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Abstract: Constant environmental deterioration is a problem widely addressed by multiple interna-
tional organizations. However, given the current economic and technological limitations, alternatives
that immediately and significantly impact environmental degradation negatively affect contemporary
development and lifestyle. Because of this, rather than limiting population consumption patterns or
developing sophisticated and highly expensive technologies, the solution to environmental degra-
dation lies more in the progressive transformation of production and consumption patterns. Thus,
to support this change, the objective of this article is to forecast the behavior of consumption and
regeneration of biologically productive land until the year 2030, using a deep neural network ad-
justed to Global Footprint Network data for prediction, and to provide information that favors the
development of local economic strategies based on the territorial strengths and weaknesses of each
continent. The most relevant findings about biocapacity and ecological footprint data are: fishing
grounds have the great renewable potential in the global consumption of products and focused on the
Asian region being approximately 55% of the world’s ecological footprint; grazing lands indicate an
exponential growth in terms of ecological footprint, however South America and Africa have almost
55% of the distribution in the world biocapacity, being great powers in the generation of agricultural
products; forest lands show a decrease in biocapacity, there is a progressive and exponential deteri-
oration of forest resources, the highest deficit in the world is generated in Asia; cropland presents
an environmental balance between biocapacity and ecological footprint; and built land generates
great impacts on development and regeneration in other lands, indicating the exponential crisis that
could eventually be established by needing more and more resources from large built metropolises to
replace the natural life provided by other lands.

Keywords: biocapacity; ecological footprint; sustainable business models; neural networks

1. Introduction

The United Nations’ Member States approved the 17 Goals as part of the 2030 Inter-
national Agenda for Sustainable Development, with the main objective of interrelating
three basic elements: economic growth, social inclusion, and environmental protection.
This research focuses on the protection of the environment, which is linked with the ele-
ments mentioned above. Over the years, we have seen how collaborative work between
international entities generates actions to protect the environment, as some organizations
have done, such as: FAOSTAT, UN Comtrade, and the International Energy Agency. These
organizations have generated global data about many countries published by Footprint
and Accounts [1]. This paper will consider the data and concepts that include the Footprint
Network for Biocapacity (BC) and Ecological Footprint (EF) in five continents.

Throughout history, there has been evidence of human sagacity to promote the use of
renewable and non-renewable natural resources. Regarding these concepts, a contextual-
ization is proposed drawing on relevant studies in recent years. In light of the literature,
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certain academic works stand out by going beyond mere understanding to comprehend,
develop, and implement strategies to reduce EF and take advantage of BC awareness.

Based on the vast need to act on those opportunities, the main contribution of this
work is to predict the behavior of BC and EF, using sophisticated techniques with artificial
intelligence to forecast environmental changes. One of these tools is artificial neural
networks (ANN), a method that has been gaining popularity for solving complex problems
in different research areas. Its key advantages over traditional methods include ease of use,
logical simplicity, the capability to solve complex non-linear relationships among variables,
high speed, and easy feature extraction.

It allows us to identify trends to design new business models based and centered
on environment and people, conducive to innovative and sustainable business, consider-
ing BC and EF worldwide and aligned with Sustainable Development Goals (SDGs). It
emphasizes that sustainable development aims at greater opportunities for reduction of
inequalities, improvements in basic living standards, promotion of equitable and inclusive
social development, and the integrated and sustainable management of natural resources
and ecosystems.

Thus, this work is structured as follows: Section 2 provides the literature review.
Section 3 explains the paper’s methodology. Section 4 discusses results. Section 5 presents
conclusions. With respect to the background presented above, in the next section, the
concepts of EF and BC will be used to display and interpret the data, as well as the
algorithms used to process them.

2. Literature Review

According to Wackernagel and Rees (1997), sustainable development emerges from
the natural capital aligning with the term of production as an essential factor. They created
a procedure that represents critical natural capital requirements of a defined economy or
population in terms of the corresponding ecologically productive areas called ‘ecological
footprint’ [1], i.e., Wackernagel and Rees (1998) consider the fluxes of matter and energy into
and out of any specified economy and converts them into the matching natural land and
water areas needed to support those flows [2]. Thus, ecological footprint (Rees, 2018) mea-
sures the area of biologically productive land and water that an individual, a population,
or an activity needs to produce, all the resources they consume, and the generated waste
they absorb using technology and management practices resources—i.e., it calculates the
amount of biologically productive land and water required to produce renewable resources
for a human population [1,2]. It is an aggregate indicator that translates various resource
use types to a single spatial unit—a gha—and focuses on the following territories: fishing
grounds, grazing land, cropland, forest land (includes carbon footprint), and built land [3].
Economic growth increases the EF, which contributes to environmental degradation [4].
Contemporary socio-environmental issues such as reduced natural resource availability,
biodiversity loss, soil degradation, pollution, unprecedented population growth, mass
migration to cities, and urban sprawl may be linked to the consequences of an economic
infinite growth paradigm on a finite planet. Despite international goals to improve spatial
and environmental management, current and future developments are constantly planned
without regard for biophysical growth limits [5].

Secondly, biocapacity is understood as the capacity ecosystems must generate for what
human beings demand from land surfaces as they identify new mechanisms that allow
them to be recognized as a source of wealth and as they protect ecological assets. BC is
measured in global hectares (hereinafter, gha), and focuses on the following territories:
fishing grounds, grazing land, cropland, forest land, and built land.

Another relevant concept is ecological deficit. Ecological deficit is generated when
the EF of a certain population exceeds the BC of an active area for that population—in
other words, when a country is importing BC using the market, liquidating national
ecological assets, or emitting carbon dioxide waste into the atmosphere [3]. These concepts
of environmental sustainability for survival in the world require biologically productive
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surfaces that allow the generation of all the resources consumed by the population and, at
the same time, the ability to absorb the waste. In this regard, in Pakistan, they carried out a
study that allows identifying the most important aspects that environmental economists
and policymakers must address [4].

Niccolucci et al. (2012) found that the capacities of natural resources were seriously
affected, so they began to study the basic requirements of a society for the decrease of its
polluting axes, which established the need for metrics that would highlight the sustainable
tendencies of its territories. The fundamental problem of these controls was to measure
the land without considering the urban and agricultural evolution, so that the decades of
urbanization and the pace of population growth limited the axis of action to sustainable
policies, which had a strong impact on the social and cultural needs of the people [5].

Progressive scarcity forced countries to make use of their natural resources to generate
profits more efficiently, which set an important trend in economic development. This behavior
seemed to set a dependence between pollutant emissions and countries’ gross profits, which
is theoretically described as the environmental Kuznets curve, an inverted u-shaped curve
that established how pollutant emissions were dependent on gross domestic income.

Wang, et al. (2013) broke the myth of the Kuznets curve, however, if significant
correlations were obtained between the ecological footprint and the profit acquired by
countries, assuming that, in effect, both phenomena grew equivalently [6–8].

Gao and Tian. (2016) described the ecological deficit of countries based on the quantifi-
cation of biocapacity contrasted with the ecological footprint not only in forest lands, but
also based on urbanization and the effect of the carbon footprint, generating an important
alert to the institutions of the territories most affected by pollution when trying to generate
an economic balance based on quantification [9].

Cumming and Cramon (2018) affirm that all countries must assess their actual strategic
territorial development plans with the purpose to avoid land eradication for agriculture,
wildlife, and plant life. The constant construction of built areas indiscriminately reduces
the EF [10]. Therefore, policymakers through tax reforms for construction companies
and environmental tax payments help to raise awareness from the government, while
citizen actions such as reduction of high consumption and learning about environmental
consequences of daily actions to reduce negative impact, all contribute to reduction.

For their part, Ahmad et al. (2020) demonstrate the critical implications in the relation-
ship between the uncontrolled use of natural resources and Ecological Footprint [11]. To
meet the objectives of their research, scholars used the Environment Kuznets Curve. The
results obtained for this year indicate how the pollution section has been controlled thanks
to technological advances in developed countries, so that on this occasion, the theory could
be applied to structure and highlight the importance of technological innovations to combat
environmental degradation, the design of policies for the restoration of natural resources,
and the application of regulations that control the use of natural and financial resources.

About the methodology using the artificial neural network, there were many studies that
highlighted its importance many years ago. For example, Bandyopadhyay and Chattopadhyay
(2007) created a predictive artificial neural network model for forecasting the monthly mean
total ozone concentration over Arosa, Switzerland. Single hidden layer neural network models
with variable number of nodes were developed and their performances were evaluated using
the least squares method and error estimation. Their results were compared to those of a
multiple linear regression model and, finally, showed that the best predictive model was
determined to be a single-hidden-layer model with 8 hidden nodes [12].

Recently, there have been some studies with data from BC and EF that make predictions
through intelligent systems:

Liu and Lei (2018) predicted the EF of Beijing, first between 1996 and 2015, screening
out the 6 dominant indicators of EF changes using partial least squares (PLS); and second,
based on 2014 and 2015 EF data, they compared the prediction accuracy of the back
propagation neural network (BPNN) with the SVM using the 6 indicators as inputs and EF
as the output—allowing us to predict the year 2020 [13].
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Wu et al. (2019) analyzed the sustainable development in Tianjin, China, from 1994
to 2014 and provided novel predictions based on ANN with varying trends including EF,
ecological capacity (EC), and ecological deficit (ED) [14].

Jiang et al. (2019) analyzed per capita EF data from 2001 to 2015 and proposed a new
urban ecological carrying capacity prediction model comprised of a radial basis function
(RBF) neural network optimized by an improved artificial bee colony algorithm. The
prediction results show that energy consumption is the most important factor influencing
the urban ecosystem; additionally, the model precision of the training results is high [15].

Jankovi et al. (2021) developed and compared machine learning models for EF pre-
diction based on energy parameters based on a set of hyper-parameters predefined by
the Bayesian optimization algorithm with K-nearest neighbor regression (KNNReg) and
random forest regression (RFR) with 93 trees, with two artificial neural networks with two
hidden layers developed and later compared in terms of their performance [16].

Liu and Lei (2020) described the complex relationship between the environment and
economic development and identified six dominant factors including population, per capita
GDP, three major industrial added values, and energy consumption using a gray correlation
model for the EF changes in the Beijing-Tianjin-Hebei (Jing-Jin-Ji) region from 1996 to 2015
and predicted the EF from 2016 to 2020 using a support vector machine model [17].

Roumiani et al. (2022) studied human activities in terms of land grazing infrastructure,
crops, forest products, and carbon impact and predicted ecological impact (EF)—one of the
most important economic issues in the world. They applied regression (RR) approaches (in-
cluding Ridge, Lasso, and Elastic Net) and artificial neural network (ANN) in two decades
(1999–2018) in the G-20 countries. The results highlight ANN models with higher deter-
mination coefficients, suggesting that ANN could provide considerable and appropriate
predictions for EF indicators in those countries [18].

However, there is no research on the analysis of BC and EF at the global level. Hence,
this paper aims to predict and analyze BC and EF behavior in five continents through
neural networks until 2030. The period selected permits future and realistic comparisons
with outcomes obtained from the Sustainable Development Agenda 2030.

3. Materials and Methods

As established in the previous section, sustainable development is a topic of interest
that aims to generate benefits in the quality of life; however, it is still a complex topic that
requires not only technological development but also the general adaptation of society to
sustainable behavior patterns that limit the unnecessary use of natural resources and the
optimal use of them.

For this reason, one of the main priorities of these continents for the generation of
sustainable policies for efficient resources is to know the biological distributions of their
territories and identify the main characteristics of the environment in each case to generate
strategies that regulate the care and improvements that maximize the economic potential
of the land without deteriorating the environmental quality of life.

Thus, to meet the objective of this work, this section will use the available BC and EF
data to fit a deep neural network to predict the behavior of these metrics up to 2030.

3.1. About the Data

The data for the neural network adjustment were obtained from Footprintnetwork.org
whose databases store the global hectares of BC and EF from 1961 to 2017. On the other
hand, for each territory and generally each continent, the BC and EF measure the global
hectares of the following territories:

• Cropland: Produces food and fiber for human consumption, feed for livestock, oil crops,
and rubber [4]. In 1930, scientific investigations sought to understand the interaction
of the crop with the environment [19]. In the 1960s and 1970s, the knowledge about
aboriginal agriculture was consolidated. It is from those years when the interaction
between agriculture and considerations about social, political, and economic factors
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became better understood, with the aim of prioritizing agricultural knowledge and
its impact in the communities that received it as a source of income. By the 1980s,
a regulation of agroecological best practices was developed to be implemented by
developed and developing countries. Likewise, a movement led by social activists
emerged that opposes the industrial food system since it promotes unfair competition
with small farmers. However, since 2000, a global network for production, market-
ing, and distribution of food has been discussed and promoted, and regulation has
been promoted through a network of intergovernmental organizations to save the
agricultural ecosystem.

• Forest land: Divided into forest products, which are calculated from the amount of
wood, pulp, wood products, and firewood that a country consumes annually, and
carbon footprint, which represents the carbon dioxide emissions from the burning of
fossil fuels and the area needed to mitigate carbon emissions [4]. The role of forests
within ecosystems is to provide renewable food and income, protect forest regeneration
from degraded lands, and increase agricultural production by restoring the disposition
of agricultural landscapes [20]. The conversion of forests into agricultural land allows
compensation for global food, rural income, and market exchange; however, it also
addresses deficiencies in the ecosystems and increases the long-term quality of life [21].

• Grazing lands: These areas are defined as land used permanently, i.e., five years or
more, for herbaceous forage crops, either cultivated or growing wild, as well as for
raising livestock and production of meat, dairy products, hides, and wool. As the EF
of this type is calculated by comparing the amount of feed for livestock available in a
country with the amount of feed needed for all livestock per year, it is assumed that the
rest of the demand for feed comes from grass. This definition excludes natural grazing
lands used for non-permanent land, such as sporadic or intermittent grazing [3,22].
Grazing lands cover most of some continents: 77% Australia, 61% Africa, 49% Asia,
and 18% Europe; and are especially prevalent in lands outside the tropics. Developing
countries account for roughly two-thirds of all grazing lands, for example, rural
people in Australia and their livestock, with pastures composed of wild species, from
kangaroos to elephants to bison. Wildlife frequently grazes these lands alone, without
livestock, in conservation areas around the world, and in much of the cold grazing
land around the north pole (with some exceptions) [23].

• Fishing grounds: Calculated from estimates of maximum sustainable catches of various
fish species [4]. Over the years, they have become an economic sector that contributes
to the nutritional, social, and economic wealth of the countries [21]. The massive
exploitation of fishing grounds after World War II and the growth of knowledge in
this area through research and development (R&D) allow us to verify the importance
of regulating the exploitation of aquatic fauna, leading to the designation of Exclusive
Economic Zones (EEZ). In the mid-1970s, the United Nations developed a plan to
regulate the distribution and benefit of marine resources. Therefore, in 1982, the seaside
countries had a legal framework that regulated the exercise of fishing, clarifying duties
and rights of each country within its EEZs. Later, they identified that regulations
were no longer sufficient, since the jurisdiction did not contemplate the obligations
that seaside countries had, the high seas fishery, and the migration of straddling fish
species, which is why conservation of aquatic resources, and the environment became
evident over the years. In 1991, through the Committee on Fisheries (COFI), a new
regulation was carried out that promoted sustainable and responsible fishing, but it
was not until 31 October 1995, at the FAO conference in Rome, when international
principles and standards were formally established through the constitution of the
Code of Conduct for Responsible Fisheries [24].

• Built land: Calculated from the land area covered by human infrastructure, such as
transportation, housing, industrial structures, and reservoirs for hydroelectric power,
occupying in some cases what was previously farmland [4]. The Earth’s surface has
been modified by human intervention to obtain products to supply its basic needs
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(water or food). However, the rapid growth of the population has promoted the
expansion and migration of societies to different parts of the world, establishing
houses and land in them, replacing biodiversity with artificial structures with small
capacity for biological regeneration. In the long term, the degenerative cost of these
practices has environmental impacts involving the death of thousands of living beings
along with the resources they provided for the earth’s surface [25].

The data used in this paper are from the Global Footprint Network of York University
and FODAFO [26]. The website collects and stores the records associated with ecological
distributions in different countries of the world to monitor the evolution of territories
and the impact of their policies on environmental development, which were used for the
application of the algorithms. Each registry is annual and is compiled in CSV-type files
which store the information by global hectares, BC, and EF of each of the 5 territories of
interest, for each of the countries registered. Additionally, the EF presents a sixth territorial
distribution attributed specifically to carbon consumption. The databases date between
1961 to 2017 and have 128 countries, as well as a general summary of the 5 continents, and
at a global level.

3.2. AI Approach to Forecasting BC and EF

The annual interactions between countries with their natural resources are highly
volatile. Dynamics dependent on factors such as economic growth, exports, rural or urban
expansion, and exogenous factors resulting from an increasingly globalized society generate
an expansion and prediction model that adjusts to the context of 128 countries, which in
turn requires sophisticated analysis methods that allow knowing the trends that govern
the behavior patterns of their territorial distributions.

Thus, the structures that best allow predicting this behavior from a minimum compu-
tational cost are neural networks, which have shown great effectiveness for the predictive
analysis of time series [27,28], to identify trends for the design of management models
based and centered on people—which facilitate an innovative and sustainable business
fabric, sensitive to the BC and EF worldwide and aligned with the Sustainable Development
Goals (SDGs) for 2030; thus meeting the objective of this research.

The neural network methodology [29,30] refers to a special type of specialized adaptive
computational algorithm based on human information processing, since they learn and
self-correct from the contexts where they are applied, as the brain does when thinking
and learning. Thus, a positive aspect favoring the use of neural networks is that they are
independent of the context, so they can adapt to different situations if the appropriate
network is structured for the objective. To do so, the neurons are distributed, which as their
name indicates, are analogous to their biological counterpart since they oversee processing
and transmitting information. The use of neural networks in this study allows error to
be minimized, which is measured from a loss function chosen by the researcher, which
determines the learning patterns and self-correction of the model according to the evidence
of the study phenomenon.

For this reason, to analyze the evolution of BC and the carbon footprint, a 4-layer
sequential neural network was established, the first with 128 nodes, the second with 64, the
third with 32, and the result layer with only 1 node. Between hidden layers, a dropout layer
was applied to avoid overfitting the neural network. Neural networks work better with
huge information flows and given that the current database does not have a sufficiently
high density, we expect the lack of information from the data augmentation method [31] to
generate more information from what is currently possessed. The use of this methodology
has been the subject of studies that corroborate its effectiveness both in theory [32] and in
practice [33]. Time series of length 20 were established as input data, corresponding to the
hectares registered in 20 years of the registry for each of the 5 territorial distributions both
by carbon footprint and BC.

(Hec year 1, Hec year 2, . . . , Hec year 20)→ Hec year 21
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Thus, for each database that has only one time series of 57 data per country, 37 time
series are obtained for each of the 20 elements, with the intention, after applying the
prediction algorithm, to obtain the data for the following year, in such a way that the total
amount of training data that will be implemented for the training of the neural network by
category and territory is 4528. To validate the algorithm, 1133 test vectors were obtained.

In summary, 11 neural networks were trained, all with the same structure, each
one adapted with 4528 training data and 1133 different testing data established by the
5 territorial distributions of BC and the 6 of EF. For the monitoring of convergence, the
functions of mean absolute error (MAE) and mean square error (MSE) were applied, the
latter being the chosen loss function. Once the neural network was trained, the prediction
of the year 2018 was applied to each time series from the data between 1997 and 2017; once
the estimated value for that year was obtained, it was implemented to predict the year 2019,
which iteratively will apply the same process until obtaining the territorial distribution up
to the year 2030. Based on the previous training and structuring strategies, the following
section presents the results of the neural network and how the territorial contexts of some
countries in the world were derived, along with the most relevant biological capacities of
the continents.

4. Results

For the monitoring of the algorithms, graphs were generated which showed the
evolution of the loss function while the iterations increased, as can be seen in Figure 1
which represents the behavior of the loss function of one of the neural networks, while the
error evolution presents a convergent behavior both in training and in validation.

Figure 1. Evolution of the MSE error in the training of a network for 10,000 iterations.

The quadratic error is still considerably high. The dispersion values of the predictions
are better represented in the graph that monitors the mean absolute error (MAE) which
is presented in Figure 2. The convergence of the networks and the maximum value of
the error for the training data are approximately 200 thousand hectares, whereas for the
validation values, we have approximately 500 thousand hectares, which means a lower
amount. The scale of millions usually works on a territorial scale. Although the existence of
the error persists, it is ideal to generate a generous range enough to accommodate flexible
predictions that are not supercharged and allow for controlled dispersion patterns to be
established.
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Figure 2. Evolution of the MAE error in the training of a network for 10,000 iterations.

The neural networks allowed us to generate the continents’ global estimation on the
BC distributions and EF in the five Global Footprint Network’s dimensions. As a result,
the graph below shows two figures. The first one shows the timeline’s evolution of each
type of ground worldwide, while the second illustrates from a network graph the average
distributions of BC and EF in the 5 world regions between 2018 to 2030. An example of this
can be seen in Figure 3, which presents the evolution and distributions of fishing grounds
from 2018 to 2030, measured by proportion of the world total.

Figure 3. Evolution and distribution of fishing grounds in the world.

As can be seen below, the growth characteristics of BC and EF are increasing, which
indicates that the characteristics of consumption in fishing are increasing. The distribution
of the world’s fishing lands is more focused on the Asian region, where approximately 55%
of the world’s EF and 30% of the BC are generated.

On the other hand, the evolution of grazing lands indicates an exponential growth in
terms of EF, while a clear decline in BC with respect to time is evidenced, as can be seen
in Figure 4: South America and Africa have almost 55% of the distribution in the BC of
the world, being great powers in the generation of agricultural products. However, the
prospects of these regions are clearly deteriorating, due to the projected ecological deficit.
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Figure 4. Evolution and distribution of grazing lands with ecological deficit.

Forest lands show a decrease in BC, as can be seen in Figure 5. The low-renewable
policies in the world are generating a certain progressive and exponential deterioration of
forest resources, while, in the same way, the human need for these inputs is increasing. Part
of the deficit established in the world is generated in Asia. The EF in Asia represents 45% of
world needs. On the other hand, Europe, South America, and North America provide more
than 70% of the world’s BC. The land forest consumption in Europe and North America
generates a much greater ecological deficit.

Figure 5. Evolution and distribution of forest lands in the world.

Regarding forest land, the measurement in gha projects a sustained growth in EF and
a decrease in BC for 2030 (from 4.8 million gha in 2018 to 3.5 million gha in 2030). Hence, in
Europe, North America, and Oceania, EF does not exceed the BC percentage. The case of
South America stands out, where an EF is projected below 10% with a BC that exceeds 30%.
The opposite situation is predicted in Asia and Africa.

In contrast to the situations observed in forests and grazing lands, the cropland shows
a deficit close to zero, favoring global regeneration. Although these characteristics are
favorable, it is presumed that the expansion of these territories is generated because of
the premeditated degradation of another terrain. In Figure 6, the distributions of both BC
and EF are approximate, which seems to indicate an environmental balance between what
is consumed and what is regenerated. As is customary, the territorial extension of Asia
encompasses a large part of the land, and its ecological deficit is offset by the management
policies of the other regions.
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Figure 6. Evolution and distribution of cropland.

The behavior of farmland in relation to BC and EF assumes that human food needs
are covered by crops, which tells us that farmland is used less and less by all continents
except Asia. This leads us to think that natural products that are not born from land are
industrialized. Today, food is transgenic, and more and more resources are being generated
that are substitutes for raw materials previously used (such as cotton).

As in the case of cropland, built land has a semi-balance between its EF and its
BC aimed at generating more BC. This indicates that cities provide great benefits in the
life of humanity, these being the least affected by the consumption and wear policies,
which may be due to being lands built and adapted by humanity that generate a supply
comparative to what the demand requires. The results shown in Figure 7 describe the
balance between generation and consumption in all regions; however, this is the most
invasive land distribution, which generates great impacts on development and regeneration
in other lands, indicating the exponential crisis that could eventually be established by
needing more and more resources from large built metropolises to replace the natural life
provided by other lands.

Figure 7. Evolution and distribution of built-up land.

On the other hand, the carbon footprint is the distribution that has the greatest EF
since it is managed at scales of an exponential order of E10. The scales of tens of millions
are ten times more at any of the scales, as shown in Figure 8. The distribution of this
carbon footprint is especially focused on the economically better developed regions, such
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as Europe, North America, and Asia, with almost 90% of the global EF, which indicates that
consumption needs in these regions exceed 10 times the biological capacities of all other
territories—without considering the demand for an individual EF for human development
for each terrain.

Figure 8. Evolution and distribution of the carbon footprint.

5. Conclusions

The results in Asia are much more alarming than those in other continents in all components
(fishing grounds, grazing lands, forests, crops, built-up land, and carbon footprint) in terms of
EF. This situation is different in the other continents where a higher BC stands out with respect
to fishing grounds in South America; grazing lands in Europe and North America; and forest
lands and croplands in South America, North America, and Europe. This situation provides
opportunities to generate entrepreneurial innovations that promote the creation of new business
models, integrating sustainable actions to reduce this impact.

Further, we also estimated the BC and the EF in global hectares per person for the year
2030 (Figure 9), using the data obtained from [34–36].

Figure 9. Global hectares per person estimated for 2030.

As we can see in Figure 9, the fishing grounds metric has a lower EF per person, but at
the same time, it also has a lower BC. The opposite is the case in Oceania, which shows a
better renewal of fishing resources, when compared to population density. It is important
to consider the continuous migration of people and economies to coastal areas. Many
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economic development plans consider islands as potential sites, but islands have little
freshwater, thin soil, and poor vegetation, and are susceptible to natural disasters [22].

The same is true for Oceania and South America where the grazing land shows a
better use of livestock and better policies in the control of rurality.

Regarding forests, South America has the highest BC, indicating the wealth it pos-
sesses despite the enormous overpopulation that occurs in several countries in this region.
Farmland, on the other hand, in the global general world is presented balanced in all
regions, remaining as a biologically sustainable land in most continents, especially Oceania,
South America, and North America.

At the same time, the needs of the built land seem to have reached an equilibrium point
in which the needs and the renovating goods for it are similar when they are calculated in
population density; however, given the accelerated growth of the world population seen
up to 2020, it is possible that the estimated value for these lands has been underestimated
and that by the year 2030, the number of hectares needed will be much greater than what
the algorithm detected from the annual trends (unless the contemporary birth controls will
turn out to be highly effective in reducing human expansion).

The limitation of this study is that it was conducted in general for each continent.
However, the objective of this study is met. The results show that by 2030, the EF will
have an increasing trend greater than the growth of BC, which reflects the need to continue
working actively in raising awareness for humanity’s interest in aligning expected results
with the SDG 2030 agenda.

The results provide information that is useful for stakeholders and citizens, reflecting
data with the potential to stimulate local environmental awareness, support local public
policies, and inform the ongoing debate on the EF’s usefulness as a sustainability metric for
countries. The results also point to specific policy insights for managing key consumption
sectors and reaching targets as grazing lands [23,37], governments, and universities that
have an important role in training people in different areas—entrepreneurship, manage-
ment, and data analysis (Big Data)—because there is also the need to promote research
with international and interdisciplinary collaboration on sustainability issues.
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