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Abstract: The seismic response characteristics of a cable-stayed bridge are closely related to the
structural system. At the same time, the influence of the height of the gravity center cannot be
ignored in the structural system selection of cable-stayed bridges. For convenience, to make the
scheme comparison and structural system selection in the preliminary design stage of a cable-stayed
bridge, the judgment criterion of a low gravity center cable-stayed bridge was proposed, based on
the simplified calculation of the fundamental frequency of cable-stayed bridges with two kinds of
the structural system and combined with the response spectrum analysis method. The comparison
of the results of the finite element model and the calculating results of the criterion showed that the
judgment criterion has high accuracy and reliability, and can be applied to the preliminary design,
the scheme comparison of cable-stayed bridges, and help select structural systems in the preliminary
design stage of cable-stayed bridges.
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1. Introduction

Cable-stayed bridges are widely used in long-span bridges with their unique structural
system [1–3], and the seismic design is an essential part of the design of cable-stayed
bridges [4,5]. There are many factors affecting the shock resistance performance of the
cable bridge. For example, based on finite element simulation and vibration platform
test research, Zhang et al. analyzed the lateral seismic fragility of a cable-stayed bridge
with diamond-shaped pylons [6–8]. The results imply that the failure modes and damage
regions of the bridge would be changed with the pylon shapes, stiffness of lower and middle
crossbeams, and loading protocols. So, selecting an excellent structural system according
to site type and structural characteristics is very important to the seismic performance of
cable-stayed bridges. The structural system of the cable-stayed bridge can be divided into
a floating system, longitudinal hinge system, and combined system according to different
connection modes of girder and tower. Existing studies show that the floating system has
low longitudinal stiffness and is a long-period structure [9,10]. Under seismic loads, the
internal force response of the tower control section is small. The full floating system can
effectively reduce the seismic internal force demand of the tower control section of the cable-
stayed bridge. However, at the same time, it will also cause a large displacement response
in an earthquake [11]. On the contrary, the longitudinal rigidity of the longitudinally
hinged cable-stayed bridge is large [12], which can effectively control the longitudinal
displacement response of the main girder and the tower under the seismic load, but the
tower controls the internal force response of the section more. The combined system adds
special restraint devices (such as elastic restraint cables or dampers) to the floating system,
which can improve the seismic performance of the cable-stayed bridge [13,14], but it will
also make the seismic design of the cable-stayed bridge more complicated [15].

However, the above studies are all based on traditional cable-stayed bridges, and
the influence of the height of the center of gravity on the seismic response characteristics
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of cable-stayed bridges is ignored. For conventional cable-stayed bridges, the control of
the internal force response and displacement response in an earthquake is contradictory.
With economic development and construction technology innovation, more and more
cable-stayed bridges are used in cities and non-navigable rivers. Since these cable-stayed
bridges do not require too much clearance under the bridge, the height of the main girder
can be reduced, thereby reducing the overall center of gravity of the cable-stayed bridge.
According to the seismic inertial force transmission path proposed by Zhang et al. [12], for
the floating system cable-stayed bridge, the transmission path of the seismic inertial force
Pf of the main girder and the bridge deck system is: Pf → stayed cable→main tower; at
this time, as the longitudinal period of the structure becomes longer, the horizontal inertia
force Pf is smaller than that of the longitudinal restraint structure system, but the arm of Pf
on the tower bottom becomes larger, so the tower bottom bending moment of the floating
system cable-stayed bridge may not be small. The horizontal inertial force Pg of the tower
beam longitudinal restraint system increases very little compared with that of the floating
system when the first-order longitudinal vibration period of the tower beam longitudinal
restraint system structure is still located in the gentle zone of the response spectrum. For
cable-stayed bridges with very low main girder height, the bending moment at the bottom
of the floating system may be larger than that of the longitudinal hinged system. This
leads to the concept of a low center of gravity cable-stayed bridge [9], which is the ratio
of tower bottom bending moment M f calculated according to the floating system under a
given seismic load to the tower bottom bending moment Mg calculated according to the
longitudinal hinged system γ = M f /Mg ≤ 1.

Zhang et al. researched a single-tower low center of gravity cable-stayed bridge [16],
and the results showed that the bending moments at each control section of the main
tower of the longitudinal hinged system are significantly smaller than those of the floating
structure system. The studies by Zhao et al. and Camara et al. have proved that the bridge
deck’s height significantly impacts the seismic performance of cable-stayed bridges [17,18].
The seismic performance study of low-center cable-stayed bridges through shaking table
experiments by Zhang et al. proved that using a fixed hinge system for the low gravity
center cable-stayed bridges can reduce earthquake damage in strong earthquakes [19].

The preliminary studies show that the longitudinal hinged system may solve the
contradictory problem of controlling internal force response and displacement response
in the seismic design of cable-stayed bridges for low gravity center cable-stayed bridges.
So, it is important to determine whether the bridge belongs to a low-gravity cable-stayed
bridge or not before the selection of the seismic structural system. The seismic response,
such as tower bottom bending moments of a cable-stayed bridge with a different seismic
structural system, can usually be obtained through finite element analysis or a shaking table
test [12,20–24]. At the same time, both are very time-consuming and energy-consuming [25],
especially when various parameters need to be adjusted in the early design stage, which is
not conducive to the initial design.

Therefore, it is significant to derive a simplified discriminant formula for low-gravity
cable-stayed bridges. In the seismic response of cable-stayed bridges, the contribution rate
of the first-order longitudinal vibration mode shape is dominant [26], and the bending
moment of the tower bottom under the seismic load can be calculated by solving the natural
frequency of the cable-stayed bridge. For the model simplification and formula derivation
of the natural frequency of the floating system cable-stayed bridge, predecessors have
carried out a lot of work. In the early days, Chopra’s equivalent mode method of effective
mode mass was proposed [27]. Based on the characteristic that the horizontal inertia force
of the floating system cable-stayed bridge was transmitted to the top of the tower mainly
through the cables, Xiang Haifan and Li Guohao et al. proposed a single-mass model that
is an approximate replacement model and concentrates all the mass of the stiffening beam
on the top of the tower, and derived the corresponding simplified calculation formula,
which has been adopted by the Chinese bridge seismic code [28,29]. This formula has
certain applicability, but it has high accuracy only when the thrust stiffness of the bridge
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tower is close to the swing stiffness of the main beam. So, a double-mass model was
proposed [30,31], which simplified the main beam and main tower as two points, and
a simplified calculation formula for the fundamental frequency of a full-floating system
cable-stayed bridge considering the beam swing stiffness is derived [32]. To calculate the
fundamental frequency of a longitudinal hinged system cable-stayed bridge, Zhang et al.
established a reverse double-mass model for the floating system and a double-mass model
for the hinged system [33]. A simplified calculation formula was derived using the stiffness
method and compared with the finite element model. The results show that the simplified
calculation formula has good calculation precision and accuracy.

Utilizing the fundamental frequencies calculated by the reverse double-mass model
for the floating system and a double-mass model for the hinged system, the simplified
judgment criterion of low-gravity cable-stayed bridges was derived based on response
spectrum analysis. To verify the accuracy of the simplified calculation formula of the
bending moment of the tower bottom and the reliability of the criterion of a low gravity
center cable-stayed bridge, ten cable-stayed bridges were selected, and the finite element
models of the hinged system and the floating system were established, respectively. Then,
comparison with the results of the finite element model and the calculated results of
the simplified judgment formula showed that the judgment criterion could be used to
distinguish whether a bridge is a low gravity center cable-stayed bridge or not under given
earthquake actions. The simplified criterion for low gravity center cable-stayed bridges
proposed in this paper helps select structural systems in the preliminary design stage of
cable-stayed bridges.

2. Simplified Calculation of the Fundamental Period of Cable-Stayed Bridge
2.1. The Floating Cable-Stayed Bridge

A reverse double-mass model is proposed at first based on the transfer paths of the
horizontal seismic inertia forces of the main girder and bridge floor system of floating
cable-stayed bridges under longitudinal seismic effects, as shown in Figure 1. The bottom
of the tower is consolidated, and the main girder can be rotatable around the top of the
tower. In Figure 1, mt and mb are concentrated mass at the top of the tower and center of
gravity of the girder, respectively; H, h2, and h1 are the total height, lower tower column
height, and upper tower column height, respectively; utt and ub denote the longitudinal
displacement of the top of the tower and main girder, respectively; lc denotes the equivalent
pendulum length of the cable, lc = h1; and θ denotes the swing angle of the main girder
during floating longitudinal vibration. The equivalent swing rigidity of the main girder
(Kb f ) can be obtained as [34]:

Kb f =
mbg

lc
+

ρghIb

l3
c

(1)

where ρ, h, and Ib are the volume density, height, and bending moment of the inertia of the
main girder, respectively.

Assuming that the free vibration of the above dual-degree freedom system is simple
and harmonic and the elastic deformation of the cables and damping effects of the bridge
are negligible, the frequency equation of the reverse double-mass model can be expressed
as: ∣∣∣[K]−ω2

f

[
M f

]∣∣∣ = 0 (2)

where [K] is the structure rigidity matrix, expressed as [K] =
[

Kt + Kb f −Kb f
−Kb f Kb f

]
;
[

M f

]
is

the structure mass matrix, expressed as
[

M f

]
=

[
mt 0
0 mb

]
; and ω f is the fundamental lon-
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gitudinal frequency of the floating cable-stayed bridge. Further, the solution of Equation (2)
is expressed as:

ω2
f =

mb

(
Kb f + Kt

)
+ mtKb f −

√[
mb

(
Kb f + Kt

)
+ mtKb f

]2
− 4mtmbKtKb f

2mtmb
. (3)

The longitudinal fundamental period of the floating cable-stayed bridge (Tf ) can be
obtained as:

Tf =
2π

ω f
(4)
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Figure 1. Simplified calculation model schematic diagram. (a) Transfer paths of the horizontal seismic
inertia forces; (b) The reverse double-mass model.

2.2. The Longitudinal Hinged Cable-Stayed Bridge

For a longitudinal hinged cable-stayed bridge, the equivalent mass mp is gathered at
the center of the upper tower column, and the equivalent mass md of girder, bridge deck
system, and lower tower column is gathered at the beam tower connection of the bridge
tower. So, the longitudinal hinged cable-stayed bridge can be simplified into a double-mass
model, as shown in Figure 2, where up and ud are longitudinal displacements of mp and
md, respectively, h1g = 1

2 h1, and h2g = h2.
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Figure 2. The double-mass simplified model.

The horizontal deflection of mp and md can be expressed by the flexibility influence co-
efficient of δij(i = p, d; j = p, d) under the action of unit horizontal force, and the flexibility
matrix can be given by:

[δ] =

[
δpp δpd
δdp δdd

]
=

 (h1g+h2g)
3

3Kp

h2g
6Kp

(
2h2

2g + 3h1gh2g

)
h2g
6Kp

(
2h2

2g + 3h1gh2g

) h3
2g

3Kp

 (5)
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where Kp denotes the longitudinal bending stiffness of the main tower.
Taking the free vibration of the simplified structure with two degrees of freedom as

simple harmonic vibration, and ignoring the damping effect of the structure, then the
frequency equation of the simplified structure can be shown as follows:∣∣∣∣∣[Mg

]
[δ]− 1

ω2
g
[I]

∣∣∣∣∣ = 0 (6)

where
[
Mg
]

is the mass matrix of structures, expressed as
[
Mg
]
=

[
mp 0
0 md

]
, ωg is the

fundamental longitudinal vibration frequency of the cable-stayed bridge with a fixed hinge
system, and [I] is the unit matrix.

Substituting Equation (5) into Equation (6), the fundamental longitudinal frequency
can be obtained as follows:

ω2
g =

{
(h1g+h2g)

3
mp+h3

2gmd−
√[

(h1g+h2g)
3
mp−h3

2gmd

]2
+mpmdh2

2g

(
2h2

2g+3h1gh2g

)2
}

[
2mpmd

3Kp h3
2g(h1g+h2g)

3−mpmd
6Kp h2

2g

(
2h2

2g+3h1gh2g

)2
] (7)

Therefore, the fundamental longitudinal period Tg of the longitudinal hinged cable-
stayed bridge can be expressed as follows:

Tg =
2π

ωg
. (8)

3. Criterion of Low Gravity Center Cable-Stayed Bridge
3.1. Simplified Calculation of Tower Bottom Moment

It should be noted that for most loading types, the displacement contributions gen-
erally are greatest for the lower modes and tend to decrease for the higher modes. The
contribution of the first-order longitudinal vibration mode of the floating cable-stayed
bridge is more than 90%. In other words, once the first-order longitudinal vibration period
is known, the seismic response of the tower bottom moment of the floating cable-stayed
bridge may be calculated by the response spectrum method. The tower bottom moment(

M f

)
can be expressed as follows:

M f = (mt + mb) · H · S f (9)

where S f is the response spectrum acceleration corresponding to Tf .
In the same way, for the longitudinal hinged cable-stayed bridge, without considering

the contribution of mode shapes, the response of the bending moment
(

M′g
)

at the tower
bottom may be determined as follows:

M′g = mp
(
h1g + h2g

)
Sg + mdh2gSg (10)

where Sg is the response spectrum acceleration corresponding to Tg. The contribution of
the first-order longitudinal vibration mode to the longitudinal seismic response for the
longitudinal hinged cable-stayed bridge is about 30% [20], so it is necessary to modify the
calculation result of Equation (9) as follows:

Mg = α
[
mp
(
h1g + h2g

)
Sg + mdh2gSg

]
(11)

where Mg is the modified tower bottom moment of the longitudinal hinged cable-stayed
bridge, and α is a coefficient of correction.

To define the value of the correction coefficient, the models with different heights of
the gravity center are studied, which can be obtained by changing the lower tower height
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h2 of Ji’nan No.3 bridge (single-tower cable-stayed bridge, as shown in Figure 3) and Qidu
bridge (double-tower cable-stayed bridge, as shown in Figure 4), both of them are very
representative in China’s cable-stayed bridges [35,36]. The ratio of the lower tower height to
the total tower height η = h2/H was taken as a variable. The coefficients of correction α for
the bottom bending moment of the single-tower cable-stayed bridge and the double-tower
cable-stayed bridge with the longitudinal hinged system under four different types of site
standard response spectrum were studied, respectively. For η = 1/10 ∼ 5/10, based on
the parameters of the cable-stayed bridges in Table 1, the bottom bending moments of the
longitudinal hinged cable-stayed bridges were obtained by Equation (10) and SAP2000,
respectively. The comparisons are shown in Table 2. It could be seen that the ratio of the
two

(
M′g/Mg

)
was influenced by the earthquake wave type slightly, which can be ignored,

but was greatly influenced by the bridge type. So, αs = 1.42 can be taken for a single-tower
cable-stayed bridge and αd = 1.10 for a double-tower cable-stayed bridge.
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Table 1. Comparison of the bending moments.

Site
Type

η

Single-Tower Cable-Stayed Bridge (Ji’nan No.3 Bridge) Dual-Tower Cable-Stayed Bridge (Qidu Bridge)

M’
g

(×105 kN)
Mge

(×105 kN)
M’

g/Mge
M’

g

(×105 kN)
Mge

(×105 kN)
M’

g/Mge

I

1/10 8.86 9.80 1.23 5.45 6.34 1.19
2/10 9.04 10.1 1.37 8.28 8.65 1.09
3/10 11.52 12.93 1.47 13.66 13.29 1.06
4/10 13.35 14.28 1.49 19.33 18.57 1.01
5/10 15.65 17.33 1.52 26.42 25.02 1.05

II

1/10 13.12 14.52 1.25 8.07 9.26 1.18
2/10 13.39 14.97 1.37 12.27 12.74 1.09
3/10 17.06 19.15 1.47 20.24 19.7 1.06
4/10 19.78 21.16 1.49 28.64 27.52 1.06
5/10 23.18 25.67 1.52 39.14 37.07 1.09

III

1/10 18.04 19.96 1.23 11.09 12.76 1.18
2/10 18.41 20.58 1.39 16.87 17.39 1.09
3/10 23.46 26.34 1.47 27.84 27.1 1.06
4/10 27.2 29.10 1.49 39.38 37.86 1.10
5/10 31.87 35.30 1.52 53.81 50.96 1.11

IV

1/10 22.14 24.50 1.25 13.62 15.57 1.18
2/10 22.6 25.27 1.39 8.28 8.65 1.08
3/10 28.79 32.35 1.47 34.16 33.24 1.05
4/10 33.38 35.72 1.49 48.33 46.48 1.11
5/10 39.11 43.32 1.52 66.04 62.56 1.12

average - - 1.42 - - 1.10

Table 2. Comparison of simplified formulae and FEM.

Bridge

The Floating Cable-Stayed Bridge The Longitudinal Hinged Cable-Stayed Bridge Criterion

Mf

(×105 kN)
Mfe

(×105 kN)

(
Mfe−Mf

)
/Mfe

(%)
Mg

(×105 kN)
Mge

(×105 kN)

(
Mge−Mg

)
/Mge

(%) γ γe

Jinan No.3 18.41 20.58 10.55 16.87 17.39 3.03 0.92 0.84
Songhuajiang 15.36 14.31 −7.33 10.49 10.27 −2.17 0.68 0.72

Songyuan 14.58 13.20 −10.45 24.14 26.43 8.66 1.66 2.00
Nanye Road 12.88 12.23 −5.30 16.59 16.06 −3.29 1.29 1.31

Haihe 16.01 17.08 6.26 18.73 19.81 5.44 1.17 1.16
Feiyunjiang 7.51 8.44 11.02 9.53 10.03 4.99 1.27 1.19

Jintang 15.07 13.39 −12.56 20.43 22.56 9.47 1.36 1.68
Qidu 8.02 9.01 10.98 10.47 10.74 2.51 1.31 1.19

Taizhouwan 10.06 9.98 −0.83 10.18 10.86 6.28 1.01 1.09
Sutong 48.15 54.25 11.24 48.51 54.85 11.55 1.01 1.01

Standard Deviation / / 9.2% / / 4.5% / /

3.2. Criterion of Low Gravity Center Cable-Stayed Bridge

The ratio of the bending moment M f at the tower bottom of the longitudinal floating
cable-stayed bridge to the bending moment Mg of the longitudinal hinged cable-stayed

bridge can be defined as γ =
M f
Mg

. Under the given seismic loading and site type, the
cable-stayed bridge is called a low gravity center cable-stayed bridge if γ ≤ 1, for which the
longitudinal hinged cable-stayed system is suitable. That is the criterion of a low gravity
center cable-stayed bridge.

Further, by the simplified calculation formula of the tower bottom bending moment in
Equations (9) and (11), the criterion formula of the low gravity center cable-stayed bridge
can be expressed as follows:

γ =
M f

Mg
=

(mt + mb)HS f

α
[
mp
(
h1g + h2g

)
Sg + mdh2gSg

] . (12)
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For γ ≤ 1, the bridge is a low gravity center cable-stayed bridge, while for γ > 1, the
bridge is a conventional cable-stayed bridge.

3.3. Comparison with Numerical Results

Some examples are carried out to verify the accuracy of the simplified calculation
formula of the bending moment of the tower bottom and the reliability of the criterion of a
low gravity center cable-stayed bridge. The site type of the earthquake had less influence on
the simplified calculation coefficient of correction α of a longitudinal hinged cable-stayed
bridge. Therefore, the response spectrum of site III was used to calculate the tower bottom
bending moment and the criterion coefficient of low gravity center cable-stayed bridge
for 10 cable-stayed bridges [26]. Equations (9) and (11) were used to calculate M f and
Mg, respectively, then the results were compared with that from finite element analysis.
Furthermore, the results are shown in Table 2, in which M f e, Mge, and γe denote the results
from finite element analysis. The following conclusions can be drawn.

(1) For the 10 floating cable-stayed bridges, according to the comparison of the bottom
bending moment calculated by Equation (9) and that from the finite element method
(FEM) with the 10 floating cable-stayed bridges, the maximum relative error was
−12.56%, the minimum relative error was only −0.83%, and the average relative error
was 1.36%. This indicates that the simplified calculation formula of Equation (9) could
very well predict the bottom bending moment of the floating cable-stayed bridge.

(2) For the 10 longitudinal hinged cable-stayed bridges, the maximum relative error
between the bottom bending moment calculated by Equation (11) and that of the FEM
was 11.55%, the minimum relative error was only −2.17%, and the average relative
error was 4.65%. This showed that the simplified calculation formula of the bottom
bending moment of the longitudinal hinged cable-stayed bridge was reasonable.

(3) The standard deviations of relative error of the bending moment calculated by the
simplified formulae and FEM of the floating cable-stayed bridge and the longitudinal
hinged cable-stayed bridge were 9.2% and 4.5%, respectively, which showed that the
simplified formulae had good stability.

(4) The conclusion given by the criterion formula of Equation (12) of a low gravity center
cable-stayed bridge was in good agreement with that from the FEM, which showed
that the criterion formula of a low gravity center cable-stayed bridge was reliable and
was helpful for the reasonable structural system selection in the preliminary design of
the cable-stayed bridge.

4. Conclusions

To make the scheme comparison and preliminary design of the cable-stayed bridge,
we put forward the simplified criterion formula for a low gravity center cable-stayed bridge.
The conclusions are the following:

(1) Based on the simplified formula of the longitudinal fundamental period of cable-
stayed bridges and combined with the response spectrum analysis method, the crite-
rion formula of a low gravity center cable-stayed bridge was developed.

(2) The conclusion given by the criterion formula of a low gravity center cable-stayed
bridge was in good agreement with that from the FEM and tests, which revealed that
the criterion formula of a low gravity center cable-stayed bridge is reasonable and
can provide references for the preliminary design and the scheme selection of the
cable-stayed bridge.

(3) The seismic response characteristics of cable-stayed bridges are related to the structural
system and the seismic characteristics. Therefore, whether a cable-stayed bridge is a
low center of gravity cable-stayed bridge is also related to the structural characteristics
of the cable-stayed bridge itself and the ground motion characteristics of its site.
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