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Abstract: Polycyclic aromatic hydrocarbons (PAHs) contaminants have toxic, carcinogenic, and
mutagenic properties. Screening bacteria from different sources capable of carrying out the biodegra-
dation of (PAHs) is essential for mapping and mobilization purposes and applying them to polluted
hydrocarbon environments. The study aims to compare the capacity of PAH biodegradation by two
types of bacteria isolated from different sources. The method applied is the interaction between
bacterial suspension and pyrene-contaminated waste for 30 days. Biodegradation products in organic
compounds were analyzed using gas chromatography/mass spectroscopy (GC/MS) and Fourier
transform infrared spectroscopy (FTIR). The analysis results found several indications of the perfor-
mance of bacterial biodegradation: The capacity of pyrene degradation by Bacillus licheniformis strain
ATCC 9789 (Bl) bacteria against pyrene was relatively more dominant than Sphingobacterium sp. strain
21 (Sb) bacteria. The percentage of total bacterial biodegradation for product type Sb was (39.00%),
and that of the product of bacterial degradation type Bl (38.29%). The biodegradation products of the
test bacteria (Bl and Sb) were relatively similar to pyrene in the form of alcohol and carboxylic acid
organic compounds. There was no significant difference in the pyrene biodegradation between Bl
and Sb bacteria.

Keywords: biodegradation; pyrene; pollutants; bacteria; marine sponges; polluted seawater

1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) are non-polar molecules. The structure of
a PAH is composed of carbon and hydrogen atoms, and has no charge, a typical char-
acteristic because the ring structure is capable of delocalizing electrons in the aromatic
ring [1–4]. PAH components in nature are naturally available, and generally found in
coal, petroleum, and organic materials that have undergone thermal decomposition [5–7].
Population, dynamics, and efforts to meet the needs of human life have resulted in in-
creasing exploration and exploitation of fossil deposits, coal, and decomposed organic
biomass, resulting in the potential for disposal of PAHs components in nature to increase
yearly [4,8–10]. Aromatic hydrocarbon chemicals consist of several types [11–13]. The
simplest have two aromatic rings such as naphthalene or three rings (anthracene and
phenanthrene), while pyrene has four aromatic rings forming a stable structure, and other
PAHs have additional rings [1,14–16]. PAHs generally have toxic and even carcinogenic
and mutagenic properties [17–19]. The toxic level of PAHs tends to increase as the structure
of the aromatic ring member increases. Pyrene is one of the PAHs with a relatively high
level of toxicity [2,20,21].

The effects caused by exposure to pyrenes and similar PAHs on marine ecosys-
tems need to be monitored because the sea is a giant container that provides space
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for almost all waste materials on earth, including several types of dangerous and toxic
contaminants [9,22–24]. Such exposure can lead to a chain effect, which can cause problems
and impact human health [3,25–27]. However, marine life has materials that can reduce, de-
grade, and deactivate the toxic properties of PAHs components, especially microorganisms,
such as bacteria and fungi [5,28–30].

Several types of bacteria are part of the marine biota life that can degrade hydrocarbon
pollutants [19,31,32]. The mutualistic symbiosis of bacteria with sponges is a common
finding. Sponges are marine biotas that have life dynamics as filter feeders, often objects
and materials for research studies in biomonitoring and bioindicators of the pollution
components of heavy metals and PAHs [21,33–35]. This situation indicates that sponges can
adapt or survive in environments exposed to PAHs and heavy metals [7,36,37]. Sponges
are in symbiosis with microorganisms, especially bacteria, so conducting an in-depth
study of whether there is a relationship between sponges, bacterial symbiosis, and PAHs
contaminants would be of interest [17,38–40].

Many research reports show that several types of bacteria can degrade hydrocarbon
components, where bacteria can absorb carbon and convert it into energy [41–43]. Bacillus
and pseudomonas bacteria are known to be able to carry out the function of biodegrada-
tion of hydrocarbon components [4,44,45]. Gram-positive bacteria, found in the form of
bacilli, generally have aerobic properties, and some can become anaerobic when oxygen is
unavailable [3,46,47]. Bacillus group bacteria that live in contaminated environments can
produce endospores as a form of camouflage and can survive for long periods.

Bacteria of the bacillus group often exhibit symbiosis with marine sponges [48]. The
Sphingobacterium group of bacteria is a genus that belongs to the Sphingobacteriaceae family,
containing high concentrations of sphingophospholipids [11,49]. Sphingobacterium is a group of
bacteria isolated from several habitats, one of which can be obtained from seawater [50–52].
Both groups of bacteria can biodegrade aromatic hydrocarbon components. The main
objective of this research is the availability of quantitative data related to the biodegradation
strength of a type of bacteria obtained from different sources [53–55].

Bioremediation of PAHs using microorganisms has been widely developed. Several
types of bacteria capable of carrying out biodegradation of PAHs isolated from marine
water are suspected to be contaminated with hydrocarbons, including Bacillus [56,57],
Gammaproteobacteria, and Pseudomonadales [4,58]. Isolates from hydrocarbon contami-
nated soil include Micrococcus luteus [59], Lasiodiplodia theobromae [59–61], and Pseudomonas
aeruginosa [62]. Several bacteria were isolated from marine biota, especially marine sponge
microsymbionts, for example, Bacillus sp. strain AB353f, B. pumilus strain GLB197, B. cohnii
strain DSM 6307, and Acinetobacter Calcoaceticus strain PHCDB14 [9,63–65]. Microorgan-
isms associated with mangroves have also been identified to carry out the biodegrada-
tion function of PAHs [40,66,67]. Their research includes the biodegradation of hydro-
carbon components using Ganoderma lucidum, Penicillium sp., and filamentous isolated
from fungi [3,7,32,68]. Types of PAHs that have been successfully degraded by a num-
ber of microorganisms, including bacteria and fungi, include naphthalene [8,21,69], an-
thracene [4,10,70], phenanthrene [7,71], pyrene [2,4,7,40,72], and benzo(a)pyrene [36,37,73].

Comparative analysis of the strength of bacterial biodegradation of PAH components
is important in mapping the type, source, and effectiveness of the biodegradation of these
bacteria against PAHs [74–76]. The data from this research can also be used to develop
and apply environmental bioremediation against other types of pollutants, such as heavy
metals, microplastics, and pesticide residues. Future bioremediation using bacteria is likely
to occur in treating medical waste, radioactive, and other hazardous chemicals [6,77–79].
The use of bacteria that have remediation capabilities can also potentially be applied to
liquid waste, solid waste environments, and even air. The development of knowledge on
screening the type and source of bacteria is attractive, especially for microorganisms such
as fungi [44,57,80].

Research on the biodegradation of pollutants in the environment using microorgan-
isms such as bacteria and fungi is still an open topic. It is an interesting research area
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with potential future benefits in environmental management [81–83]. This research is part
of a series and developments of several previous studies on carcinogenic PAHs with the
theme of screening for hydrocarbon degrading bacteria [12,84]. The novelty presented in
this research is the source of bacteria isolated from marine sponges for the application of
biodegradation of PAHs [85,86].

Polycyclic aromatic hydrocarbon (PAHs) pollution can harm marine ecosystems and
human safety due to its bioaccumulation, biomagnification and biodegradability poten-
tial, toxicity, and toxicity and carcinogenicity in nature [87,88]. Thus, the importance of
degrading these pollutants from aquatic environments by an ecological method such as
biodegradation using bacteria isolated from suitable environments capable of decomposing
them is undeniable [3,4,86]. Based on this, it is necessary to make efforts to reduce PAHs
contaminants by applying one of the methods, namely a combination of microbiological
studies with determination of the level of pyrene degradation using GC/MS and analysis of
biodegradation product functional groups using FTIR, which allows for an excellent char-
acterization of the pyrene biodegradation scenario and evaluation of the tested bacterial
strains under a condition for the performance of appropriate tests and proper interpretation
of the results [89–92].

2. Materials and Methods
2.1. Materials and Bacterial Strains

The material used is Bacillus licheniformis strain ATCC 9789 (Bl), Sphingobacterium sp.
strain 21 (Sb), pyrene for GC as the main ingredient in the analytical standard (Supelco-
Sigma Aldrich, Santa Clara, CA, USA), and other materials, such as N-hexane (brand)
for GC, anhydrous Na2SO4, ethanol, peptone, glucose, nutrient agar, physiological NaCl
0.9%, yeast extract, aquabides, ethanol, and nitrogen gas. The gas chromatography/mass
spectrometer (GC/MS) from Agilent Type 7890A (operating conditions for GC/MS max) is
the main instrument for measuring biodegradation performance. The GC/MS operating
temperature is 350 ◦C. The operating temperature of the instrument is increased slowly, i.e.,
the temperature rise is 10 ◦C every 5 min and the pressure is 18,406 psi. To work stably, a
Helium gas carrier, a speed of 150 mL/min, capillary column (Agilent 19019S-436HP-5 ms),
(Sigma-Aldrich, Santa Clara, CA, USA) and Fourier transform infra-red (FTIR) Shimadzu
IR Prestige-21 and OD600 spectrophotometer visible [11,49,90–92].

Two types of bacteria were used, Bl and Sb. Bacterial Bl was isolated from the marine
sponge Auletta sp. around Kodingareng Keke Island, a small island included in the Marine
Tourism Area of Makassar City, Spermonde Archipelago Cluster (Figure 1A). Bacterial Sb
was isolated from marine water suspected to be contaminated with hydrocarbon com-
ponents, precisely around Soekarno Hatta port (Figure 1B) [4,66]. The sampling point
distance of the two locations (Figure 1A,B) is approximately 21 km. The selection of these
two types of bacteria (Bl and Sb) from different sources was based on data on phenotypic
characterization using standard 16-parameter biochemical reagents and data on genotypic
analysis using PCR that researchers had previously carried out. Bacterial isolates Bl and Sb
are isolates of the research stock [4,6,89,90].
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Figure 1. Sampling locations of sea sponges and seawater sources of bacterial isolates. The distance
between the two sampling points is ±3.45 km; (A) map of Kodingareng Keke Island, part of the
Spermonde Archipelago Cluster, Makassar City Administration. The sampling location of the marine
sponge Auletta sp., the source of Bl. Sponge sampling point (red circle) at coordinates 5◦06′38.12′76′′

S; 119◦17′7.76′44′′ E; (B) sampling location of marine water source of bacteria type Sb (red triangle),
obtained around Soekarno-Hatta Seaport, Makassar. The seawater sampling point is at coordinates
5◦06′25.23′14′′ S; 119◦25′3,21.25′′ E.

2.2. Sample Preparation

In the first stage, bacterial isolate cells were propagated using the culture method. The
culture was carried out in a test tube, and then the bacterial cells were suspended using
aquabides. Incubation for 1 × 24 h was carried out along with a Gram staining test to
confirm the Gram groups of the two types of bacteria tested. A row of sterilized labeled
degradation vials was prepared. Each vial was filled with 10 mL of bacterial suspension
and then adapted to the new environment for 1 × 24 h in an incubator. In the second stage,
200 mL of pyrene 1000 mg/L was made [6,9,21]. In each degradation vial that already
contained a bacterial suspension, 5 mL of pyrene solution was added so that the interaction
between the bacterial suspension and the pyrene solution occurred.

2.3. Performance of Bacteria and Biodegradation Products

Each degradation vial was placed in a shaker incubator and agitated at 200 rpm.
The contact between the bacterial suspension and pyrene (substrate) lasted for 30 days.
Every 3 days, biodegradation parameters (optical density) were observed and measured.
Measurement of the level of biodegradation was carried out after the interaction time of 10,
20, and 30 days using GC/MS [4,19,23,89].

The determination of the level of biodegradation was carried out using all samples in
the vial that had reached an interaction period of 10 days, and their multiples were extracted
using N-hexane to extract the pyrene component that was not degraded. The N-hexane
extract was added with Na2SO4 to attract water components and other contaminants that
could interfere with the measurement using GC/MS. The N-hexane extract was then used
to obtain data on the performance of bacteria and components of biodegradation products
via GC/MS [4,90,91]. The N-hexane extract was also used to obtain data on the types of
components of the biodegradation product using FTIR, according to the functional groups
shown on the chromatogram [14,68,91,92].

3. Results
3.1. Morphological Analysis

The culturing process of two isolates used as PAH degradators was carried out using
different sources. Bacillus licheniformis strain ATCC 9789 (Bl) was isolated from the marine
sponge Auletta sp., while Sphingobacterium sp. strain 21 (Sb) was isolated from marine water
and was suspected of being exposed to PAHs. The two test bacteria were selected based
on the biodegradation potential of their PAHs in previous studies [3,5,93]. The process of
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culturing, morphology, and microscopy of the two types of isolates used to degrade PAHs,
especially pyrene, is shown in Figure 2.
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Figure 2. Comparison of morphology of two types of bacterial isolates cultured on NA selective
media, after incubation 1 × 24 h; (A) growth of type Bl bacterial isolates; (B) growth of Sb type
bacterial isolates.

According to the criteria for phenotypic and genotypic characteristics, isolates Bl and
Sb were selected. Both isolates were cultured, and the culture results were converted into a
suspension. The microscopic analysis results show that isolate Bl was isolated from marine
sponge type Auletta sp., and the sponge was obtained around Kodingareng Keke Island
(Figure 1A) [30,50,94].

The morphology of bacterial isolate Bl (Figure 2A) can be illustrated as follows: ridged
rod shape, cream color, spread in clusters, endospores, and less clear, while bacterial isolate
Sb (Figure 2B) has a ridged rod shape, brown color, different distribution, and lack an
endospore [41,50]. Thus, it is suspected that there are differences in the degradation ability
of PAH components, especially pyrene [4,19,39]. Comparison of growth rates between Bl
and Sb bacteria on selective media aquabides with an incubation period of up to 30 days
can be seen based on the optical density of the growth of the two types of bacteria measured
at λmaks 600 nm [3,9], according to Figure 3.
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Figure 3. OD 600 values of both bacterial cells (Bl and Sb) in aquabides media without adding pyrene
contaminants.

Based on the optical density (Figure 3), it was shown that Bl bacteria had a higher
optical density than Sb bacteria. This situation indicates that the population and cell size
of Bl bacteria is large, and growth is more aggressive than that of Sb bacteria. Changes in
OD600, based on the incubation period, indicated the activity of both bacterial cell types
(Bl and Sb). Figure 3 shows that the growth rate of Bl bacteria is relatively higher than that
of Sb [4,6,19]. Thus, it can be predicted that the level and strength of degradation of Bl
bacteria is dominant compared to Sb bacteria. In the incubation period, for the first 10 days,
both bacteria appeared in the adaptation phase. The next 10 days, or an incubation period
of 20 days, showed the bacteria in the cell division or multiplication phase. The incubation
period of 30 days showed that bacterial cells have decreased activity [4,14].
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A comparison of the optical density (OD) values of the two types of bacteria during
the interaction with pyrene can be assumed to embody the biodegradation power of Bl and
Sb bacteria against pyrene (Figure 4). It appears that the OD of Bl bacteria is higher than
that of Sb bacteria. The difference in OD values begins to be seen at the 6-day interaction
period, where the OD shown in the interaction of bacteria (Bl + pyrene) is higher than the
OD value of the interaction of bacteria (Sb + pyrene). This situation continues until the
interaction reaches 30 days; even the difference in OD values tends to get wider with the
increase in interaction time. This indicator shows that the biodegradation activity of Bl
bacteria against pyrene is more potent than that of Sb bacteria. In general, it can be said
that both types of test bacteria have degradation activity against pyrene [30,73].
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Figure 4. OD value of aquabides in each medium containing bacterial cells Bl + pyrene and
Sb + pyrene.

Another indicator that shows that pyrene is degraded by Bl and Sb test bacteria
according to several degradation parameters, including (1) increasing the temperature at
the interval of 28–30 ◦C during the interaction period between days 10 to 24 and 26 to 30;
(2) there was a change in the pH of the interaction medium at pH 6.64, which gradually
decreased to pH 5.34 (the interaction medium was slightly more acidic). This condition
occurred during the 8- to 30-day interaction period [24,33]; (3) gas bubbles in the interaction
medium were seen on the eighth day of contact, and the population tended to increase with
interaction time; and (4) the smell of fermentation from the interaction medium, observed
on the 10th day of interaction until the 30th day of the measurement period. However,
these four points cannot be used to distinguish the strength of the biodegradation activity
between Bl and Sb bacteria in pyrene biodegradation [2,27,35].

The growth of Bl and Sb bacteria, respectively, suspended in aquabides media without
the addition of pyrene contaminants (Figure 3) or with the addition of pyrene (Figure 4),
there was no significant difference in growth. However, it was confirmed that these two
types of bacteria (Bl and Sb) underwent growth in aquabides media exposed to pyrene
contaminants, indicated by an increase in OD 600 values in each growth medium. The OD
value of 600 in both distilled water media containing Bl + pyrene and Sb + pyrene bacteria,
respectively (Figure 4), appeared to be higher than the OD 600 value for each aquadest
medium which only contained Bl or Sb bacteria. This is due to the interaction between
Bl/Sb bacterial cells and pyrene, resulting in increased turbidity in the media [12,19].

The increase in the value of OD 600 in distilled water media, suspended by Bl/Sb
bacteria with the addition of pyrene contaminants, is thought to be caused by several
factors, namely: (1) There was growth and division of the number of bacterial cells in each
medium. (2) The biodegradation performance of Bl/Sb bacteria against pyrene produces
biodegradation products in the form of simple organic compounds. (3) There is a parallel
growth and division of bacterial cells with the formation of simple organic compounds
resulting from biodegradation [2,22]. These three factors are measurement uncertainties, so
they can be ignored because the measurement of OD 600 is only a qualitative analysis to
ascertain whether Bl and Sb bacteria are tolerant to the presence of pyrene contaminants.



Sustainability 2022, 14, 9890 7 of 19

The biodegradation performance of Bl and Sb bacteria against pyrene was based on the
results of GS/MS and FTIR analysis [4,90,91].

3.2. Comparison of the Biodegradation Performance of Test Bacteria

Analysis of the difference in the strength of the biodegradation of the two bacteria
tested against pyrene is presented, based on aspects of the abundance of components and
the number of peaks formed (Figures 5–7) and types and differences in organic compounds
of degradation products (Tables 1 and 2). Similar studies using other marine sponge sym-
biont bacteria have been conducted [4,19,29,62]. That study observed the biodegradation
performance of marine sponge symbiont bacteria against PAH components (naphthalene,
anthracene, and pyrene) [4,6,12,66]. The red peak is the degraded pyrene component, while
the other peaks are degradation products. This research initiated an analysis related to
the comparison of biodegradation performance between bacteria isolated from seawater
contaminated with the hydrocarbon component of the Sphingobacterium sp. strain 21 (Sb)
versus the marine sponge symbiotic bacterium Bacillus licheniformis strain ATCC 9789 (Bl)
against pyrene using a combination of GC/MS and FTIR analytical instruments [4,19,92].
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10 days; (A) chromatogram of degradation between bacterial isolate Bl and pyrene; (B) chromatogram
of degradation between bacterial isolates of Sb and pyrene.
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Figure 7. Comparison of peak abundances of biodegradation chromatograms, interaction time
30 days; (A) chromatogram of degradation between bacterial isolate Bl and pyrene; (B) chromatogram
of degradation between bacterial isolate Sb and pyrene.

Table 1. GC/MS biodegradation reading data between Bacillus licheniformis strain ATCC 9789 (Bl)
biodegradator bacteria against pyrene.

Peak Number Retention Time
(Seconds) Height Peak Quality (%) Compound Name

Contact time 10 days

1 10.261 156,964 94 Ethyl-methylazulene

2 17.467 4366 45 Meso-4,5-Dicyclohexyl-
2

3 21.771 4,282,463 95 Pyrene

Contact time 20 days

1 10.267 730,588 94 Dimethylazulene

2 17.467 427,236 50 3-dimethyl-
methanephosphonate

3 21.796 3,809,710 96 Pyrene

Contact time 30 days

1 10.273 454,990 94 Isopropyl azulene

2 15.165 551,463 98 Phenol, 2,6-bis(1,1-
dimethylethyl)

3 16.697 420,591 97 Benzenemethanol

4 17.467 282,380 50 5-methylbicyclo [3.2.0]
heptan

5 18.530 247,395 95 Phenanthrene
6 21.808 1,199,647 96 pyrene
7 22.271 277,763 48 1-Nonadecene
8 23.885 208,195 52 Eicosane
9 23.947 222,869 56 Tetrapentacontane

10 26.812 1,507,974 87 Terephthalic acid
Note: Peak number according to GC/MS chromatogram (Figures 5–7) section A.
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Table 2. Data of GC/MS biodegradation results between biodegradator bacteria Sphingobacterium sp.
strain 21 (Sb) against pyrene.

Peak Number Retention Time
(Seconds) Height Peak Quality

(%) Compound Name

Contact time 10 days

1 17.467 127,964 52 1,3-dimethylbutyl
phosphonate

2 21.777 4,010,224 96 Pyrene

Contact time 20 days

1 17.467 407,716 52 2H-Tetrazole
2 21.789 3,481,296 95 Pyrene

Contact time 30 days

1 10.273 2,826,324 94 Dimethyilazulene
2 16.698 261,361 97 Benzenemethanol
3 17.467 263,235 52 2H-Tetrazole
4 21.796 2,788,232 96 Pyrene
5 23.883 229,305 58 Tricosane
6 26.812 1,144,755 87 Terephthalic acid

Note: Peak number according to GC/MS chromatogram (Figures 5–7) section B.

The difference percentage of pyrene that did not undergo biodegradation and the
components organic compounds of biodegradation products are shown in Figures 8 and 9.
It includes functional groups of organic compounds of biodegradation products (Figures 10
and 11). These three indicators provide qualitative and quantitative data on the strength of
the biodegradation of the two types of bacteria against pyrene [40,48,61].
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Figure 8. Comparison of the percentage of pyrene components as a substrate not degraded by Bl and
Sb bacteria based on interaction time.
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Figure 9. Comparison of the percentage of the total components of bacterial biodegradation products
of Bl and Sb types to pyrene based on interaction time.
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Figure 11. Spectrum showing functional groups of organic components in the biodegradation
performance of Sphingobacterium sp. strain 21 (Sb) against pyrene after 30 days of interaction.

Based on a comparison of GC/MS chromatograms at 10-day contact of biodegradation
of pyrene components, there were three peaks (Figure 5A) resulting from the interaction of
Bl bacteria with pyrene, and there were two peaks (Figure 5B) in the interactions between
Sb bacteria and pyrene, indicating that B1 bacteria more potently reduced aggressiveness
of pyrene compared to Sb bacteria [94,95]. The GC/MS chromatogram at the 20-day
interaction period between Bl and Sb bacteria against pyrene (Figure 6A,B) showed a
relatively similar appearance to that of the 10-day interaction, especially the number of
peaks [4,90,92].

However, the peak height indicated that the pyrene component decreased more
sharply than in during the first 10 days of interaction. On the other hand, the components
suspected of being biodegradation products experienced a slight increase in peak height,
indicating an increase in the components of degradation products [38,94]. Chromatograms
for the 30-day interaction between Bl and Sb bacteria with pyrene (Figure 7A,B) exhibited
significant changes, especially in the number of new peaks formed, indicating that the peak
height of the pyrene component experienced a sharp decrease. Ten peaks were identified
in the chromatogram of the interaction of Bl bacteria with pyrene (Figure 7A), indicating
that there were nine components of the bacterial biodegradation product type Bl.

In contrast, in the interaction of bacteria Sb with pyrene (Figure 7B), only six peaks
were seen, indicating five identified peaks with the component of the product of bacterial
biodegradation of Sb. Numbers and arrows in red (Figures 5–7) indicate the pyrene
component as a substrate that undergoes degradation [7,40,74]. These results showed
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that Bl-type bacteria isolated from the marine sponge Auletta sp. did not have a more
aggressive biodegradation activity against pyrene than Sb-type bacteria isolated from
seawater. [36,41,96]. The biodegradation dynamics of the two types of bacteria tested
against pyrene are shown in Tables 1 and 2.

Potential formation of pyrene derivative products as a result of bacterial biodegrada-
tion in biodegradation was studied for bacteria types Bl and Sb. First, the pyrene molecule
was formed by combining four benzene molecules. The benzene ring breaks when pyrene
undergoes biodegradation through an oxidation reaction mechanism in one of the benzene
structures in several stages through oxidation metabolism [3,94]. The exact process can
occur in the second benzene molecule until the reaction ends with one benzene molecule.
Two benzene molecules are broken apart at this stage, leaving two benzene molecules intact,
possibly forming a naphthalene molecule. This assumption can be proven validly, but it
takes a long series of extensive research, a super and accurate analysis with the support of
a complete analysis using NMR [94,95].

Second, the use of glassware and analytical instruments during the sample preparation
process leads to the possibility of equipment contamination with naphthalene components
due to human error. If the second assumption is valid, this is an oversight from our analysis
work, but it was emphasized that work was carried out correctly and according to the
procedure during the testing process. This can also be seen in the data in Table 2, as no
naphthalene was detected even though the procedures we carried out were identical and
simultaneous [4,96].

The results of the biodegradation of B1 bacteria against pyrene were indicated by the
GC/MS readings (Table 1). Several benchmarks indicate that there was biodegradation of
pyrene as a substrate by type Bl biodegradator bacteria, including: first, the decrease in
the peak height of the pyrene component, which is analogous to the decrease in pyrene
concentration due to changes in structure, decomposition, degradation, and reduction in
components as a result of bacterial activity type Bl [1,4,6,8,91]. Second, the decrease in the
percentage area of the pyrene component is a sign that the concentration of pyrene reduces
as the interaction time between Bl bacteria and pyrene increases. Third, the percentage of
the total composition of the biodegradation product increased with contact time between
Bl bacteria and pyrene. Furthermore, the number of components formed tends to increase
following the increase in interaction time [2,96].

However, the number of these components is not entirely seen as the end product
of degradation. The final product of bacterial pyrene biodegradation cannot be ascer-
tained with a constant. Components of biodegradation products (Tables 1 and 2) can be
divided into two categories: First, components with product quality ≥ 90% (similarity
level indicated by reference or GC/MS library) are assumed to be the final products of
biodegradation according to contact time. Second, components with content of <90% are
intermediate products [90,95]. The final product of biodegradation is still very likely to
change towards a simple organic compound in the form of methyl if the interaction time is
added as long as it is believed that bacteria are still working (the biodegradation process
will continue). The components of the biodegradation products (Tables 1 and 2) can be said
to be intermediate products [94,95,97].

Certain bacteria can carry out the biodegradation of compounds containing carbon,
where bacteria can convert carbon into energy, so it is assumed that there are almost
no constant and permanent biodegradation products. These components will continue
to change until they reach simple organic compounds because bacteria carry out their
biodegradation function act as enzymes, so that the biodegradation of pyrene as a substrate
may be a fermentation reaction, and then it cannot be categorized as the final product of
bacterial biodegradation because the component may be a transition product [19,62,66,98].

The analysis of the biodegradation process for Bl bacteria against pyrene, according
to the GC/MS reading data (Table 1), was identical to the biodegradation data for Sb
bacteria against pyrene (Table 2). Comparative analysis of the biodegradation strength
between Bacillus licheniformis strain ATCC 9789 (Bl) and pyrene based on interaction time



Sustainability 2022, 14, 9890 12 of 19

showed the symbiont bacteria of the marine sponge Auletta sp [4,12,19]. The biodegradation
power is relatively balanced compared to Sphingobacterium sp. strain 21 (Sb) isolated from
marine water contaminated with PAHs. However, it does not necessarily mean that
marine sponge symbiont bacteria have weaker biodegradability against PAH components
than bacteria isolated from marine water contaminated with hydrocarbon component
pollutants [15,18,98]. General conclusions regarding the biodegradation strength of marine
sponge symbiont bacteria compared to bacterial isolates from seawater contaminated with
PAHs require a comprehensive bacterial investigation and analysis [48,71,97].

3.3. Biodegradation Performance

Comparative analysis of the biodegradation strength between Bl and Sb bacteria
against pyrenes was based on interaction time (Figure 8). In general, it can be seen in the
total pyrene that it was not degraded by the test bacteria.

The results of the analysis of the biodegradation activity of the tested bacteria on the
pyrene component showed no significant difference in the strength of the biodegradation.
However, there were differences in the total degraded pyrene component at several times of
observation and measurement. The dominance of the biodegradation power of B1 bacteria
against pyrene was seen in the contact phase for the first 10 days. In the second 10-day
contact phase, it appears that the biodegradation strength of the two types of bacteria tested
is relatively balanced [2,96].

Even in the third 10-day contact phase, the biodegradation strength of Sb bacteria
appears to outperform Bl type bacteria (Figure 8). These results have implications for the
total biodegradation products predicted to follow a relatively undifferentiated pattern.

Aspects of the percentage analysis of the total components of the biodegradation
product as a result of the work of the two types of bacteria tested against pyrene (Figure 9)
showed a similarity in the path of biodegradation strength [7,14]. The percentage of total
biodegradation products of Bl test bacteria in the first 10 days of contact phase was greater
than that of Sb’s total biodegradation products. However, in the second 10 days of contact,
the percentage of total biodegradation products between the two test bacteria showed
similar results. Even at the third phase of contact, the 30th day of the interaction period,
the percentage of total biodegradation products of Sb type bacteria was more significant
than that of Bl type bacteria [5,11,94,95].

An overview of the energy aspects of most molecular vibrations relates to the infrared
region. Molecular vibrations can be detected and measured in the infrared spectrum. The
results of the FTIR spectra analysis showed that after the interaction between the pyrene
component and the suspension of the test bacteria, the pyrene component decomposed
into simple organic compounds, which could be analyzed based on the wavenumbers of
the functional groups according to the FTIR chromatogram shown by the Bl and Sb test
bacteria [6,12,68,99].

The results of FTIR analysis (Figure 10) showed one of the degradation products of sim-
ple organic compounds in the form of phenol, alcohol monomers, hydrogen-bonded alcohol,
a carboxylic acid group, carboxylic acid hydrogen bonds, or aromatic carbon-hydrogen
bonds. Absorption in the range 3200–3600 cm−1, specifically 3444.87 cm−1, indicates the
presence of the -OH functional group. The absorption at 2958.80 and 2929.87 cm−1 showed
a peak with a characteristic shape of the absorption region of C–H alkanes. The absorption
area of 1610–1680 cm−1, precisely at the peak of 1639.49 cm−1, shows a typical shape
representing C=C alkenes [95,99].

The absorption area is 1500–1600 cm−1 and shows the typical shape of the aromatic
C=C bond. The peak of the absorption indicates the presence of aromatic cyclic bonds. The
absorption area is 1050–1300 cm−1, indicating the presence of the C–O functional group,
precisely at the peaks of 1093.64 cm−1; 1192.01 cm−1; and 1261.45 cm−1, suggesting the
absorption of compounds that have a –OH (hydroxyl) functional group, each indicating a
compound of alcohol, ether, carboxylic acid, and ester groups. Aromatic rings with C–H
bonds appear at absorption in the range of 690 to 900 cm−1, while at peaks of 40.67 and
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794.67 cm−1, they indicate the presence of aromatic cyclic bonds [4,21,98,99]. These results
indicate the suitability of the components of simple organic compound biodegradation
products of type B1 bacteria against pyrene (Table 1).

FTIR spectra analysis (Figure 11) shows the components of simple organic compounds,
the result of pyrene biodegradation of Sb bacteria. In general, it can be said that these
simple organic components are the result of the decomposition of pyrene components in
the form of alcohol group organic compounds. In phenol, groups of alcohol monomer,
hydrogen-bonded alcohol, phenol carboxylic acid monomer, and carboxylic acid hydrogen
bonds will be absorbed in about 3200–3600 cm−1 and 3446.79 cm−1, indicating the presence
of the –OH functional group. Absorption at 2924.09 and 2852.72 cm−1 showed a typical
peak shape identical to the C–H absorption region of alkanes [38,99,100].

Based on the data above, it is generally assumed that the biodegradation mechanism of
PAHs by both types of bacteria (Bl and Sb bacteria) is estimated to be relatively the same as
the biodegradation process of other types of PAHs, such as anthracene and phenanthrene.
The rate of PAH metabolism by microorganisms depends on the number of aromatic rings.
This biodegradation mechanism also has a metabolic pathway similar to pyrene using
Mycobacterium sp. PYR-1[45,56,88], through the oxidation pathway, breaks one benzene
molecule to form a new molecule in the form of a carboxylic compound and frees H2O
molecules. It can be seen that there are limiting factors that inhibit the biodegradation pro-
cess of microorganisms against PAH components. So that biodegradation is not complete
or leaves an aromatic benzene molecule. Thus, the biodegradation process converts carbon
elements into energy through metabolic pathways, and the oxidation reaction proceeds
slowly or even stops altogether [19,23,66].

Based on the above variables and assumptions regarding the mechanism of pyrene
biodegradation, it can be stated that the bacterial isolate of Bacillus licheniformis strain ATCC
9789 (Bl) has a relatively balanced biodegradation power against pyrene when compared to
Sphingobacterium sp. strain 21 (Sb) [4,6,97,101]. The biodegradation performance of the two
types of bacteria (Bl and Sb) tends to increase along with the increase in contact time with
pyrene contaminants [12,19]. The mechanism of pyrene biodegradation using two different
types of bacteria (Bl and Sb) followed a relatively similar pathway, although these bacteria
were isolated from different sources [1,102]. The product of biodegradation of hydrocarbon
components by marine bacteria is in the form of simple organic compounds.

4. Discussion

The study of qualitative and quantitative aspects of the biodegradation performance
of the two isolates (Bl and Sb) showed contradictory results. The qualitative analysis of
the biodegradation performance of Bl bacteria against pyrene showed a stronger aggres-
siveness than Sb bacteria. This is based on the GC/MS chromatogram and the number of
biodegradable components after 30 interactions which reached 10 components (Figure 7A
and Table 1) [17,94]. These results are confirmed by the FTIR spectrum, which appears to be
more complex, including visible functional groups, as a manifestation of the biodegradation
products in the form of simple organic compounds (Figure 10). Qualitative analysis of the
biodegradation performance of Sb, according to the GC/MS chromatogram, identified only
six components (Figure 7B and Table 2) [18,96].

Similarly, the FTIR spectrum appears simpler (Figure 11). The results of the quantita-
tive analysis found that for the biodegradation performance of the two types of bacteria
against pyrene, it appears that Sb bacteria are relatively stronger than Bl bacteria [21,99].
The percentage of pyrene components that were not degraded by Bl bacteria (61.71%)
was relatively higher than that of Sb bacteria (60.00%) (Figure 8). This suggests that the
biodegradation performance of Sb bacteria is relatively higher than that of Bl bacteria.
These data are corroborated by the percentage of bacterial biodegradation performance
of Sb (39.00%), slightly higher than the performance of bacteria Bl (38.29%) (Figure 9) for
pyrene components [3–5,11,23]. Statistical analysis showed no difference in the biodegrada-
tion performance of the two types of bacteria (Bl and Sb). This result is influenced by the
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adaptability and biodegradation mechanism of two types of bacteria that can exert on the
pyrene component.

Based on the data of biodegradation parameters such as fermentation reactions, in the
form of OD values, changes in pH, interaction temperature, and the presence of gas bubbles
and fermentation odors combined with GC/MS and FTIR data, it can be said that both types
of bacteria can carry out the biodegradation function of pyrene [4,89]. The biodegradation
products are organic compounds, for example, alcohol, aldehyde, and carboxylic acids.
The level of performance of the biodegradation of the two types of bacteria (Bl and Sb)
against pyrene is relatively tiny [36,95,99]. The biodegradation mechanism is an oxidation
reaction, namely, the entry of -OH molecules, followed by the breakup of one benzene
molecule, which marks the change in the structure of pyrene into a carboxylic acid product.
Ideally, biodegradation can run continuously until the final product is reached, namely,
benzanoate molecules in the form of cinnamate and pinacol products, provided that the
interaction time is extended and it is believed that there are still bacteria in the working
biodegradation reactor. This process is called the final reaction or the termination step of
biodegradation [27,31,39,88].

The illustration in Figure 4 shows a symbiont of the marine sponge Auletta sp., a group
of Bacillus bacteria, Bacillus licheniformis strain ATCC 9789 (Bl), with relatively similar
pathways for metabolism or pyrene biodegradation using Sphingobacterium sp. strain 21
(Sb) bacteria isolated from marine water contaminated with PAHs. In general, it can be
said that the biodegradation mechanism of PAHs is similar to the biodegradation process
of other types of PAHs, such as anthracene and phenanthrene [39,46,102].

The rate of metabolism of PAHs by microorganisms depends on the number of
aromatic rings. This biodegradation mechanism also has similar metabolic pathways
to pyrene using Mycobacterium sp. PYR-1 [45,56,88] through the oxidation pathway of
breaking one benzene molecule so that a new molecule is formed in the form of a car-
boxylic compound and frees H2O molecules. According to the results of the analysis
(Figures 5–7, 10 and 11, as well in Tables 1 and 2), there is a limiting factor that inhibits the
biodegradation process of microorganisms against PAHs components so that the biodegra-
dation is not complete or leaves the aromatic benzene molecule [88]. Thus, the biodegrada-
tion process converts carbon elements into energy through metabolic pathways, and the
oxidation reaction proceeds slowly and even stops completely [19,23,66].

The results of this study are expected to be developed for screening of other types of
bacteria from various sources that can biodegrade hydrocarbon components, especially
PAHs [94,95]. The achievements of this research also open up opportunities for using these
bacteria in the bioremediation of other types of pollutants, such as pesticide residues, heavy
metals, and microplastics, so that the goal of formulating crystalline carbonoclastic bacteria
can be realized [12,21,64]. The aim is a form of environmental protection against the threat
of contamination by toxic components.

5. Conclusions

Some of the findings obtained from this study are summarized in several conclusions:
The two types of test bacteria (Bl and Sb) can degrade the pyrene component. A qualita-
tive study based on the number of components and FTIR spectrum showed that Bacillus
licheniformis strain ATCC 9789 (Bl) had the same strong biodegradation performance as
Sphingobacterium sp. strain 21 in pyrene biodegradation. Quantitative analysis showed
that the pyrene component’s biodegradation performance of Sb bacteria was relatively
stronger than that of Bl bacteria. The total bacterial biodegradation product type Sb (39.00%)
was slightly higher than the type Bl biodegradation product (38.29%) achieved during the
30-day interaction period. There is no statistically significant difference in the biodegra-
dation performance of these two types of bacteria. It means that it can be ignored. The
biodegradation products of the two test bacteria (Bl and Sb) against pyrene were simple
organic compounds with alcohol and carboxylic acid groups. The biodegradation perfor-
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mance of the two types of bacteria tested against pyrene followed the same path, namely,
carbon metabolism as an energy source through oxidation reactions.
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