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Abstract: Due to the national policy of encouraging the development of power exchange modes,
the reasonable planning of vehicle distribution paths to meet the demand of lithium battery power
exchange points has become a topic of considerable research interest. In this study, we propose the
“centralized charging + unified distribution” power exchange mode for optimizing the charging and
transporting of lithium batteries. Considering lithium batteries are dangerous goods, the vehicle path
problem of simultaneous pickup and delivery of lithium batteries with vehicle load and soft time
window constraints is studied. The model objective is to minimize the transportation risk and total
cost of delivery. By performing crossover and mutation operations on the initial solutions generated
by the ant colony algorithm, a hybrid ant colony genetic algorithm (ACO-GA) is designed to solve
the model. The results of ACO-GA are compared with the GA, ACO, and SAA methods using the
Solomon dataset; the results show that the optimized ant colony algorithm can achieve a smaller
total cost in solving the model. Finally, taking a lithium battery leasing business in Company A, we
determine the optimal path under different preferences by setting different weights for distribution
cost and transportation risk in the model transformation, which provides a reference for the company
to select the distribution route. Thus, the model provides a reference for companies that intend to
develop power exchange businesses.

Keywords: centralized charging + unified distribution; vehicle routing problem; transportation risk;
ACO-GA

1. Introduction

With the strengthening of the concept of healthy travel and the further improvement
and supplementation of urban infrastructure, the urban micro-travel tools market has
continued to expand, and micro-travel tools such as electric bicycles have become common,
safe, and reliable means of transportation. In 2020, the ownership of electric bicycles in
China was approximately 320 million units [1]. Electric bicycle batteries are mainly run
on lead-acid batteries and lithium batteries. Driven by factors such as product technology
advancement and environmental protection requirements for green travel, the sales of
lithium batteries for two-wheeled electric vehicles have increased significantly from 5.4%
in 2016 to 23.4% in 2021 [2]. Lithium batteries offer many advantages, such as long life,
being light weight, and having a high energy density. To ensure the safe and standardized
usage of electric vehicles, the New National Standard stipulates that the weight of electric
bicycles should not exceed 55 kg [3]. The capacity of the battery is limited by the weight of
the vehicle, making the farthest travel distance with a single battery limited to less than
60 km, which requires frequent charging operations of the battery during use, subsequently
increasing the demand for power exchange [4].

By the end of 2020, 1500 highway service areas (including parking areas) in 31 provinces
in China had been replaced by charging and replacement facilities [5]. New infrastruc-
ture such as charging piles and replacement stations are also under active construction.
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With the continuous development of the urban express service industry, the demand for
lithium battery leasing and replacement from takeaway, express, and other groups has
gradually increased. However, this increase in usage of green energy is not without risks.
In 2021, nearly 18,000 fires and 57 deaths were caused by electric bicycles and their battery
failures [6]. The high incidence of accidents is mainly concentrated in self-built houses,
residences, and stores along the streets, with overcharging and wire short-circuiting being
the root causes of the fires. As a result of policy and market demand, the electric vehicle
power exchange model is once again being promoted and developed. There are two main
types of power exchange modes: the centralized charging mode and the battery swap
mode [7]. The centralized charging mode refers to the use of charging stations to store
and charge a large number of batteries in a centralized manner; then, unified distribution
is provided to each demand point as well as damaged battery replacement services. The
battery swap mode refers to the use of the exchange station as a carrier to provide users
with battery charging and battery replacement services. Both of these two modes require
the construction of a large number of charging stations (piles) as carriers and need to solve a
series of problems such as voltage and land. As a result, the “centralized charging + unified
distribution” mode was created, that is, using centralized charging stations to store and
charge a large number of batteries centrally, and then arranging vehicles to collect the
fully charged batteries for distribution. In this mode, we can choose to build large-scale
centralized charging stations in the suburbs, and then carry out unified distribution, which
can alleviate the power and land pressure caused by the construction of a large number of
urban exchange stations [7].

Taking a lithium battery leasing business in Company A, we propose the “centralized
charging + unified distribution” power exchange mode (see Figure 1) for optimizing the
charging and transporting of lithium batteries. Since lithium batteries belong to the ninth
category of dangerous goods in the “United Nations Model Regulations on the Transport
of Dangerous Goods”, we add the consideration of transportation risks to the objective
function; the vehicle path problem of simultaneous pickup and delivery of lithium batteries
with vehicle load and soft time window constraints is studied; the model objective is
to minimize the transportation risk and total cost of delivery. This model is intended
to help companies optimize delivery routes while taking into account safety and cost,
reducing delivery costs and transportation risks. At the same time, the battery swap mode
of “centralized charging + unified distribution” will be developed to improve the mileage
anxiety of small power vehicles.
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The main contributions of this study are as follows:

1. We first recommend a “centralized charging + unified distribution” power exchange
mode, which can help companies take into account safety and cost, optimize their
distribution routes, and reduce distribution costs and transportation risks.

2. We proposed a dual-objective model to minimize delivery cost and transportation
risk, and study a time-windowed vehicle routing problem for simultaneous pickup
and delivery of dangerous goods.

3. We improved the traditional ant colony algorithm and added the crossover and
mutation operations of the genetic algorithm. Based on the R-type data in the Solomon
dataset, the effectiveness of the proposed algorithm is verified by comparing the effects
of the improved algorithm with the ant colony algorithm, genetic algorithm, and
simulated annealing algorithm.

4. Change the dual-objective model to a single-objective model by giving different
weights to distribution cost and transportation risk. We also explore the optimal
distribution paths under different weight combinations to provide decision-making
reference for companies with different risk preferences.

2. Literature Review

In 1959, Dantzig and Ramser [8] first proposed the Vehicle Routing Problem (VRP)
for logistics distribution. The problem states that a certain number of customers require
picking up and delivering goods; the distribution center provides goods to customers
and arranges a fleet to provide pickup and delivery services for these customers. The
distribution center needs to arrange appropriate driving routes in advance that can meet
the needs of customers under certain constraints and achieve goals such as the lowest
vehicle mileage, lowest total cost, and smallest number of vehicles used. The VRP is an
NP-hard problem, and the solution algorithm contains exact and approximate algorithms.
The exact algorithms include [9]: branch and bound (BB), cutting plane method (CPM),
dynamic programming (DP), and more. Approximation algorithms can be divided into
metaheuristic-based algorithms such as [10]: tabu search algorithms (TSA), simulated an-
nealing algorithm (SAA), genetic algorithm (GA), population intelligence-based algorithms,
ant colony algorithm (ACO), glowworm swarm optimization (GSO), particle swarm opti-
mization (PSO), and more. When the size of the problem is small, the exact algorithm can
find the optimal solution in an acceptable time. When the problem size is large, heuristic
algorithms are more suitable.

(1) VRP with Time Windows

The vehicle path problem with time windows (VRPTW) is an extension of the classical
path problem, which was reviewed and expanded in detail by Solomon et al. [11]. VRPTW
generally refers to vehicles with weight constraints that provide delivery or pickup services
within a time specified by the customer [9]. Common time window path planning problems
consist of: the vehicle routing problem with hard time windows (VRPHTW), the vehicle
routing problem with soft time windows (VRPSTW) and the vehicle routing problem with
mixed time windows (VRPMTW). As early as 1992, Koskosidis et al. [12], in their study of
VRPTW, regarded the time window constraint as a soft constraint that can violate the cost.
The research problem in this study also belongs to the soft time window problem. If the
goods are delivered within the time interval requested by the customer, then no penalty
cost is incurred, and if they are delivered earlier or later than the time interval requested
by the customer, then a penalty is imposed depending on the length of the delay (or early
arrival). Soft time windows can effectively reduce the delivery cost without significantly
reducing customer satisfaction, which is more realistic [13]. Existing studies on VRPTW are
shown in Table 1.
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Table 1. Existing studies on VRPTW.

Literature Problem Algorithm Objective

Bae et al. [14]
Multi-depot vehicle routing
problem with time windows

(MDVRPTW)

Heuristic algorithm and a
hybrid genetic algorithm Minimize the total relevant costs

Ye et al. [15] VRPTW Wolf pack algorithm Minimum total transportation cost

Sun et al. [16]
Multi-depot open vehicle
routing problem with soft

time windows (MDOVRPTW)

Improved glowworm swarm
optimization (GSO) Minimum total cost

Wu et al. [17] VRPSTW Optimized ACO Minimum total transportation cost

He et al. [18] VRPSTW Optimized ACO Minimize delivery costs

Yu et al. [19]
Heterogeneous fleet green

vehicle routing problem with
time windows (HFGVRPTW)

Multi-vehicle approximate
dynamic programming

(MVADP)
The branches and computational time

Wang et al. [20] Multi-depot VRPTW
(MDVRPTW)

Two-stage multi-objective
evolutionary algorithm

Minimize the number of vehicles,
total travel distance, makespan, total

waiting time, and total delay time

Song et al. [21] VRPTW in cold chain logistics Improved artificial fish swarm
(IAFS)

Minimize the fixed cost and the
energy consumptions

The vehicle path problem with time window constraints has been studied in different
application scenarios, expanding it to HFGVRPTW, MDOVRPTW, etc. Most of the literature
takes cost minimization as the objective function. In terms of solution algorithms, most
of them are heuristic-based and improve the existing heuristic algorithms for specific
problems to obtain faster convergence and smaller cost.

(2) VRP with simultaneous pickup and delivery

The vehicle path problem with simultaneous pickup and delivery (VRPSPD) belongs
to the vehicle path problem with backhaul pick (VRPB) [22]. In 1989, Min [23] first proposed
the VRPSPD problem and defined it as follows: all demand points are set to have pickup
and delivery demands, the vehicles are loaded in the warehouse and arrive at each demand
point in order from the warehouse, but finally return to the warehouse after satisfying
the pickup and delivery demands of each demand point. When studying VRPSPD, Reil
et al. [24] considered the three-dimensional loading constraints, aimed at minimizing
the total driving distance, based on the principle of first packing and then routing, and
considered the influence of unloading and reloading as appropriate, and finally used the
TSA to find the most optimal path.

By reviewing the literature, we found (see Table 2) that algorithms are most often used
to solve the VRPSPD problem [25]. Some scholars also combine the metaheuristic algo-
rithm with the variable neighborhood search (VNS) [26,27] or the variable neighborhood
descent algorithm (VND) [28] to obtain a hybrid metaheuristic algorithm for optimizing
the capability of local search.

Table 2. Existing studies on VRPSPD.

Literature Application Scenarios Algorithm Objective

Goksal et al. [28] VRPSPD Optimized PSO Extend the algorithm for solving
VRPSPD

Avci et al. [29,30] VRPSD with multiple
vehicle models

Hybrid Local Search
Algorithm

Extend the algorithm for solving
VRPSPD
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Table 2. Cont.

Literature Application Scenarios Algorithm Objective

Ni et al. [31] Multiple courier companies
jointly deliver Optimized ACO Minimize total delivery costs

Chen et al. [32]

Dual-objective VRPSPD
model considering both

vehicle capacity and
distance constraints

Optimized ACO
Minimize the maximum length
difference routes and minimize

transportation cost

Ma et al. [33]
Uncertain simultaneous

pickup and delivery vehicle
routing problem

Optimized PSO Lowest operating costs and highest
customer satisfaction

Ren et al. [34]
The problem of picking up

and delivering orders in the
same city

Optimized GA Minimize total cost

(3) Vehicle routing problem with simultaneous pickup and delivery with time window
constraints (VRPSPDTW)

In actual logistic services, time window and pickup and delivery services are realistic
requirements that need to be met; hence the vehicle routing problem with simultaneous
pickup and delivery with time window constraints (VRPSPDTW) has received increasing
attention [35]. Existing studies on VRPSPDTW are shown in Table 3.

Table 3. Existing studies on VRPSPDTW.

Literature Algorithm Objective

Wang et al. [36] Simulated annealing (SA) algorithm Minimize the routing cost

Zhang, Q.H et al. [37] Memetic algorithm Minimum the number of vehicles and shortest
vehicle travel path

Zhang, S.Z et al. [38] Optimized TSA Minimize the total cost including time penalty
cost

Hornstra et al. [39] Adaptive large neighborhood search
(ALNS) Minimize the total processing cost

Yan et al. [40] K-means-ACO Minimize the total travel cost during return and
delivery service

Ahkamiraad et al. [41]
A hybrid of the genetic

algorithm and particle swarm
optimization (HGP)

Minimize the transportation and fixed costs

Lagos et al. [42] PSO
Minimize the

total distance of the paths and serving
customers’ demands

In analyzing the existing literature, it can be seen that in VRPSPDTW, the most basic
constraint is the vehicle load constraint or the distance constraint. The objective function
is mainly the multi-objective function, and total cost minimization is the main goal of
optimization. The cost includes distribution, time window, and distance cost. In terms
of solving algorithms, heuristic algorithms are often used to solve the model. This study
researches the vehicle path planning problem from the centralized charging station to the
lithium battery exchange stations under the “centralized charging + unified distribution”
mode. It is necessary to consider the time window requirements of each site, and the
simultaneous pickup and delivery requirements, so it is a VRPSPDSTW problem.
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(4) Research on the path problem of dangerous goods distribution and the solution method

The dangerous goods distribution problem refers to the organization of a suitable
transportation route (e.g., minimum risk to personnel, shortest distance, lowest cost, mini-
mum time, etc.) for a series of loading and unloading points for dangerous goods, so that
the vehicles transporting these goods can pass through in an orderly manner and achieve
certain optimal goals under certain constraints (such as transportation volume, speed, cycle
time, and acceptable risk criteria) [43].

Due to the flammable and explosive nature of hazardous materials, accidents dur-
ing the transportation of these materials can be extremely dangerous. Therefore, in the
actual transportation process, it is necessary to increase the consideration of risks when
transporting dangerous goods in order to ensure transportation safety. Erkut et al. [44]
summarized eight common methods to measure transport risk: traditional risk, population
coverage, accident rate, perceived risk, expectation-variance risk, minimum-maximum risk,
negative utility risk, and conditional risk. Also studied was the vehicle route optimization
problem of hazardous materials transportation. The research on the hazardous materials
path problem advanced from a single-objective problem to a multi-objective hazardous
materials vehicle path problem, especially in recent years. The research objectives now
encompass transportation cost, transportation risk, transportation distance, transportation
time, accident rate, and transportation loss [45]. Kara et al. [46] first proposed a bi-optimal
objective model considering both transportation risk and transportation cost and converted
the bi-objective model into a single-objective model using Kuhn–Tucker conditions and
complementary slackness conditions. Zografos et al. [47] proposed a two-objective haz-
ardous materials transportation model and gave a simplified transportation risk formula,
which measured transportation risk in terms of conventional risk. The proposed bi-objective
model was later converted into a single-objective model using a linear weighting approach.
Androutsopoulos et al. [48] considered time constraints and used an improved insertion
method to solve the model with the objective of minimizing transportation costs and
risks when transporting chemical supplies. Chai et al. [49] first simplified the process
of quantifying the risk factors of vehicles passing through densely populated areas, and
used the small number of vehicles, the total transport distance, and the shortest driving
distance through densely populated areas as the objective function in constructing the
model and solved it using an improved genetic algorithm. Zhang et al. [50] established a
route optimization model for dangerous goods transportation vehicles that simultaneously
minimizes the maximum accident consequences and transportation costs and designed
the exact algorithm for solving the model based on the ε-constraint method. Li et al. [51]
constructed a mathematical model with the objectives of minimizing transportation cost
and transportation risk, and the transportation risk was measured by the number of people
affected by the accident, after which the improved NSGA-II algorithm was applied to solve
the model.

In general, research on the vehicle path problem focuses on two aspects: model
construction and solution algorithms. In terms of model construction, scholars have studied
the vehicle path problem from two aspects: adding constraints or increasing the number of
objective functions. The constraints mainly focus on time constraints and vehicle volume
constraints, and the objective functions can be divided into single-objective and multi-
objective, of which the main objective is the minimization of total cost. In terms of solution
algorithms, most scholars use heuristic algorithms, among which ant colony algorithms
have been widely used. However, studies on the simultaneous pickup and delivery
vehicle routing problem ignore the inherent dangers of transporting goods. Combining
the characteristics of lithium battery dangerous goods and the service time constraints of
the power exchange point, this study adds the consideration of “transportation risk” when
building the model and studies the routing problem of vehicles for simultaneous pickup
and delivery of dangerous goods with on-board capacity and time window constraints
in detail.
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3. Basic Model
3.1. Problem Description and Model Assumptions

In view of the current battery exchange mode, this study proposes a “centralized
charging + unified distribution” battery exchange mode, with a specific operation flow
as seen in Figure 2. In other words, there is a centralized charging station and multiple
lithium battery exchange stations in a particular area, and the centralized charging station
provides a battery replacement service by centralized storage, centralized charging, and
unified distribution for a large number of batteries.
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The problem can be specifically described as follows: there exists a centralized charging
station and multiple lithium battery exchange stations in a certain area, and the centralized
charging station is responsible for providing pickup and delivery services of lithium
batteries from the lithium battery exchange stations in the area. The locations of the
centralized charging station and the battery exchange stations are determined each time
a distribution vehicle with a certain load capacity departs from the centralized charging
station, delivers the fully charged batteries to each lithium battery exchange station during
the service time, and then transports the lithium batteries that need to be charged back to
the centralized charging station for charging. If the delivery vehicle does not deliver the
lithium battery within the service time required by the lithium battery exchange station, a
corresponding penalty cost will be paid. In this case, the following factors are known: the
location and number of centralized charging stations and each lithium battery exchange
station, the demand for lithium batteries the day before delivery, the service time limit, the
number of vehicles, the vehicle travel speed, and information related to transportation risk.
The objective of the problem is to reasonably arrange vehicles as well as driving routes
under certain constraints to satisfy the demand for all lithium battery exchange stations
while minimizing distribution costs and transportation risks. The following assumptions
are made to facilitate the study.

1. The “centralized charging + unified distribution” mode of power exchange has been
applied on a large scale in a certain area, and the number of batteries can meet the
demand of all lithium battery exchange stations.

2. There is a centralized charging station (24 h charging service) in the region, the number
of vehicles is certain, and the starting and ending points of vehicle distribution are
centralized charging stations.

3. The location of each lithium battery exchange station and the demand for picking up
and delivering lithium batteries are known before the vehicle departs.
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4. The distance between the centralized charging station and each lithium battery ex-
change station, the service time, the accident probability of each road section, the
accident impact radius, the population density, and the number of people affected
are known.

5. Each vehicle has the same specification and maximum load capacity. Assume that the
number of vehicles is three, and the driving speed is constant at 60 km/h.

6. Each lithium battery exchange station is delivered and picked up by only one vehicle
and the pickup and delivery demand is met at one time.

7. The lithium batteries can be mixed and delivered with the same specifications, and the
actual loading capacity of each vehicle cannot exceed the maximum loading capacity
of the vehicle.

8. Each lithium battery exchange station has a designated service window, and the
distribution vehicle needs to provide service within this timeframe.

9. The service time of the distribution vehicle at the lithium battery exchange station is
not related to the distribution volume.

10. The distribution cost only considers variable cost (proportional to the number of miles
driven by the vehicle) and time window penalty cost. Fixed costs (constants, including
driver’s salary, vehicle insurance, etc.) are not considered for the time being.

3.2. Model Constraint

For the lithium battery distribution business of Company A, the path planning model
is constructed with the objective of minimizing distribution costs and transportation risks.
The multi-objective hazardous material vehicle path problem can reflect the trade-off
between cost as well as risk and is closer to the actual research situation. The mathematical
notations used in this study are listed in Table A1. The specific constraints are explained
and taken as follows:

(1) Distribution cost

The distribution cost includes variable cost and time window penalty cost, where the
variable cost includes the fuel cost and maintenance cost of each operating vehicle. The
variable cost is related to the unit transportation cost of the vehicle and the transportation
distance; the longer the distance the vehicle travels, the higher the fuel cost required.
Assuming there are K vehicles serving all lithium battery exchange stations, the variable
cost of one of the vehicles in the distribution process can be expressed as f1:

f1 = C1 ∑i∈N ∑j∈N ∑k∈K xijkdij ∀i ∈ N, k ∈ K (1)

where C1 denotes the transportation cost per unit of distance of the distribution vehicle, dij
denotes the distance from lithium battery exchange station i to j, and xijk denotes whether
the distribution vehicle k drives from lithium battery exchange station i to j.

In the actual process of distributing lithium batteries, different lithium battery ex-
change stations have different requirements for the delivery service time. If the vehicle
completes the delivery within the expected time of the lithium battery exchange station, the
penalty cost is 0. If the vehicle arrives earlier than the expected service time of the lithium
battery exchange station, the vehicle must wait at the lithium battery exchange station and
has to pay an additional waiting cost. If it arrives later than the desired delivery time of the
lithium battery exchange station, the exchange station imposes a penalty cost to encourage
the delivery vehicle to complete the service within the desired service time. In this study,
a soft time window constraint was applied to the penalty cost incurred by the delivery
vehicle k arriving at the lithium battery exchange station j, as shown in Equation (2).

f2 =


C2

(
ETj − Tjk), Tjk < ETj

0, ETj < Tjk < LTj

C3(Tjk − LTj), LTj < Tjk

(2)
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where [ETj, LTj] denotes the best service time range required by the lithium battery replace-
ment station j. Tjk denotes the moment the delivery vehicle k arrives at the lithium battery

swap station j.
(

ETj − Tjk

)
denotes the length of time that the vehicle k arrives early at the

lithium battery exchange station j. C2 denotes the unit penalty cost incurred for arriving
earlier than the optimal service time required by the lithium battery exchange station j.
(Tjk − LTj) denotes the delayed arrival of vehicle k at the lithium battery exchange station j
for the length of time. C3 denotes the unit penalty cost incurred for arriving later than the
optimal service time required by the lithium battery exchange station j.

In summary, the distribution cost of the distribution vehicle is shown in Equation (3).

f3 = f1 + f2 (3)

(2) Transportation risk

Transportation risk, i.e., the impact of possible accidents during transportation on
people, property, and the environment, depends on the rate of transportation accidents
and the consequences of the impact of accidents [52]. In the vehicle path problem of
hazardous materials transportation, the risk factors are mostly random and uncertain,
which makes the process of quantification complicated, and no unified evaluation model
has emerged to address this so far. Measuring transportation risk by personnel risk is still
a widely used method by scholars [53]. The equation is: Personnel risk = Probability of
accident × Number of people affected within a given distance [54], defined as Equation (4).

Rij = pijPij (4)

where Rij denotes the risk of people in the section of road from the lithium battery exchange
stations i to j. pij denotes the probability of an accident from lithium battery exchange
stations i to j. Pij denotes the number of people that can be affected in the area in case of an
accident in the section of road from lithium battery exchange stations i to j. The specific
definition is given in Equation (5).

Pij = 2dijλρij (5)

where dij denotes the distance from lithium battery exchange stations i to j. λ denotes the
radius of the area that can be affected in case of an accident in the section of road from
lithium battery exchange stations i to j. ρij denotes the population density from the lithium
battery exchange stations i to j. The values of pij and ρij are randomly generated similarly
as in [43]. pij is taken in the range [1, 2], ρij is taken in the range [300, 600] (in people), and
the value of λ is 0.1 km.

3.3. Multi-Objective Model

The objective of this study is to minimize distribution cost and transportation risk,
which is part of the multi-objective model. The solution methods for multi-objective
problems mainly include the weighting method, hierarchical solution method, and multi-
objective evolutionary method (e.g., NSGA-II). Referring to the literature [48], in this study,
distribution cost and transportation risk are transformed into a single-objective function
using a weighting method. The problem of setting the weighting coefficients of it can
be determined based on the importance of distribution cost and transportation risk of
company A (the weighting coefficients of both need to satisfy the summation equal to 1).

Target model:

minZ = ω1C1 ∑i∈N ∑j∈N ∑k∈K xijkdij

+ω1[C2 ∑i∈N ∑j∈N ∑k∈K xijkmax{
(

ETj − Tjk

)
, 0}

+C3 ∑i∈N ∑j∈N ∑k∈K xijkmax{
(

Tjk − LTj

)
, 0}]

+ω2 ∑i∈N ∑j∈N Rij

(6)



Sustainability 2022, 14, 9883 10 of 23

ω1 + ω2 = 1 (7)

Load capacity constraint:

f ik
wagon + ∑j∈N xijk(pi − vi) ≤ L, i, j ∈ N, k ∈ K (8)

Vehicle number constraints:

∑i∈N ∑k∈K xOik ≤ K (9)

∑i∈N ∑k∈K xOik = ∑j∈N ∑k∈K xjOk (10)

Demand non-splittable constraints:

∑N
i=1 xijk = yjk, ∀j ∈ N, k ∈ K (11)

∑N
j=1 xijk = yik, ∀i ∈ N, k ∈ K (12)

Delivery time continuity constraint:

Tjk = Tik + tij + sik, ∀i, j ∈ N, k ∈ K (13)

Variable Constraints:
xijk ∈ {0, 1}, ∀i, j, k (14)

yik ∈ {0, 1}, ∀i, k (15)

Sub-tour elimination constraint:

∑i∈N ∑j∈N ∑k∈K xijk ≤ |S| − 1, S ⊂ {1, 2, . . . , N + 1}, 2 ≤ |S| ≤ N (16)

Constraint (6) indicates that the total distribution cost and transportation risk are
minimized, and consists of three items, which are the distribution cost, the penalty cost
for early or late delivery time, and the transportation risk. The second term of max (x, 0)
indicates that the penalty cost is 0 if the vehicle arrives within the best service time required
by the lithium battery exchange station, otherwise, either early or late arrival will incur the
corresponding penalty cost. Constraint (7) indicates the weight relationship, and the sum
of the two equals 1. Constraint (8) indicates that the actual weight of the vehicle k after
completing the task of delivering or picking up lithium batteries at each lithium battery
exchange station cannot exceed the maximum weight of that vehicle. Constraint (9) ensures
that the number of vehicles departing from the centralized charging station does not exceed
the maximum number of vehicles. Constraint (10) ensures that the vehicle departs from and
eventually returns the centralized charging station, and the number of departure vehicles is
equal to the number of return vehicles. Constraints (11) and (12) indicate that each lithium
battery exchange station has and can only be delivered by one vehicle, and there must be a
path connected to it when the demand is not split and the lithium battery exchange station
is served by the same vehicle. Constraint (13) ensures continuity in the distribution process.
Constraints (14) and (15) represent variable constraints. Constraint (16) means that the
vehicle only visits each lithium battery exchange station once.

4. Ant Colony Genetic Hybrid Algorithm Design and Verification
4.1. Algorithm Design

To address the problems of traditional heuristics such as failure to converge and the
tendency to fall into local optimality, optimizing a single heuristic algorithm or combining
multiple heuristics into a hybrid metaheuristic algorithm can improve the solving ability.
From reviewing the literature, it can be seen that the two algorithms, ant colony and
genetic, have a wide research base and have relative advantages in solving vehicle path
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optimization problems. The ant colony algorithm can produce good quality solutions
with a small number of iterations, while the genetic algorithm has a good global search
capability, which can effectively solve the problems faced by the ant colony algorithm
in the local optimization problem. Therefore, this study proposes the ant colony genetic
algorithm to solve the model.

The basic design idea is shown in Figure 3; the ant colony algorithm is used as the
main body, and the feasible solution is first output as a new population by the algorithm.
Then, the fitness function is used to evaluate the new population; that is, the objective
function is used to judge the quality of the individuals in the population. Since the objective
function in this study is to minimize the delivery cost and risk, the inverse of the objective
function is taken as the value of the fitness function. The solution corresponding to the
minimum value of the objective function is chosen. Then, the solution is inserted into the
genetic algorithm; the crossover and variation operators of the genetic algorithm are used
to further optimize the better solution obtained by the ant colony algorithm, so as to expand
the search space. In the case of satisfying the termination condition, the convergence speed
of the algorithm is accelerated to improve the quality of the solution.
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These are some explanations for the specific steps:

(1) Initialization parameters. Set the initial value of the iteration number iter = 1 and
the maximum iteration number iter_max = 100. The definitions and values of other
parameters (m, ∂, β, ρ, Q, Pc, Pm) are shown in Table 4.

Table 4. Algorithm parameter settings.

Parameters Parameter Meaning Parameter Value

m Population size 10
∂ Information heuristic factor 1
β Expectation heuristic factor 5
ρ Information volatility factor 0.75
Q Total pheromone release 10
Pc Crossover probability 0.5
Pm Mutation probability 0.1
C1 Delivery vehicle unit distance transportation cost 3 CNY/km
C2 Unit penalty cost for early arrival 20 CNY/h
C3 Unit penalty cost for being late 30 CNY/h
λ The radius of influence of the accident 0.1 km

(2) Pheromone updating. Set the initial pheromone of all locations to 1, so that the ants
have the same probability of crawling to each location. Calculate the length path
traversed by the ants, record the current optimal solution, and update the pheromone.

(3) Transfer of ants. When choosing the next place to visit, the ants will use the pheromone
concentration on each connection path as a reference. Pk

ij(t) denotes the probability
that ant k moves from point i to j at time t.

Pk
ij(t) =


[τij(t)]

α ·[ηij(t)]
β

∑s∈allowk
[τis(t)]

α ·[ηis(t)]
β , s ∈ allowk

0, s /∈ allowk

(17)

ηij(t) denotes the heuristic function, the value is the reciprocal of the distance between
points i and j, which represents the expected degree of ants i transferring from point i to j.
allowk(k = 1, 2, . . . , m) denotes the set of all locations except the departure location of ant
k, including (n − 1) elements. It can be seen from Equation (18) that after the ants release
the pheromone, the pheromone concentration between the sites decreases with time.{

τij(t + 1) = (1− ρ)τij(t) + ∆τij
∆τij = ∑n

k=1 ∆τk
ij

, 0 < ρ < 1 (18)

∆tij denotes the sum of the pheromone concentrations released by all ants on the way
from point i to j. The pheromone released by ants was studied through the ant density
system, the concentration of pheromone released in this model was a constant value Q.

(4) Load capacity check of the visiting location: if the load constraints are met, continue
to visit, otherwise re-select the next place to be visited. The sites visited by the ants
are added to the taboo list until the ants have visited all the sites.

(5) Evaluate the new population: In this study, the fitness function was used to evaluate
the new population judging the quality of individuals in the group through the
objective function. Since the objective function in this study is to minimize the
delivery cost and transportation risk, the inverse of the objective function is used as
the value of the fitness function.

(6) Crossover and mutation: according to the crossover probability Pc, some genes on
the chromosomes corresponding to the two individuals are crossed to generate a
new individual. Then, according to the mutation probability Pm, the gene on the
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chromosome is mutated. Through crossover and mutation, new individuals can be
generated to increase population diversity.

4.2. Validity Verification

Based on the Solomon arithmetic example set, 15 rows of the dataset from the R class
test set were selected to validate the model as well as the algorithm effectiveness. The
original data is improved by borrowing the data generation of pickups and deliveries from
the literature [55]. In this case, the basic data in the example are kept unchanged, and
the data of delivery quantity di and pickup quantity pi are generated according to the
following rules: let the demand of customer i in the original example be Gi, the coordinates
of station i are (xi, yi), and let ri = min(xi/yi, yi/xi), then di = Giri, pi = Gi(1 − ri). The
details of the coordinate system, coordinate position, delivery volume, pickup volume, time
window, and service time corresponding to each station are shown in Table 5. The specific
calculation of personnel risk refers to Equations (4) and (5). Referring to the method in [43],
relevant information such as the accident rate between points, the radius of the affected
area when the accident occurs, and the population density, are generated. The accident
rate between points is randomly generated in the range [1, 2], the population density
between points is randomly generated in the range [300, 600] (in people) (for specific values,
see Tables A2 and A3 in Appendix A). Referring to the analysis of parameters in [56], the
settings of other parameters required are shown in Table 5.

Table 5. Detailed information table for each location.

Serial
Number

Customer
Coordinates

Delivery
Quantity
(Pieces)

Pickup
Quantity
(Pieces)

Time
Window

(min)

Service Time
(min)

0 (35, 35)
1 (41, 49) 8 2 [161, 171] 10
2 (35, 17) 3 4 [50, 60] 10
3 (55, 45) 11 2 [116, 126] 10
4 (55, 20) 7 12 [149, 159] 10
5 (15, 30) 13 13 [34, 44] 10
6 (25, 30) 3 0 [99, 109] 10
7 (20, 50) 2 3 [81, 91] 10
8 (10, 43) 2 7 [95, 105] 10
9 (55, 60) 15 1 [97, 107] 10
10 (30, 60) 8 8 [124, 134] 10
11 (20, 65) 4 8 [67, 77] 10
12 (50, 35) 13 6 [63, 73] 10
13 (30, 25) 19 4 [159, 169] 10
14 (15, 10) 13 7 [32, 42] 10
15 (30, 5) 1 7 [61, 71] 10

In order to compare the results in a more stable and scientific manner, each algorithm
is run ten times, and the average value of the weighted function value is output (see
Table 6). The platform for running the algorithm is a laptop with an Intel(R) Core(TM)
i7-8565U CPU.

Table 6. Algorithm result comparison.

Algorithm
ω1−ω2 Number of

Iterations0.8–0.2 0.6–0.4 0.5–0.5 0.4–0.6 0.2–0.8

ACO-GA 1008.23 889.22 789.14 708.29 556.42 35
ACO 1015.13 865.88 801.90 725.51 560.19 45
GA 1471.99 1232.84 1200.59 1007.75 767.58 68

SAA 1547.08 1377.72 1202.06 983.86 728.12 89
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As can be seen from Table 6, when the weights are combined as (0.8, 0.2), (0.5, 0.5),
(0.4, 0.6), and (0.8, 0.2), the average value of the ten-run results of the improved ant
colony algorithm (ACO-GA) is the smallest. When the weight combination is (0.6, 0.4), the
weighting function value of ACO-GA is the second smallest. It can be seen that the ACO-
GA proposed in this paper can obtain better objective function values than the benchmark
algorithm in most cases.

5. Empirical Analysis
5.1. Case Introduction and Preprocessing

Company A is a lithium battery sales and operation and R&D company, and its
location is in Beijing. Company A’s stores are located in several districts in Beijing; nine
stores plus one warehouse of Company A were selected for this study. There are three
vehicles in the warehouse, which are used to provide the delivery service for each store.
Figure 4 shows the locations of Company A’s warehouses and stores. Location 0 is the
warehouse of Company A, and locations 1–9 are the stores. The specific latitude and
longitude information is given in Table A4.
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Since the distance data between each store are required for the calculation of the
distribution cost and transportation risk, the latitude and longitude between two points
needs to be transformed into the actual distance. According to Equation (17) [57], the
transformed distance matrix is shown in Table 7, where it is assumed that B2 denotes the
latitude of Store 1, C2 denotes the longitude of Store 1, D2 denotes the latitude of Store 2,
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E4 denotes the longitude of Store 2, F2 denotes the actual distance between Store 1 and
Store 2, and R = 6371.373 (km) denotes the radius of the Earth.

F2 = R·arcos[cos(B2)·cos D2· cos(C2− E4) + sin(B2)· sin(D2)] (19)

Table 7. Distance matrix between stores of Company A (kilometers).

Stores No. 0 1 2 3 4 5 6 7 8 9

0 0 22.4 42.2 43.4 20.1 42.8 102.3 43.0 31.4 72.3
1 0 43.6 50.1 26.5 59.4 89.2 33.3 38.8 63.8
2 0 11.4 61.1 36.1 66.7 21.1 13.3 39.9
3 0 63.3 26.1 75.3 32.2 12.1 49.3
4 0 61.5 11.5 57.4 51.2 88.8
5 0 100.9 54.6 26.5 75.3
6 0 59.1 80.0 27.8
7 0 28.2 31.6
8 0 52.6
9 0

Company A’s delivery vehicle has a maximum loading capacity of 50 pieces, and the
vehicle travels at a constant speed of 60 km/h. The warehouse provides services 24 h a day,
and the pickup requirements, service hours and time windows of each store are shown in
Table 8.

Table 8. Detailed information table of each store.

Serial Store Name Delivery Pickup Time Service Time

Number Quantity
(Pieces)

Quantity
(Pieces)

Window
(min) (min)

0 Company A
warehouse

1 Store 1 10 2 [7:30–7:45] 8
2 Store 2 7 10 [7:45–8:00] 10
3 Store 3 6 3 [8:10–8:35] 5
4 Store 4 5 6 [7:05–7:20] 5
5 Store 5 4 14 [8:15–8:25] 10
6 Store 6 14 7 [8:30–9:00] 10
7 Store 7 11 6 [7:55–8:10] 9
8 Store 8 6 3 [7:50–8:15] 6
9 Store 9 14 2 [8:00–8:30] 7

5.2. Parameter Combination Analysis

Determining the appropriate parameter values not only reduces the program running
time, but also finds the optimal value of the objective function. Since the algorithm in this
study is a hybrid algorithm, it is necessary to perform sensitivity analysis on the main
parameters of the ant colony algorithm and the genetic algorithm to determine the optimal
parameter combination. Parameters such as α, β, and ρ in the ant colony algorithm have
great impact on the performance of the algorithm. Regarding the parameter settings of
the ant colony algorithm, it is generally believed that the larger the values of α and β,
the larger the computational effort and the longer the program run time. In the case that
satisfactory solutions can be obtained, it is recommended that α and β be relatively small
values. Generally, values of α between 1 and 2, β between 1 and 5, and ρ between 0 and 1
will achieve a solution with better results.

The initial values of the parameters were set as follows: population size m = 10,
information heuristic factor α = 1, expectation heuristic factor β = 5, information volatility
factor ρ = 0.75, total pheromone release Q = 10 (constant, the total amount of pheromone
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released by ants in one cycle), Pc = 0.5, and Pm = 0.1. Under the condition that other
parameter values remain unchanged, only one parameter value is changed for analysis. If
some optimal parameters have been determined in the previous step, we proceed to the
sensitivity analysis of the next parameter based on the existing optimal combination. In this
section, we set the weights as: ω1 = ω2 = 0.5; indicating that the company places equal
emphasis on delivery costs and transportation risks. After ten repeated tests, objective
function values and iteration times of different combinations are compared, and a more
appropriate parameter combination is finally selected.

(1) Information heuristic factor α and the expectation heuristic factor β

From Tables 9 and 10, it can be seen that while keeping other parameters constant, the
larger the values of α and β, the faster the algorithm converges. The results are that the
optimal values of α and β are 2 and 5, respectively, at which time the weighted objective
function value and the number of iterations to achieve convergence are minimal.

Table 9. Results of the effect of α value on the ant colony genetic hybrid algorithm.

α β
Average Cost

(CNY) Average Risk Weighted Objective
Function Value (CNY)

Number of Iterations to
Reach Convergence Time (s)

0 5 32.30 5.78 19.04 89 11.70
0.5 5 37.84 5.76 21.80 32 12.91
1 5 34.91 5.99 20.45 79 12.57
2 5 21.37 5.41 13.88 7 11.73

Table 10. Results of the effect of β value on the ant colony genetic hybrid algorithm.

α β
Average Cost

(CNY)
Average

Risk
Weighted Objective

Function Value
Number of Iterations to

Reach Convergence Time (s)

2 0 41.65 8.68 24.90 20 13.83
2 2 33.08 6.25 19.66 38 17.60
2 4 34.33 5.66 20.00 6 16.20
2 5 32.89 5.87 19.38 5 11.86

(2) Information volatility factor ρ

As can be seen from Table 11, when ρ is relatively small, the pheromone volatilizes
slowly, and the algorithm has strong global search ability, but requires a larger number of
iterations to achieve convergence. When ρ is relatively large, the pheromone volatilizes
quickly, the convergence speed is fast, and the global search ability of the algorithm is
weak, making it is easy to fall into the local optimum. After comprehensive consideration,
the value of ρ was chosen to be 0.8 in this study. At this time, the value of the weighted
objective function value is minimal and convergence can be achieved in 36 iterations.

Table 11. Results of information volatility factor ρ on hybrid ant colony genetic algorithm.

ρ
Average Cost

(CNY) Average Risk Weighted Objective
Function Value

Number of Iterations to
Reach Convergence Time (s)

0.2 36.11 5.69 20.90 52 13.78
0.4 33.88 5.67 19.78 42 12.03
0.6 38.17 5.94 22.06 57 12.10
0.8 32.36 5.90 19.13 36 13.29

(3) Crossover operator Pc and variational operator Pm

It can be seen from Table 12 that while keeping the value of the variational operator
Pm constant, Pc is taken as 0.2, the weighted objective function value and the number of
iterations to reach convergence are minimal.
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Table 12. Results of Pc on the ant colony genetic algorithm.

Pc Pm
Average Cost

(CNY)
Average

Risk
Weighted Objective

Function Value
Number of Iterations to

Reach Convergence Time (s)

0.2 1 28.11 5.85 16.98 23 16.11
0.4 1 29.53 5.98 17.75 56 13.06
0.6 1 28.29 5.77 17.03 71 14.64
0.8 1 29.64 5.92 17.78 95 12.35

It can be seen from Table 13 that while keeping the value of the crossover operator Pc
constant, and Pm is taken as 0.6, the weighted objective function value and the number of
iterations to reach convergence are minimal. Although, the transportation risk and running
time of the model are not minimal when Pc = 0.6. But, based on the total cost (weighted
value of the objective function), we determine the optimal Pc = 0.6.

Table 13. Results of Pm on the ant colony genetic hybrid algorithm.

Pc Pm
Average Cost

(CNY)
Average

Risk
Weighted Objective

Function Value
Number of Iterations to

Reach Convergence Time (s)

1 0.2 33.75 5.89 19.82 88 13.23
1 0.4 30.69 5.46 18.08 31 13.76
1 0.6 28.85 5.79 17.32 14 14.32
1 0.8 28.98 5.85 17.42 17 12.75

Therefore, the algorithm parameters in this study will be taken as follows: m = 10,
α = 2, β = 5, ρ = 0.8, Q = 10, Pc = 0.2, Pm = 0.6.

5.3. Path Preference Analysis

In order to explore how to choose the best route solution under different preferences,
different weights are set for distribution cost and transportation risk for total cost account-
ing, where the size of the weights represent the importance of the decision makers, and
a larger weight indicates that the decision makers want the goal to be smaller. Since the
cost and risk have different orders of magnitude and units, they are standardized to ensure
the uniformity of the scale in the weighting process. When setting weights for distribution
cost and transportation risk, the principle that the sum of the two weights is equal to
1 is observed. By setting different weights for distribution cost and transportation risk,
indicating different transportation preferences of enterprises, the optimal path is shown in
Table 10, and the route planning schematic is shown in Figure 5.

According to Table 14, companies will have five different options when setting different
weights on distribution costs and transportation risks. When an enterprise is facing the
decision of both distribution cost and transportation risk, the more the enterprise cares, the
greater the corresponding weight value, and the resulting value of this part will be small.
The smaller the weight value, the lower the degree of concern of the enterprise, and the
resulting value of this part will be larger.
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Table 14. Path selection preference results with different weights.

Strategy

Weights Optimal Path

ω1 ω2 Vehicle 1 Vehicle 2 Vehicle 3
Normalized

Objective
Function Value

Distribution
Cost

Shipping
Risks

Programs
Preference

A 0.2 0.8 0→4→1
→2→3→8→5→0

0→7→9
→6→0 0.76 60.14 5.40 Very concerned

about risk

B 0.4 0.6 0→1→4
→8→2→7→0

0→3→5
→6→0

0→5→3
→2→0 0.47 29.34 8.67 More concerned

about risk

C 0.5 0.5 0→4→1
→7→0

0→8→3
→2→9→0

0→5→6
→0 0.83 55.17 8.08 Intentional risk

and cost

D 0.6 0.4 0→4→1
→7→2→8→0

0→5→3
→9→0 0→6→0 0.42 29.88 7.85 More concerned

about cost

E 0.8 0.2 0→4→1
→7→2→8→0

0→3→5
→9→0 0→6→0 0.80 28.40 8.51 Very concerned

about cost
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6. Conclusions

In view of the practical problems of unsafe home charging, insufficient number of
charging piles, high purchase cost of lithium batteries, and difficulty in charging distribution
vehicles, this paper proposes a battery replacement mode of “centralized charging + unified
distribution” for small electric vehicles based on the lithium battery leasing and distribution
business of company A.

The proposed dual-objective model and improved ant colony algorithm (ACO-GA)
can provide an optimal path that takes into account the distribution cost and transportation
risk when solving the transportation path problem of hazardous goods such as lithium
batteries. This can also provide reference for other enterprises that intend to develop power
exchange businesses. When verifying the effectiveness of the improved algorithm, different
weight combinations are used to verify the effectiveness of ACO-GA on the R-type dataset
in the Solomon test set, which make the results more stable. After determining the optimal
parameter combination through sensitivity analysis, we set different weight coefficients
when calculating the weighted objective function value, which meet the distribution needs
of enterprises with different risk preferences.

The study also has several limitations, which we plan to improve in our future work.
Firstly, in terms of algorithm improvement, it can be combined with more intelligent
algorithms suitable for VRPSPDSTW to carry out a variety of algorithm variants. Secondly,
on the scale of the calculation example, a larger-scale data set can be further selected
for experiments. Finally, in the comparison of algorithms, comparisons with other deep
learning and reinforcement learning-based algorithms can be added in the future.
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Appendix A

Table A1. Table of notations.

Sets and Parameters

O Centralized charging station
N = {i

∣∣i = 1, 2, . . . , N} The number of lithium battery exchange stations
K = {k

∣∣k = 1, 2, . . . , K} The number of delivery vehicles at centralized charging stations
dij The distance from station i to j for lithium battery exchange
tij Delivery time for lithium battery exchange station i to j
sik Service hours of delivery vehicles k at battery exchange station i
vi Lithium battery exchange station i delivery volume
pi Pickup volume at lithium battery exchange station i

[ETi, LTi] The best service time range required by the lithium battery exchange station i
C1 Delivery vehicle unit distance transportation cost
C2 Unit penalty cost for early arrival
C3 Unit penalty cost for being late
L Maximum load capacity of the vehicles.

Rij Personnel risk from lithium battery exchange station i to j
pij Accident probability from lithium battery exchange station i to j
Pij The number of people affected from lithium battery exchange station i to j
λ The radius of influence of the accident
ρij Population density of lithium battery exchange station i to j
ω1 Weighting factor for delivery cost
ω2 Weighting factor for transportation risk
Tik The time the delivery vehicle k arrives at the lithium battery exchange station i

f ik
wagon The load of the delivery vehicle k when it arrives at the lithium battery exchange station i

xijk = {0, 1} delivery vehicle k heading to j from the lithium battery exchange station i
yik = {0, 1} lithium battery exchange station i is serviced by the vehicle k

Table A2. Annual transport accident rate of road section.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1.13 1.76 1.44 1.51 1.45 1.84 1.22 1.64 1.06 1.48 1.90 1.43 1.27 1.01 1.39
1 1.13 0 1.28 1.33 1.79 1.33 1.35 1.90 1.54 1.21 1.80 1.56 1.87 1.02 1.48 1.14
2 1.76 1.28 0 1.50 1.36 1.81 1.26 1.37 1.08 1.59 1.31 1.29 1.01 1.67 1.17 1.91
3 1.44 1.33 1.50 0 1.56 1.28 1.75 1.09 1.37 1.61 1.35 1.93 1.26 1.43 1.61 1.69
4 1.51 1.79 1.36 1.56 0 1.25 1.31 1.45 1.81 1.44 1.56 1.27 1.02 1.42 1.63 1.43
5 1.45 1.33 1.81 1.28 1.25 0 1.30 1.81 1.47 1.39 1.93 1.46 1.38 1.40 1.04 1.49
6 1.84 1.35 1.26 1.75 1.31 1.30 0 1.21 1.08 1.32 1.69 1.64 1.50 1.83 1.05 1.73
7 1.22 1.90 1.37 1.09 1.45 1.81 1.21 0 1.87 1.21 1.10 1.34 1.68 1.35 1.45 1.88
8 1.64 1.54 1.08 1.37 1.81 1.47 1.08 1.87 0 1.39 1.05 1.49 1.33 1.40 1.35 1.08
9 1.06 1.21 1.59 1.61 1.44 1.39 1.32 1.21 1.39 0 1.33 1.47 1.45 1.05 1.46 1.39
10 1.48 1.80 1.31 1.35 1.56 1.93 1.69 1.10 1.05 1.33 0 1.01 1.59 1.39 1.04 1.30
11 1.90 1.56 1.29 1.93 1.27 1.46 1.64 1.34 1.49 1.47 1.01 0 1.38 1.29 1.90 1.07
12 1.43 1.87 1.01 1.26 1.02 1.38 1.50 1.68 1.33 1.45 1.59 1.38 0 1.28 1.42 1.47
13 1.27 1.02 1.67 1.43 1.42 1.40 1.83 1.35 1.40 1.05 1.39 1.29 1.28 0 1.17 1.03
14 1.01 1.48 1.17 1.61 1.63 1.04 1.05 1.45 1.35 1.46 1.04 1.90 1.42 1.17 0 1.29
15 1.39 1.14 1.91 1.69 1.43 1.49 1.73 1.88 1.08 1.39 1.30 1.07 1.47 1.03 1.29 0
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Table A3. Average density of people affected by transport sections (people/km).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 572 338 574 490 329 383 464 588 590 347 592 588 446 540 342
1 572 0 538 588 497 310 555 581 504 528 523 418 497 351 512 309
2 338 538 0 547 509 395 586 310 432 414 530 539 356 447 434 494
3 574 588 547 0 497 348 335 450 588 402 476 367 526 376 452 510
4 490 497 509 497 0 377 553 376 545 373 579 405 359 375 485 442
5 329 310 395 348 377 0 527 526 414 470 322 316 459 534 581 339
6 383 555 586 335 553 527 0 459 349 481 379 496 507 525 435 325
7 464 581 310 450 376 526 459 0 332 589 300 533 546 561 325 420
8 588 504 432 588 545 414 349 332 0 474 465 343 556 487 405 454
9 590 528 414 402 373 470 481 589 474 0 447 589 556 487 405 454
10 347 523 530 476 579 322 379 300 465 447 0 406 547 304 312 350
11 592 418 539 367 405 316 496 533 343 589 406 0 534 324 579 533
12 588 497 356 526 359 459 507 546 556 556 547 534 0 582 563 465
13 446 351 447 376 375 534 525 561 487 487 304 324 582 0 429 355
14 540 512 434 452 485 581 435 325 405 405 312 579 563 429 0 452
15 342 309 494 510 442 339 325 420 454 454 350 533 465 355 452 0

Table A4. Coordinates of distribution center and store locations.

Number Store Name Longitude Latitude

0 Company A
warehouse 116.650873 40.154191

1 Store 1 116.394265 40.200878
2 Store 2 116.441387 39.810124
3 Store 3 116.563345 39.769598
4 Store 4 116.653201 40.334977
5 Store 5 116.864538 39.805573
6 Store 6 115.721256 39.577671
7 Store 7 116.244193 39.923892
8 Store 8 116.569297 39.878586
9 Store 9 115.990276 39.71676
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