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Abstract: The accurate and reliable classification of rock mass is the basis of a reasonable engineer-
ing design. In the Xishan mining region of Sanshandao Gold Mine, three conventional rock mass 
classification methods of Tunneling Quality Index (Q), Rock Mass Rating (RMR) and China National 
Standard-basic quality (BQ), were compared in the burial depth area above 780 m, and it was dis-
covered that the classification results of different rock mass classification methods had a low coin-
cidence rate in the deep area; Therefore, this paper adopted entropy weight method, TOPSIS 
method and grey correlation analysis method to calculate the entropy weight and relative closeness 
of different methods in different middle sections. The study’s findings revealed that in the deep 
area, the relative closeness between each classification mass was: RMR > Q > BQ; Based on the above 
results, the IRMR method with modified RMR was selected for comprehensive analysis, and the 
concept of importance degree of evaluation index was defined; it was found that the importance 
degree of evaluation index of in-situ stress loss was the highest, while the importance degree of joint 
direction was the lowest; The “ETG” rock mass classification method based on “site-specific” is es-
tablished, which provides a reference for the establishment of deep rock mass classification method. 

Keywords: rock mass classification; entropy weight; TOPSIS; grey correlation; Tunneling Quality 
Index; Rock Mass Rating; BQ classification 
 

1. Introduction 
The engineering rock mass grade is a comprehensive reflection of the multi-faceted 

characteristics of complex rock masses, which can assist engineers in grasping engineer-
ing characteristics of rock masses, providing a reliable basis for engineering stability anal-
ysis, reasonable use of rock masses, and reasonable engineering support, as well as 
providing effective guidance for engineering design and construction [1,2]. Yet, in the 
practical application process, there is no unified standard for rock mass classification. 
When different methods are used to classify the same area, normally different rock mass 
grades will be obtained, at the same time, the importance of different indicators may differ 
under different geological conditions, which sometimes makes it difficult for engineers 
and technicians to choose a reasonable rock mass grade. Therefore, at least the employ-
ment of at least two rock classification methods is recommended in engineering practice. 

Rock mass classifications have been developed in the literature. Since the first at-
tempt to classify rocks by Russian Vernier at the end of the 18th century [2], Scholars from 
all over the world continue to improve and expand the rock classification methods [3]. 
According to the modified type of rock mass classification, it can be roughly divided into 
the traditional classification method (later called “traditional method”), the modified 
method of the traditional classification method (later called “modified method”) and the 
new classification method using the modern science and technology (later called “new 
method”). Traditional methods include Rock Mass Rating (RMR) by South African 
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Bieniawski [4,5], Q index (Q) by Norwegian Barton [6], Geological Strength Index classi-
fication (GSI) by Zimbabwean Hoke [7] and BQ classification in Chinese engineering rock 
classification standards [8]. Modification methods include the Romana SMR method for 
slope after modification based on RMR method [9,10]. Based on the RMR-SMR evaluation 
system, the rock mass classification system CSMR was established by the China Water 
Resources and Hydropower Slope Engineering Special Panel in 1997 [11]. Chen et al. [12] 
established the rock mass engineering quality evaluation method QHLW for high-level 
radioactive waste disposal engineering based on Q system. Guo et al. [13] proposed the 
anisotropic rock mass classification system A-BQ, based on the Chinese rock mass classi-
fication standard BQ; With the development of computer science, increasing amounts of 
cutting-edge science and technology are applied to rock mass classification, so some new 
methods are proposed: Zhou et al. [14] proposed a fuzzy RES-multidimensional cloud 
rock mass classification model based on the one-dimensional cloud from the system per-
spective. Santos et al. [15] had presented a new methodology for achieving rock mass 
classifications based on mathematical and statistical fundamentals, aiming at optimizing 
the selection of variables and consequent reduction of subjectivity in the parameters and 
classification methods. Salimi et al. [16] had presented the better represented influence of 
rock mass properties on TBM performance using multivariate regression analysis and ar-
tificial intelligence algorithms, including regression tree and genetic programming. Dai et 
al. [17] applied the unconfirmed mean method to the rock detonation classification and 
found that the predicted results matched the measured results with an accuracy of up to 
100%. 

This paper compares the results of three rock mass classification methods, the anas-
tomosis rate in the deep buried area, and finds out the most suitable rock mass classifica-
tion method (RMR) in this area by means of entropy weight method, TOPSIS method and 
grey correlation analysis method. At the same time, the importance of each evaluation 
index is obtained through analysis. The entropy weight-TOPSIS-grey correlation analysis 
rock mass classification model is established, which provides a reference for deep rock 
mass classification. 

2. Materials and Methods 
2.1. Rock Mass Classification Evaluation Index System 
2.1.1. Selection of Evaluation Indicators 

Rock mass classification is influenced by various factors such as structural surface 
characteristics, rock integrity, geological factors, rock strength index and engineering fac-
tors. Among the many classification methods of rock mass, Q (1974 version) [6], RMR 
(1989 version, the versions not specifically marked below are those of this version) [5] and 
BQ (2015 version) [8] are widely used because of their comprehensive consideration, wide 
range of application and strong representability. The factors considered by each method 
are shown in Table 1. 

Table 1. Influence factors of three rock mass classification methods. 

Classification Method Influencing Factors 

Q Rock quality desig-
nation (RQD)  

Joint set number 
(Jn) 

Joint roughness num-
ber (Jr) 

Joint alteration number 
(Ja) 

Joint water reduction 
factor (Jw) 

Stress Reduction 
factor (SRF) 

RMR 
Rock compressive 

strength (R1) 
Rock quality des-

ignation (R2) 
Spacing of disconti-

nuities (R3) 
Condition of disconti-

nuities (R4) 
Ground water condi-

tions (R5) 

Orientation of 
discontinuities 

(R6) 

[BQ] * 
Rock compressive 

strength (σcw) 
Rock mass integ-

rity (KV) 

Correction coefficient 
of the groundwater 

(K1) 

Correction coefficient 
of the main structural 

plane (K2) 

Correction coefficient 
of the initial stress 

state (K3) 
 

* [BQ] is the result after the modification of BQ classification method, K1 K2 K3 are the correction 
coefficient, both of which come with BQ method. 
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2.1.2. Evaluation System Construction 
This paper takes Sanshandao Gold Mine as an example, according to the literature 

[18], the main rocks of the mine are porphyritic biotite granite, ferric sericite granite and 
ferric sericite. The surrounding rock of the upper and lower wall of the ore body is sericite, 
and the indirect surrounding rock is black cloud amphibolite or black cloud plagiotic 
gneiss, black cloud metamorphic rock, etc. The research employs a total of 7 middle 
sections from −780 to −915 of Xishan Mining area, Sanshandao Gold Mine, according to 
the data provided by the mine authorities, the evaluation index scores of the three rock 
mass classification methods are shown in Tables 2–4. 

Table 2. Q classification evaluation index scores. 

Middle  
Section 

Evaluation Indicators 
RQD Jn Jr Ja Jw SRF 

−780-1 * 87.4 7 2 4 0.65 1 
−795-1 91.7 7 1.5 4 0.6 1.5 
−825-1 75.9 9 2 4 0.6 2 
−870-1 22.5 7 2 4 0.65 2 
−885-1 82.1 8 2 4 0.58 2 
−900-1 82.6 10 2 4 0.55 2 
−915-1 64.6 9 2 4 0.58 2 

* −780-1 means the number of the first measurement point in the middle section of −780, the same 
method was used to number the regions later. 

Table 3. RMR classification evaluation index scores. 

Middle  
Section 

Evaluation Indicators 
R1 * R2 * R3 * R4 R5 R6 

−780-1 9.8 16.4 11.9 17 0 −5 
−795-1 9.7 17.6 12.2 20 7 −5 
−825-1 10.0  13.4 12.8 22 7 −5 
−870-1 9.4 3.4 12.2 18 12 −5 
−885-1 10.1 15.0  12.5 20 4 0 
−900-1 10.4 15.1 12.7 19 7 −10 
−915-1 9.3 10.7 11.5 16 0 −5 

* R1, R2 and R3 are obtained according to the equation provided by the paper [18], which about 
Sanshandao mine, thereinto, 𝑅 = −0.0003σ + 0.135𝜎 + 0.9023 , 𝑅 = 0.0012𝑅𝑄𝐷 +

0.0692RQD + 1.23, 𝑅 = 3.5411 ln 𝐷 + 0.9023, 𝐷  is the distance between joints, and its unit is m. 

Table 4. BQ * classification evaluation index scores. 

Middle  
Section 

Evaluation Indicators 
𝛔cw KV K1 K2 K3 

−780-1 80.23 0.461 0.3 0.3 1.0 
−795-1 79.38 0.555 0.3 0.2 1.0 
−825-1 82.74 0.741 0.3 0.2 1.0 
−870-1 76.04 0.693 0.3 0.05 1.0 
−885-1 88.90  0.401 0.1 0.25 1.0 
−900-1 87.30  0.412 0.5 0.2 1.0 
−915-1 75.76 0.453 0.3 0.3 1.0 

* A brief description of the BQ classification is provided in Appendix A. 

2.1.3. Comparison of Classification Results 
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Different classification methods are inconsistent in the selection of indicators, the em-
phasis degree of each indicator and the value method of indicators, which leads to certain 
differences in the classification results of rock mass in the same area by different classifi-
cation methods. Therefore, it is very important to study the relationship between different 
methods. The first correlation was proposed by Bieniawski [19], between the RMR index 
and the Q index, with the equation: RMR = 9lnQ + 44, using values from tunnels from all 
over the world and with a determination coefficient of R2 = 0.59. Rutledge and Preston 
[20] conducted a similar study and obtained an R2 of 0.66. Sunwoo et al. [21] used the 
linear regression analyses were undertaken in order to assess a possible correlation be-
tween Q classification and RMR classification system with rock types, with an R2 of 0.79. 
R., K. [22] proposed a new method to express the relationship between Q and RMR, which 
is proved to be highly reliable. Palmstrm et al. [23] by used the common input tables, and 
significantly more reliable correlations between the RMR, Q and RMi can be found than 
the existing transition equations in use. With the aim of improving the quality between 
the correlations, some authors developed correlations in the same lithology. Castro-
Fresno et al. [24] analyzed of the correlation between RMR and Q Index in Low-Quality 
Soils, with an R2 of 0.49. Fernández-Gutiérrez et al. [25] studied the correlation between 
Bieniawski’s RMR index and Barton’s Q index in fine-grained sedimentary rock for-
mations, an R2 value of 0.915, which obtained a high correlation. Campos et al. [26] found 
new correlations between GSI and RMR, resulting in satisfactory results and showed the 
potential of aiding in the decision-making process in projects involving soft (poor) rock 
masses, composed by low-strength lithotypes and similar weathering grades. 

The correlation equation between RMR classification and Q classification was estab-
lished by summarizing the references [27] in Table 5. According to Table 5, the relation-
ship between RMR value and Q value can be calculated, and the results are divided into 
5 grades. The calculation results are shown in Table 6. 

Table 5. The correlation equation of RMR classification and Q classification [27]. 

Number * Author(s) and Time Equation 
1 Bieniawski (1976) RMR = 9lnQ + 44 (1) 
2 Rutledge and Preston (1978) RMR = 5.9lnQ + 43 (2) 
3 Moreno (1980) RMR = 5.4lnQ + 55.2 (3) 
4 Cameron-Clarke and Budavari (1981) RMR = 5lnQ + 60.8 (4) 
5 Abad et al. (1983) RMR = 10.5lnQ + 41.8 (5) 
6 Kaiser and Gale (1985) RMR = 8.7lnQ + 38 (6) 
7 Al-Harthi (1993) RMR = 9lnQ + 49 (7) 
8 Choquet and Hadjigogiu (1993,2016) RMR = 10lnQ + 39 (8) 
9 El-Naqa (1994) RMR = 7lnQ + 44 (9) 
10 Barton (1995) RMR = 15lnQ + 50 (10) 
11 Tugrul (1998) RMR = 7lnQ + 36 (11) 
12 Sari and Pasamehmetoglu (2004) RMR = 3.7lnQ + 53.1 (12) 
13 Kumar et al. (2004) RMR = 6.4lnQ + 49.6 (13) 
14 Cosar (2004) RMR = 2.8lnQ + 45.19 (14) 
15 Hashemi et al. (2010) RMR = 5.37lnQ + 40.48 (15) 

16-1 Laderian and Abaspoor (2012) RMR = 8.15lnQ + 44.88 (16) 
16-2 Laderian and Abaspoor (2012) RMR = 42.87Q0.162 (17) 
17 Ranasooriya and Nikraz (2012) RMR = 6.3lnQ + 43 (18) 
18 Rafiee (2013) RMR = 8.09lnQ + 43.08 (19) 
19 Castro Caicedo and Pérez Pérez (2013) RMR = 5.7lnQ + 43.65 (20) 
20 Ali et al. (2014) RMR = 2.87lnQ + 48.71 (21) 
21 Senra (2016) RMR = 6.55lnQ + 59.53 (22) 
22 Sayeed and Khanna (2015) RMR = 4.52lnQ + 43.635 (23) 

* Numbers 1–6 are RMR classification for 1976 edition. 

Table 6. The corresponding results of RMR classification and Q classification. 
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Number I II III IV V 
RMR 81~100 60~81 41~60 20~41 <20 

Q1 >61.01 5.92~61.01 1.40~5.92 0.07~1.40 <0.07 
Q2 >626.83 17.84~626.83 0.71~17.84 0.02~0.71 <0.02 
Q3 >118.84 2.43~118.84 0.07~2.43 0.0001~0.07 <0.0001 
Q4 >56.83 0.85~56.83 0.02~0.85 0.0003~0.02 <0.0003 
Q5 >41.82 5.66~41.82 0.93~5.66 0.13~0.93 <0.13 
Q6 >140.12 12.54~140.12 1.41~12.54 0.13~1.41 <0.13 
Q7 >35.01 3.39~35.01 0.41~3.39 0.04~0.41 <0.04 
Q8 >66.69 8.17~66.69 1.22~8.17 0.15~1.22 <0.15 
Q9 >197.50 9.83~197.50 0.65~9.83 0.03~0.65 <0.03 

Q10 >7.90 1.95~7.90 0.55~1.95 0.14~0.55 <0.14 
Q11 >619.29 30.83~619.29 2.04~30.83 0.10~2.04 <0.10 
Q12 >1882.85 6.46~1882.85 0.04~6.46 0.0001~0.04 <0.0001 
Q13 >135.13 5.08~135.13 0.26~5.08 0.01~0.26 <0.01 
Q14 >358,357.26 198.20~358,357.26 0.22~198.20 0.0001~0.22 <0.0001 
Q15 >1892.44 37.90~1892.44 1.10~37.90 0.02~1.10 <0.02 

Q16-1 >84.09 6.39~84.09 0.62~6.39 0.05~0.62 <0.05 
Q16-2 >50.79 7.97~50.79 0.76~7.97 0.01~0.76 <0.01 
Q17 >416.44 14.86~416.44 0.73~14.86 0.03~0.73 <0.03 
Q18 >108.56 8.10~108.56 0.77~8.10 0.06~0.77 <0.06 
Q19 >701.09 17.61~701.09 0.63~17.61 0.02~0.63 <0.02 
Q20 >76,946.92 51.10~76,946.92 0.07~51.10 0.00005~0.07 <0.00005 
Q21 >26.52 1.07~26.52 0.06~1.07 0.002~0.06 <0.002 
Q22 >3891.67 37.36~3891.67 0.56~37.36 0.01~0.56 <0.01 

Results Two decimal places are reserved. If two decimal places cannot display a valid result, one 
significant digit is reserved. 

The data in Table 6 are analyzed and the boxplot [28] is drawn, and the results are 
shown in Figure 1; it can be seen from the figure that the corresponding median Q value 
is 135.13 when RMR = 81, 8.1 when RMR = 60, and 0.63 when RMR = 41. When RMR = 20, 
the median value of Q was 0.02. Except for RMR = 81, the median is close to the average 
in other data, and the gap between them is slightly larger when RMR = 60; however, when 
RMR = 81, the Q value obtained by some methods is more than 350,000, and there are 
many abnormal points in the data, due to some correlations can provide anomalous val-
ues because they are intended for specific lithotypes, and therefore, outside from their 
range of application they are useless. Therefore, the median was selected for analysis of 
this content. 

  
(a) (b) 
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(c) (d) 

Figure 1. RMR classification and Q classification corresponding to the results of the boxplot. Where: 
(a) is the boxplot when RMR = 81, at the same time, a partial magnification of the Y-axis is performed 
for ease of observation; (b) is the boxplot when RMR = 60; (c) is the boxplot when RMR = 41; (d) is 
the boxplot when RMR = 20. 

The median value of Q in Figure 1 is taken as the correlation value between Q classi-
fication and RMR classification, and the rock mass is divided into 5 grades to make the 
three classification methods correspond to each other. The results are shown in Table 7. 
The classification results of rock mass in each section obtained by this method are shown 
in Table 8. 

Table 7. The correspondence between the rock types of the three methods. 

 I II III IV V 
Q >135.13 8.1~135.13 0.63~8.1 0.02~0.63 <0.02 

RMR 81~100 60~81 41~60 20~41 <20 
[BQ] >550 451~550 351~450 251~350 <250 

Table 8. Results of the three methods of rock mass classification. 

Middle  
Section 

Classification Results 

Q Value Grade 
RMR 
Value 

Grade [BQ] Value Grade 

−780-1 2.86 III 50.1 III 419.72 III 
−795-1 28.21 II 61.5 II 466.89 II 
−825-1 5.55 III 60.2 II 523.47 II 
−870-1 0.41 IV 50.0 III 491.37 II 
−885-1 7.94 III 61.6 II 388.52 III 
−900-1 10.00 II 54.2 III 394.24 III 
−915-1 0.02 V 42.5 III 415.56 III 

The sum of the areas where the classification results of different methods are the same 
and the ratio of all the tested areas is the coincidence rate, expressed as a percentage, and 
the mutual anastomosis rate between the three methods were analyzed, and the results 
are shown in Figure 2 in the deeper areas, the traditional rock mass classification methods 
are difficult to produce consistent results due to different factors considered by each 
method. 
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Figure 2. Coincidence rate of the results of the three classification methods. 

The classification results of each method are shown in Figure 3, in which the propor-
tion of Grade III surrounding rocks exceeds 40% in all types of methods, classification IV 
and V surrounding rocks only appear in Q classification, and Grade II surrounding rocks 
account for more than 40% in RMR and BQ classification. From the overall classification 
results, RMR and BQ classification results are generally more adventurous, while the in-
fluence of RQD values in Q classification is too great, leading to large variability in classi-
fication results. 

 
Figure 3. Classification results of the three classification methods.  
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2.2. Comprehensive Assessment of Rock Mass Classification 
More and more scholars apply scientific theories and methods to various aspects of 

mine [29–31], which plays an important role in promoting the development of mining 
engineering field. Choosing appropriate scientific theories and methods to be applied to 
rock mass classification can help people better describe the rock mass grade. The entropy 
weight [32] is an objective assignment method that calculates the degree of variation in 
indicator data and uses the quantity of information offered by each indicator’s entropy 
value to establish indicator weights. Gray correlation method is derived from gray system 
theory in system science theory [33], which can avoid the situation where the quantitative 
results do not match the qualitative analysis. TOPSIS method [34] is a common decision 
technique for multi-objective decision analysis of limited solutions in systems engineer-
ing, and is now also often used in the comprehensive evaluation of multiple indicators. In 
this paper, the three approaches are combined to provide a full evaluation of rock mass 
classification, and a new method of rock mass classification is attempted to be built on this 
premise. Figure 4 depicts the exact procedure. 

 
Figure 4. Rock mass assessment process based on entropy weight-TOPSIS-grey correlation analy-
sis. 

2.2.1. Entropy Weight Method 
Firstly, entropy weight method is used to determine the weight of the rock mass clas-

sification evaluation index. Entropy is used to measure uncertainty in information theory. 
The smaller the entropy value of something is, the smaller the uncertainty is, and the more 
information it contains. On the contrary, the larger the entropy value, the less information 
it contains, and thus the entropy value can be used to determine the size of the influence 
of the indicator on the evaluation system, i.e., the corresponding weight of the indicator 
[35]. With n evaluation objects 𝑋 = {𝑋 , 𝑋 , ⋯ , 𝑋 }  and m evaluation indicators 𝑌 =

{𝑌 , 𝑌 , ⋯ , 𝑌 }, the original evaluation matrix 𝑍 = z ‘

×
= (i = 1,2, ⋯ , n; j = 1,2, ⋯ , m), 

and z‘  is the j-th original evaluation indicator of the i-th evaluation object. The specific 
steps of the entropy weight method are shown below. 
1. Dimensionless processing 

Because the dimensions of the values in the matrix are not consistent, the original 
data need to be dimensionless processing. At the same time, the values in the matrix can 
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be divided into positive type and negative type. The larger the positive type is, the more 
favorable the negative type is, the smaller the positive type is, the more favorable the neg-
ative type is. Therefore, the following two dimensionless processing equations are used 
for disposing. 

𝑧 =
z‘ − z‘

z‘ − z‘
 (24)

𝑧 = 1 −
z ‘ − z ‘

z ‘ − z ‘
 (25)

where,  i = 1,2, ⋯ , n. j = 1,2, ⋯ , m.  𝑧  is the treatments for positive indicators and 𝑧  is 
the treatment of negative indicators (Use the same method to distinguish positive indica-
tors and negative indicators below). 

The results of the dimensionless normalization of the positive and negative type in-
dicators are normalized by the following equation. 

𝑧 =
𝑧∗

∑ 𝑧∗

 (26)

where, 𝑧∗  is the evaluation indicators after the positive or negative dimensionless treat-
ment, and 𝑧  is the evaluation indicator after normalization. 
2. Specific gravity calculation 

Calculate the weight of the i-th evaluation object under the j-th indicator 𝐴 . 

𝐴 =
𝑧

∑ 𝑧
 (27)

3. Entropy calculation 
Calculate the entropy value 𝐵  accounted for by the i-th evaluation unit under the j-

th indicator. 

𝐵 = −
1

ln 𝑛
𝐴 ln 𝐴  (28)

4. Entropy weighting calculation 
Calculate the entropy weight 𝐶  accounted for by the i-th evaluation unit under the 

j-th indicator. 

𝐶 =
1 − 𝐵

∑ 𝐵
 (29)

2.2.2. TOPSIS Method 
1. Construction of a weighted normalization matrix 

The weighted normalization matrix D is obtained by multiplying the normalization 
matrix with the weight. 

D = (C z ) × =
C z ⋯ C z

⋮ ⋱ ⋮
C z ⋯ C z

=
d ⋯ d

⋮ ⋱ ⋮
d ⋯ d

 

2. Determine the positive and negative ideal solution of D 
Calculate the positive ideal solution of the weighted decision matrix 𝑑 and negative 

ideal solutions 𝑑 . 
The equation are, respectively, as follows. 
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𝐷 = (𝑑 , 𝑑 , ⋯ , 𝑑 ) (30)

𝐷 = (𝑑 , 𝑑 , ⋯ , 𝑑 ) (31)

of which 𝑑 = 𝑚𝑎𝑥 𝑑 , 𝑑 = 𝑚𝑖𝑛 𝑑 . 
3. Calculate the Euclidean distance 

Calculate each solution to a positive ideal solution 𝑑 and the negative ideal solution 
𝑑  the Euclidean distance E  and E . 

The equation are, respectively, as follows. 

E = (d − 𝑑 )  (32)

E = (d − 𝑑 )  (33)

2.2.3. Grey Correlation Analysis 
1. Calculation of grey correlation coefficient 

Based on the weighted normalization matrix D, calculate the i-th evaluation solution 
𝑑  with the positive ideal solution 𝑑  and the negative ideal solution with respect to the 
j-th indicator with the grey correlation coefficient F. 

The equation are, respectively, as follows. 

𝐹 =
𝑚𝑖𝑛 𝑚𝑖𝑛 𝑑 − 𝑑 + 𝛾𝑚𝑎𝑥 𝑚𝑎𝑥 𝑑 − 𝑑

𝑑 − 𝑑 + 𝛾𝑚𝑎𝑥 𝑚𝑎𝑥 𝑑 − 𝑑
 (34)

𝐹 =
𝑚𝑖𝑛 𝑚𝑖𝑛 𝑑 − 𝑑 + 𝛾𝑚𝑎𝑥 𝑚𝑎𝑥 𝑑 − 𝑑

𝑑 − 𝑑 + 𝛾𝑚𝑎𝑥 𝑚𝑎𝑥 𝑑 − 𝑑
 (35)

where γ ∈ (0,1) is the resolution factor, generally taken as 0.5. 
2. Calculation of grey correlation degree 

Calculate the grey correlation degree G of the positive and negative ideal solutions. 
The equation are, respectively, as follows. 

𝐺 =
1

𝑛
𝑓  (36)

𝐺 =
1

𝑛
𝑓  (37)

3. Calculation of relative closeness 
① Dimensionless processing 
For the derived E , E , G  and G  and dimensionless processing is performed to 

obtain, in turn e  and e , g  and g . 
The calculation equation is as follows. 

e =
E

maxE
 (38)

e =
E

maxE
 (39)

g =
G

maxG
 (40)
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g =
G

maxG
 (41)

② Combined dimensionless weighted Euclidean distance and grey correlation 
The closer the index to be evaluated is to the positive ideal solution and the farther it 

is to the negative ideal solution, the better it is. The higher the correlation with the positive 
ideal solution and the lower the correlation with the negative ideal solution, the better. 
That is, the greater the values of  e  and g , the closer the evaluation object is to the pos-
itive ideal solution. The greater the values of e  and g , the further away the evaluation 
object is from the positive ideal solution. 

The specific form of expression is as follows. 

𝐻 = 𝛼e + 𝛽g  (42)

𝐻 = 𝛼e + 𝛽g  (43)

Of these, the 𝛼  and 𝛽  are the degrees of preference, the α + β = 1, α, 𝛽 ∈ (0,1), 
whose values are determined by the decision maker according to his or her preferences, 
and both are taken as 0.5 in this paper. 𝐻  and 𝐻  and reflect the degree of proximity 
and distance from the ideal solution, respectively. 
4. Calculating the relative closeness of the scheme I. 

𝐼 =
𝐻

𝐻 + 𝐻
 (44)

3. Results and Discussion 
3.1. Entropy Weight Analysis of Evaluation Indicators 

Analysis of the evaluation indicators in the three rock mass classification methods to 
determine the positive and negative types of each factor is shown in Table 9. 

Table 9. Types of indicators for the three classification methods. 

Q RMR BQ 
Indicators Type Indicators Type Indicators Type 

RQD Positive R1 Positive σcw Positive 
Jn Negative R2 Positive KV Positive 
Jr Positive R3 Positive K1 Negative 
Ja Negative R4 Positive K2 Negative 
Jw Positive R5 Positive K3 Negative 

SRF Negative R6 Positive   

Using Equations (24)–(26) for dimensionless normalization, the following matrix is 
obtained. 

ZQ =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0.9379 1.0000 1.0000 0.0000 1.0000 1.0000
1.0000 1.0000 0.0000 0.0000 0.5000 0.0000
0.7717 0.3333 1.0000 0.0000 0.5000 0.0000
0.0000 1.0000 1.0000 0.0000 1.0000 0.0000
0.8613 0.6667 1.0000 0.0000 0.3000 0.0000
0.8685 0.0000 1.0000 0.0000 0.0000 0.0000
0.6084 0.3333 1.0000 0.0000 0.3000 0.0000⎦

⎥
⎥
⎥
⎥
⎥
⎤
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ZRMR =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0.4545 0.9155 0.3077 0.1667 0.0000 0.5000
0.3636 1.0000 0.5385 0.6667 0.5833 0.5000
0.6364 0.7042 1.0000 1.0000 0.5833 0.5000
0.0909 0.0000 0.5385 0.3333 1.0000 0.5000
0.7273 0.8169 0.7692 0.6667 0.3333 1.0000
1.0000 0.8239 0.9231 0.5000 0.5833 0.0000
0.0000 0.5141 0.0000 0.0000 0.0000 0.0000⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

ZBQ =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0.3402 0.1765 0.5000 0.0000 0.0000
0.2755 0.4529 0.5000 0.4000 0.0000
0.5312 1.0000 0.5000 0.4000 0.0000
0.0213 0.8588 0.5000 1.0000 0.0000
1.0000 0.0000 1.0000 0.2000 0.0000
0.8782 0.0324 0.0000 0.4000 0.0000
0.0000 0.1529 0.5000 0.0000 0.0000⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

The above matrix was substituted into the entropy weight method calculation equa-
tion, and all values of the normalized matrix were shifted to all values +0.0001 to avoid 
errors caused by the denominator being equal to 0 in the calculation process, to obtain the 
entropy value B and entropy weight C for the three classification methods, and the results 
are shown in Table 10. 

Table 10. Entropy weight method results. 

Q RMR BQ 
Indicators B C Indicators B C Indicators B C 

RQD 0.9148 0.0771 R1 0.8391 0.1985 σcw 0.7840 0.2607 
Jn 0.8725 0.1155 R2 0.9105 0.1105 Kv 0.7349 0.3200 
Jr 0.9208 0.0717 R3 0.8867 0.1398 K1 0.8982 0.1228 
Ja 1.0000 0.0000 R4 0.8580 0.1752 K2 0.7543 0.2965 
Jw 0.8604 0.1265 R5 0.7969 0.2505 K3 1.0000 0.0000 

SRF 0.3273 0.6092 R6 0.8982 0.1255    

3.2. Relative Closeness Analysis of Each Section 
TOPSIS method and grey correlation analysis were used to analyze the relative close-

ness of the grading results of each section. The results were shown in Table 11, and the 
relative proximity degree was shown in Figure 5; it can be seen from the table that the 
relative proximity degree of each method is between 0.35 and 0.70. In Q classification, the 
middle segment of −795 has the best effect, while the middle segment of −915 has the 
worst. In the RMR classification, the middle segment of −825 had the best effect, and the 
middle segment of −780 had the worst effect. In BQ classification, −870 middle segment 
had the best effect, and −780 middle segment had the worst effect. In general, the average 
value of RMR was the highest and the overall grading effect was the best. Due to different 
considerations and the interference of subjective factors, different classification methods 
show great differences in the relative closeness between different sections. When different 
methods are used to classify the same area, normally different rock mass grades will be 
obtained, therefore, at least the employment of at least two rock classification methods is 
recommended. 

Table 11. Results of the relative closeness analysis. 

Classification 
Method Parameters 

Middle Section 
−780-1 −795-1 −825-1 −870-1 −885-1 −900-1 −915-1 

Q 

E+ 0.0048 0.3192 0.6175 0.6140 0.6169 0.6329 0.6211 
E− 0.6409 0.3407 0.1190 0.1857 0.1301 0.0982 0.1013 
G+ 0.6985 0.4762 0.4212 0.5238 0.4475 0.3988 0.3913 
G− 0.7143 0.2402 0.3810 0.4038 0.4286 0.3935 0.5284 
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I 0.5551 0.6379 0.4552 0.5044 0.4504 0.4321 0.3784 

RMR 

E+ 0.3304 0.1959 0.1453 0.2579 0.1889 0.1866 0.3990 
E− 0.1582 0.2490 0.3123 0.2759 0.2773 0.3056 0.0847 
G+ 0.4231 0.5151 0.6075 0.4481 0.5845 0.5693 0.3344 
G− 0.8571 0.5352 0.3977 0.3548 0.5373 0.3633 0.4320 
I 0.4054 0.5836 0.6925 0.6248 0.6138 0.6861 0.4505 

BQ 

E+ 0.4367 0.3190 0.2244 0.2662 0.3983 0.3790 0.4828 
E− 0.1217 0.2098 0.3734 0.4090 0.2942 0.2580 0.0785 
G+ 0.2346 0.2629 0.3529 0.3740 0.3883 0.2761 0.2197 
G− 0.5714 0.4049 0.3179 0.2677 0.3086 0.3401 0.4082 
I 0.3563 0.4796 0.6284 0.6668 0.6125 0.5233 0.3889 

 
Figure 5. The statistics and comparison of the relative closeness of the three methods. 

Combined with Table 6, the five middle sections with different grading results (−825, 
−870, −885, −900 and −915) were graded according to the relative closeness. The data 
with a relatively large degree of closeness were taken as the results, and the final grading 
results were obtained as shown in Table 12. The results show that the rock classification 
results obtained by this method are not conservative. 

Table 12. Final classification results. 

Middle Section −780-1 −795-1 −825-1 −870-1 −885-1 −900-1 −915-1 
Mass grade III II II II II III III 

Classification method Q Q RMR BQ RMR RMR RMR 
Relative closeness 0.5551 0.6379 0.6925 0.6668 0.6138 0.6861 0.4505 
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3.3. Entropy-Weighted-TOPSIS-Grey Correlation Rock Mass Classification Method 
From the above study, RMR classification has a high overall approximation in the 

Xishan mining region of Sanshandao Gold Mine. Therefore, the IRMR classification 
method [36], which is based on the RMR method considering ground stress damage, was 
selected to obtain the entropy weight and relative closeness of each factor in a more section 
area. 

3.3.1. Entropy-TOPSIS Analysis 
Using the raw data available on Sanshandao Gold Mine as an example, the raw ma-

trix was created as shown in Table 13. 

Table 13. Raw data matrix. 

Serial Number Location of Measurement Points 
Evaluation Indicators 

R1 R2 R3 R4 R5 R6 R7 
1 −780-1 9.8 16.4 11.9 17 0 −5 −4.3 
2 −780-2 9.8 16.4 12 17 0 −5 −4.3 
3 −795-1 9.7 17.6 12.2 20 7 −5 −4.3 
4 −795-2 9.7 17.6 12.2 19 7 −5 −4.2 
5 −825-1 10 13.4 12.8 22 7 −5 −9.5 
6 −825-2 10 13.4 12.4 21 7 −5 −9.5 
7 −825-3 10 13.4 12.8 20 7 −5 −8.2 
8 −825-4 10 13.4 12.4 20 7 −5 −9 
9 −870-1 9.4 3.4 12.2 18 12 −5 −9.5 

10 −885-1 10.1 15 12.5 20 4 0 −9.5 
11 −900-1 10.4 15.1 12.7 19 7 −10 −9.2 
12 −915-1 9.3 10.7 11.5 16 0 −5 −9.2 
13 −915-2 9.3 10.7 11.5 17 1 −6 −9.2 

The processing steps are the same as above, and the results of the entropy weighting 
method analysis of each influencing factor are obtained, as shown in Table 14, where R7 
has the largest entropy weight and R6 the smallest. The information carried by the geo 
stress damage index is the most effective. 

Table 14. Results of entropy weight method analysis. 

Evaluation Indicators R1 R2 R3 R4 R5 R6 R7 
B 0.8971 0.9605 0.9124 0.9160 0.8615 0.9572 0.6800 
C 0.1263 0.0485 0.1074 0.1030 0.1699 0.0525 0.3925 

3.3.2. Grey Correlation Analysis 
The core of grey correlation analysis is to establish the parent series of variation with 

the scheme according to certain rules, and to find the correlation degree between each 
sub-series and the parent series, so that the degree of influence of each evaluation indica-
tor on the scheme can be obtained [37]. In this paper, the positive Euclidean distance and 
IRMR values determined by entropy weight-TOPSIS analysis were used as the parent se-
ries, and seven evaluation indicators, such as R1-R7, were used as the sub-series, and the 
series were dimensionless, and the grey correlation degree of each evaluation indicator 
was calculated using Equations (10)–(13), and the results are shown in Table 15. 
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Table 15. Grey correlation for each evaluation indicator. 

Evaluation Indicators R1 R2 R3 R4 R5 R6 R7 
RMR correlation 0.1774 0.1763 0.1036 0.1071 0.1402 0.1503 0.1451 

E+ relevance 0.1457 0.1467 0.1881 0.1834 0.1048 0.1031 0.1284 

3.3.3. Rock Mass Classification Method Construction 
On the basis of the above study, the entropy weight, RMR value and E+ correlation 

are integrated, 3 groups of parameters of the same indicator are added, R1-R5 indicators 
are normalized, R6 and R7 are changed in equal proportion, and the final parameter ob-
tained is defined as the evaluation indicator importance J, as shown in Table 16, where R1-
R5 are moderately important and close, R6 is the least important, and in the deep region, 
high ground stress is one of the main causes of channel destabilization damage, so R7 is 
the largest, at 0.3284, which is in line with the actual situation. Based on the above study, 
the entropy weight-TOPSIS-grey correlation rock mass grading method (referred to as 
“ETG” rock mass grading method) was established, with R1-R5 as a positive number and 
a full score of 100, and R6 and R7 as negative numbers, which are correction indicators. To 
avoid “jumps” in the grading process, a linear grading method is adopted, i.e., the upper 
limit of the evaluation index is used as the upper limit of the score, and the detailed grad-
ing criteria are shown in Figure 6. 

Table 16. “ETG” rock mass classification method. 

Evaluation Indicators R1 R2 R3 R4 R5 R6 R7 
J 0.2216 0.1831 0.1967 0.1941 0.2046 0.1507 0.3284 

Rating value 22.16 18.31 19.67 19.41 20.46 15.07 32.84 

 
Figure 6. Detailed classification criteria. 

The method is based on actual data in the field and uses Entropy weight, TOPSIS and 
Grey Correlation analysis to try to establish a “site-specific” rock mass classification 
method, it may be more suitable for specific areas than other common methods. 
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3.3.4. Project Examples 
The above “ETG” rock mass classification method was applied to the middle section 

of the Sanshandao mine, and the “ETG” grading results were compared with the IRMR 
method grading results, and the results are shown in Table 17. As can be seen from the 
table, in section −870, the grading results of the two grading methods differed, with 
IRMR being grade III and ETG being grade IV. The rest of the results were the same, but 
the ETG values were all lower than the IRMR values, and the grading results were more 
conservative, reducing the risk of damage to the roadway due to errors in grading the 
rock mass classification. 

Table 17. ETG and IRMR Grade Results. 

Serial Number 1 2 3 4 5 6 7 8 9 10 11 12 13 
IRMR value 45.8 45.9 57.2 56.3 50.7 49.3 50 48.8 40.5 52.1 45 33.3 34.3 

Grade Ⅲ Ⅲ Ⅲ Ⅲ Ⅲ Ⅲ Ⅲ Ⅲ Ⅲ Ⅲ Ⅲ Ⅳ Ⅳ 
ETG value 43.2 43.3 54.6 53.8 45.1 43.7 45.3 43.6 35.9 45.1 40.8 28.1 29.3 

Grade Ⅲ Ⅲ Ⅲ Ⅲ Ⅲ Ⅲ Ⅲ Ⅲ Ⅳ Ⅲ Ⅲ Ⅳ Ⅳ 

4. Conclusions 
In this paper, a comprehensive analysis of rock mass classification was carried out 

using the entropy weight method, TOPSIS method and grey correlation analysis and other 
scientific methods as an example of deeper than 780 m tunnels in the Xishan mining area 
of Sanshandao Gold Mine, with the following main conclusions: Because different rock 
mass classification methods have different evaluation indexes and attach different im-
portance to the evaluation indexes, even in the same region, different rock mass classifi-
cation methods sometimes fail to obtain consistent results. In this paper, the probability 
of complete agreement between the results of the three classification methods in each mid-
dle section of the deep area of Sanshandao Gold Mine is only 28.6%; The relative closeness 
degree of the three methods, the entropy weight and the grey correlation degree of the 
evaluation index were calculated by entropy weigh-TOPSIS-grey correlation analysis 
method. The relative closeness of the three methods was as follows: RMR > Q > BQ; Com-
prehensive consideration of entropy value, correlation and relative degree, such as, found 
that the highest degree in in-situ stress loss evaluation important, joint to the least im-
portant, on this basis, the “site-specific” was established by applying the scientific method 
to try “ETG” rock mass classification methods, for the establishment of the rock mass clas-
sification method in deep roadway area provides a train of thought; however, due to the 
limitation of data quantity and engineering practice, the advantages and disadvantages 
of this classification method still need to be further proved by field application and more 
data. 
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Appendix A 
“Standard for engineering classification of rock mass” [7] is China’s national stand-

ard, which divides rock mass classification into two steps. First, the basic quality BQ of 
rock mass is determined, and then the quality grade of rock mass is determined by com-
bining with the characteristics of specific projects. (The specific parameter value method 
and other precautions have been omitted). 
(1) The basic quality index of rock mass BQ is measured from the hardness of rock and 

the integrity of rock mass. BQ value is calculated by the following formula: 𝐵𝑄 =

90 + 3𝜎 + 250𝐾 , where 𝜎  is the uniaxial compressive strength of rock; 𝐾  is 
the integrity coefficient of rock mass, 𝐾 = 𝑉 𝑉⁄ , 𝑉  is the p-wave velocity of 
rock mass, 𝑉  is the p-wave velocity of rock mass. 

(2) Revise according to the characteristics of specific projects. The correction formula is: 
[𝐵𝑄] = 𝐵𝑄 − 100(𝐾 + 𝐾 + 𝐾 ) , where 𝐾  is the correction coefficient of the 
groundwater, 𝐾  is the correction coefficient of the main structural plane, and 𝐾  is 
the correction coefficient of the initial stress state. 
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