. The higher amylopectin
concentration will contribute to higher stickiness, which will be important, as described
above by Okadome et al. [27]. In this study, the carbohydrate concentration showed nega-
tive relationships with the amylose concentration (r = −0.397, p < 0.001) and the proportion
of amylose to amylopectin (r = −0.395, p < 0.001), respectively. Yamashita et al. (1993) [30]
stated that the combination of a lower protein concentration with a low/moderate amylose
concentration brought a higher comprehensive evaluation result of taste, and higher pro-
tein with higher amylose was the worst. According to Matsue et al. (2002) and Igarashi
and Kohara (2008) [31,32], the amylose concentration will increase as the air temperature
decreases. Although the daily minimum temperature was 18.0 to 21.9 ◦C depending on the
province in the current study (see Supplementary Table S1), the effect of temperature was
not clear on the grain characteristics. Contrarily, the amylopectin concentration will be in-
fluenced by the change in carbohydrate concentration, and these two parameters will vary
synchronously. As described above, the carbohydrate concentration will be affected and de-
crease with the increasing fertilization rate in contrast to the nitrogen concentration, which
will increase with increasing fertilizer application. As the responses of those parameters to
increasing fertilization rates, important parameters for maintaining and improving the taste
of rice—such as carbohydrate concentration and carbohydrate/protein ratio—will decrease
with heavier fertilization. According to the U.S. Department of Agriculture (2022) [33],
three kinds of fertilizer have dramatically increased in price over the past year: urea, the
price of which has increased 149%; liquid nitrogen, the price of which has increased 192%;
and anhydrous ammonia, which now costs 235% more. The Pacific Coast Business Times
(2022) [34] reported that the study above by the U.S. Department of Agriculture was com-
pleted in February 2022, before the war in Ukraine and sanctions against Russia pushed
prices even higher, as fertilizers doubled and even tripled in price due to the war, pandemic,
and inflation. An article in The Economist (2022) [35] discussed how the fertilizer price
index has increased remarkably—by nearly four times its price in January 2006. In this sort
of social situation, further emphasis on analyzing the trade-offs for inputs and returns of
not only quantity, but also the quality, of products with beneficial concepts beyond fertilizer
use efficiency is urgently required for maintaining and improving the sustainability of the
food production system.

https://www.maff.go.jp/j/heya/kodomo_sodan/0304/01.html
https://www.maff.go.jp/j/heya/kodomo_sodan/0304/01.html
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4. Conclusions

The gross return above fertilizer cost (GRAFC) showed a nonlinear relationship with
the fertilization rate, with a peak around a moderate level of the fertilization rate. The
nitrogen concentration, recognized as one of the negative factors for the quality of white
rice, tended to increase with an increasing fertilization rate, and the carbohydrate concen-
tration and carbohydrate/protein ratio, which are positive factors for the quality, were
negatively related with the fertilizer rate. The amylopectin concentration in white rice was
positively related with the carbohydrate concentration, which decreased with an increasing
fertilization rate. From these results, the level of fertilizer application required to achieve a
higher yield, the GRAFC, and the maintenance and improvement of parameters relating to
grain quality were different. The most profound result in this study was the decrease in
carbohydrate/protein ratio in white rice with increasing fertilizer application. The optimal
rate of fertilizer application should be carefully examined by considering the soil types
in cultivation areas. As a general understanding, agricultural practices responding to
market-oriented production, assuming sustainable production, have been desired in recent
years, and the concept of a backcasting approach relating to the quality of agricultural
products is also needed in the tropics.
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