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Abstract: Due to the national policy of encouraging the development of power exchange modes, the 

reasonable planning of vehicle distribution paths to meet the demand of lithium battery power ex-

change points has become a topic of considerable research interest. In this study, we propose the 

“centralized charging + unified distribution” power exchange mode for optimizing the charging 

and transporting of lithium batteries. Considering lithium batteries are dangerous goods, the vehi-

cle path problem of simultaneous pickup and delivery of lithium batteries with vehicle load and 

soft time window constraints is studied. The model objective is to minimize the transportation risk 

and total cost of delivery. By performing crossover and mutation operations on the initial solutions 

generated by the ant colony algorithm, a hybrid ant colony genetic algorithm (ACO-GA) is designed 

to solve the model. The results of ACO-GA are compared with the GA, ACO, and SAA methods 

using the Solomon dataset; the results show that the optimized ant colony algorithm can achieve a 

smaller total cost in solving the model. Finally, taking a lithium battery leasing business in Com-

pany A, we determine the optimal path under different preferences by setting different weights for 

distribution cost and transportation risk in the model transformation, which provides a reference 

for the company to select the distribution route. Thus, the model provides a reference for companies 

that intend to develop power exchange businesses. 

Keywords: centralized charging + unified distribution; vehicle routing problem; transportation risk; 

ACO-GA 

 

1. Introduction 

With the strengthening of the concept of healthy travel and the further improvement 

and supplementation of urban infrastructure, the urban micro-travel tools market has 

continued to expand, and micro-travel tools such as electric bicycles have become com-

mon, safe, and reliable means of transportation. In 2020, the ownership of electric bicycles 

in China was approximately 320 million units [1]. Electric bicycle batteries are mainly run 

on lead-acid batteries and lithium batteries. Driven by factors such as product technology 

advancement and environmental protection requirements for green travel, the sales of 

lithium batteries for two-wheeled electric vehicles have increased significantly from 5.4% 

in 2016 to 23.4% in 2021 [2]. Lithium batteries offer many advantages, such as long life, 

being light weight, and having a high energy density. To ensure the safe and standardized 

usage of electric vehicles, the New National Standard stipulates that the weight of electric 

bicycles should not exceed 55 kg [3]. The capacity of the battery is limited by the weight 

of the vehicle, making the farthest travel distance with a single battery limited to less than 

60 km, which requires frequent charging operations of the battery during use, subse-

quently increasing the demand for power exchange [4]. 
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By the end of 2020, 1500 highway service areas (including parking areas) in 31 prov-

inces in China had been replaced by charging and replacement facilities [5]. New infra-

structure such as charging piles and replacement stations are also under active construc-

tion. With the continuous development of the urban express service industry, the demand 

for lithium battery leasing and replacement from takeaway, express, and other groups has 

gradually increased. However, this increase in usage of green energy is not without risks. 

In 2021, nearly 18,000 fires and 57 deaths were caused by electric bicycles and their battery 

failures [6]. The high incidence of accidents is mainly concentrated in self-built houses, 

residences, and stores along the streets, with overcharging and wire short-circuiting being 

the root causes of the fires. As a result of policy and market demand, the electric vehicle 

power exchange model is once again being promoted and developed. There are two main 

types of power exchange modes: the centralized charging mode and the battery swap 

mode [7]. The centralized charging mode refers to the use of charging stations to store and 

charge a large number of batteries in a centralized manner; then, unified distribution is 

provided to each demand point as well as damaged battery replacement services. The 

battery swap mode refers to the use of the exchange station as a carrier to provide users 

with battery charging and battery replacement services. Both of these two modes require 

the construction of a large number of charging stations (piles) as carriers and need to solve 

a series of problems such as voltage and land. As a result, the “centralized charging + 

unified distribution” mode was created, that is, using centralized charging stations to 

store and charge a large number of batteries centrally, and then arranging vehicles to col-

lect the fully charged batteries for distribution. In this mode, we can choose to build large-

scale centralized charging stations in the suburbs, and then carry out unified distribution, 

which can alleviate the power and land pressure caused by the construction of a large 

number of urban exchange stations [7]. 

Taking a lithium battery leasing business in Company A, we propose the “centralized 

charging + unified distribution” power exchange mode (see Figure 1) for optimizing the 

charging and transporting of lithium batteries. Since lithium batteries belong to the ninth 

category of dangerous goods in the “United Nations Model Regulations on the Transport 

of Dangerous Goods”, we add the consideration of transportation risks to the objective 

function; the vehicle path problem of simultaneous pickup and delivery of lithium batter-

ies with vehicle load and soft time window constraints is studied; the model objective is 

to minimize the transportation risk and total cost of delivery. This model is intended to 

help companies optimize delivery routes while taking into account safety and cost, reduc-

ing delivery costs and transportation risks. At the same time, the battery swap mode of 

“centralized charging + unified distribution” will be developed to improve the mileage 

anxiety of small power vehicles. 

 

Figure 1. Schematic diagram of the delivery process. 
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The main contributions of this study are as follows: 

1. We first recommend a “centralized charging + unified distribution” power exchange 

mode, which can help companies take into account safety and cost, optimize their 

distribution routes, and reduce distribution costs and transportation risks. 

2. We proposed a dual-objective model to minimize delivery cost and transportation 

risk, and study a time-windowed vehicle routing problem for simultaneous pickup 

and delivery of dangerous goods. 

3. We improved the traditional ant colony algorithm and added the crossover and mu-

tation operations of the genetic algorithm. Based on the R-type data in the Solomon 

dataset, the effectiveness of the proposed algorithm is verified by comparing the ef-

fects of the improved algorithm with the ant colony algorithm, genetic algorithm, 

and simulated annealing algorithm. 

4. Change the dual-objective model to a single-objective model by giving different 

weights to distribution cost and transportation risk. We also explore the optimal dis-

tribution paths under different weight combinations to provide decision-making ref-

erence for companies with different risk preferences. 

2. Literature Review 

In 1959, Dantzig and Ramser [8] first proposed the Vehicle Routing Problem (VRP) 

for logistics distribution. The problem states that a certain number of customers require 

picking up and delivering goods; the distribution center provides goods to customers and 

arranges a fleet to provide pickup and delivery services for these customers. The distribu-

tion center needs to arrange appropriate driving routes in advance that can meet the needs 

of customers under certain constraints and achieve goals such as the lowest vehicle mile-

age, lowest total cost, and smallest number of vehicles used. The VRP is an NP-hard prob-

lem, and the solution algorithm contains exact and approximate algorithms. The exact 

algorithms include [9]: branch and bound (BB), cutting plane method (CPM), dynamic 

programming (DP), and more. Approximation algorithms can be divided into metaheu-

ristic-based algorithms such as [10]: tabu search algorithms (TSA), simulated annealing 

algorithm (SAA), genetic algorithm (GA), population intelligence-based algorithms, ant 

colony algorithm (ACO), glowworm swarm optimization (GSO), particle swarm optimi-

zation (PSO), and more. When the size of the problem is small, the exact algorithm can 

find the optimal solution in an acceptable time. When the problem size is large, heuristic 

algorithms are more suitable. 

(1) VRP with Time Windows 

The vehicle path problem with time windows (VRPTW) is an extension of the classi-

cal path problem, which was reviewed and expanded in detail by Solomon et al. [11]. 

VRPTW generally refers to vehicles with weight constraints that provide delivery or 

pickup services within a time specified by the customer [9]. Common time window path 

planning problems consist of: the vehicle routing problem with hard time windows 

(VRPHTW), the vehicle routing problem with soft time windows (VRPSTW) and the ve-

hicle routing problem with mixed time windows (VRPMTW). As early as 1992, Koskosidis 

et al. [12], in their study of VRPTW, regarded the time window constraint as a soft con-

straint that can violate the cost. The research problem in this study also belongs to the soft 

time window problem. If the goods are delivered within the time interval requested by 

the customer, then no penalty cost is incurred, and if they are delivered earlier or later 

than the time interval requested by the customer, then a penalty is imposed depending on 

the length of the delay (or early arrival). Soft time windows can effectively reduce the 

delivery cost without significantly reducing customer satisfaction, which is more realistic 

[13]. Existing studies on VRPTW are shown in Table 1. 
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Table 1. Existing studies on VRPTW. 

Literature Problem Algorithm Objective 

Bae et al. [14] 

Multi-depot vehicle routing 

problem with time windows 

(MDVRPTW) 

Heuristic algorithm and a hy-

brid genetic algorithm 
Minimize the total relevant costs 

Ye et al. [15] VRPTW Wolf pack algorithm 
Minimum total transportation 

cost 

Sun et al. [16] 

Multi-depot open vehicle 

routing problem with soft 

time windows (MDOV-

RPTW) 

Improved glowworm swarm 

optimization (GSO) 
Minimum total cost 

Wu et al. [17] VRPSTW Optimized ACO 
Minimum total transportation 

cost 

He et al. [18] VRPSTW Optimized ACO Minimize delivery costs 

Yu et al. [19] 

Heterogeneous fleet green 

vehicle routing problem with 

time windows (HFGVRPTW) 

Multi-vehicle approximate 

dynamic programming 

(MVADP) 

The branches and computational 

time 

Wang et al. [20] 
Multi-depot VRPTW 

(MDVRPTW) 

Two-stage multi-objective 

evolutionary algorithm 

Minimize the number of vehicles, 

total travel distance, makespan, 

total waiting time, and total de-

lay time 

Song et al. [21] 
VRPTW in cold chain logis-

tics 

Improved artificial fish 

swarm (IAFS) 

Minimize the fixed cost and the 

energy consumptions 

The vehicle path problem with time window constraints has been studied in different 

application scenarios, expanding it to HFGVRPTW, MDOVRPTW, etc. Most of the litera-

ture takes cost minimization as the objective function. In terms of solution algorithms, 

most of them are heuristic-based and improve the existing heuristic algorithms for specific 

problems to obtain faster convergence and smaller cost. 

(2) VRP with simultaneous pickup and delivery 

The vehicle path problem with simultaneous pickup and delivery (VRPSPD) belongs 

to the vehicle path problem with backhaul pick (VRPB) [22]. In 1989, Min [23] first pro-

posed the VRPSPD problem and defined it as follows: all demand points are set to have 

pickup and delivery demands, the vehicles are loaded in the warehouse and arrive at each 

demand point in order from the warehouse, but finally return to the warehouse after sat-

isfying the pickup and delivery demands of each demand point. When studying VRPSPD, 

Reil et al. [24] considered the three-dimensional loading constraints, aimed at minimizing 

the total driving distance, based on the principle of first packing and then routing, and 

considered the influence of unloading and reloading as appropriate, and finally used the 

TSA to find the most optimal path. 

By reviewing the literature, we found (see Table 2) that algorithms are most often 

used to solve the VRPSPD problem [25]. Some scholars also combine the metaheuristic 

algorithm with the variable neighborhood search (VNS) [26,27] or the variable neighbor-

hood descent algorithm (VND) [28] to obtain a hybrid metaheuristic algorithm for opti-

mizing the capability of local search. 
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Table 2. Existing studies on VRPSPD. 

Literature Application Scenarios Algorithm Objective 

Goksal et al. [28] VRPSPD Optimized PSO 
Extend the algorithm for 

solving VRPSPD 

Avci et al. [29,30] 
VRPSD with multiple vehicle 

models 

Hybrid Local Search Algo-

rithm 

Extend the algorithm for 

solving VRPSPD 

Ni et al. [31] 
Multiple courier companies 

jointly deliver 
Optimized ACO Minimize total delivery costs 

Chen et al. [32] 

Dual-objective VRPSPD 

model considering both vehi-

cle capacity and distance 

constraints 

Optimized ACO 

Minimize the maximum 

length difference routes and 

minimize transportation cost 

Ma et al. [33] 

Uncertain simultaneous 

pickup and delivery vehicle 

routing problem 

Optimized PSO 
Lowest operating costs and 

highest customer satisfaction 

Ren et al. [34] 

The problem of picking up 

and delivering orders in the 

same city 

Optimized GA Minimize total cost 

(3) Vehicle routing problem with simultaneous pickup and delivery with time window 

constraints (VRPSPDTW) 

In actual logistic services, time window and pickup and delivery services are realistic 

requirements that need to be met; hence the vehicle routing problem with simultaneous 

pickup and delivery with time window constraints (VRPSPDTW) has received increasing 

attention [35]. Existing studies on VRPSPDTW are shown in Table 3. 

Table 3. Existing studies on VRPSPDTW. 

Literature Algorithm Objective 

Wang et al. [36] Simulated annealing (SA) algorithm Minimize the routing cost 

Zhang,Q.H et al. [37] Memetic algorithm 
Minimum the number of vehicles and 

shortest vehicle travel path 

Zhang,S.Z et al. [38] Optimized TSA 
Minimize the total cost including time 

penalty cost 

Hornstra et al. [39] 
Adaptive large neighborhood search 

(ALNS) 
Minimize the total processing cost 

Yan et al. [40] K-means-ACO 
Minimize the total travel cost during 

return and delivery service 

Ahkamiraad et al. [41] 

A hybrid of the genetic 

algorithm and particle swarm optimi-

zation (HGP) 

Minimize the transportation and fixed 

costs 

Lagos et al. [42] PSO 

Minimize the 

total distance of the paths and serving 

customers’ demands 

In analyzing the existing literature, it can be seen that in VRPSPDTW, the most basic 

constraint is the vehicle load constraint or the distance constraint. The objective function 

is mainly the multi-objective function, and total cost minimization is the main goal of op-

timization. The cost includes distribution, time window, and distance cost. In terms of 

solving algorithms, heuristic algorithms are often used to solve the model. This study re-

searches the vehicle path planning problem from the centralized charging station to the 

lithium battery exchange stations under the “centralized charging + unified distribution” 



Sustainability 2022, 14, 9883 6 of 24 
 

mode. It is necessary to consider the time window requirements of each site, and the sim-

ultaneous pickup and delivery requirements, so it is a VRPSPDSTW problem. 

(4) Research on the path problem of dangerous goods distribution and the solution 

method 

The dangerous goods distribution problem refers to the organization of a suitable 

transportation route (e.g., minimum risk to personnel, shortest distance, lowest cost, min-

imum time, etc.) for a series of loading and unloading points for dangerous goods, so that 

the vehicles transporting these goods can pass through in an orderly manner and achieve 

certain optimal goals under certain constraints (such as transportation volume, speed, cy-

cle time, and acceptable risk criteria) [43]. 

Due to the flammable and explosive nature of hazardous materials, accidents during 

the transportation of these materials can be extremely dangerous. Therefore, in the actual 

transportation process, it is necessary to increase the consideration of risks when trans-

porting dangerous goods in order to ensure transportation safety. Erkut et al. [44] sum-

marized eight common methods to measure transport risk: traditional risk, population 

coverage, accident rate, perceived risk, expectation-variance risk, minimum-maximum 

risk, negative utility risk, and conditional risk. Also studied was the vehicle route optimi-

zation problem of hazardous materials transportation. The research on the hazardous ma-

terials path problem advanced from a single-objective problem to a multi-objective haz-

ardous materials vehicle path problem, especially in recent years. The research objectives 

now encompass transportation cost, transportation risk, transportation distance, transpor-

tation time, accident rate, and transportation loss [45]. Kara et al. [46] first proposed a bi-

optimal objective model considering both transportation risk and transportation cost and 

converted the bi-objective model into a single-objective model using Kuhn–Tucker condi-

tions and complementary slackness conditions. Zografos et al. [47] proposed a two-objec-

tive hazardous materials transportation model and gave a simplified transportation risk 

formula, which measured transportation risk in terms of conventional risk. The proposed 

bi-objective model was later converted into a single-objective model using a linear 

weighting approach. Androutsopoulos et al. [48] considered time constraints and used an 

improved insertion method to solve the model with the objective of minimizing transpor-

tation costs and risks when transporting chemical supplies. Chai et al. [49] first simplified 

the process of quantifying the risk factors of vehicles passing through densely populated 

areas, and used the small number of vehicles, the total transport distance, and the shortest 

driving distance through densely populated areas as the objective function in constructing 

the model and solved it using an improved genetic algorithm. Zhang et al. [50] established 

a route optimization model for dangerous goods transportation vehicles that simultane-

ously minimizes the maximum accident consequences and transportation costs and de-

signed the exact algorithm for solving the model based on the ε-constraint method. Li et 

al. [51] constructed a mathematical model with the objectives of minimizing transporta-

tion cost and transportation risk, and the transportation risk was measured by the number 

of people affected by the accident, after which the improved NSGA-II algorithm was ap-

plied to solve the model. 

In general, research on the vehicle path problem focuses on two aspects: model con-

struction and solution algorithms. In terms of model construction, scholars have studied 

the vehicle path problem from two aspects: adding constraints or increasing the number 

of objective functions. The constraints mainly focus on time constraints and vehicle vol-

ume constraints, and the objective functions can be divided into single-objective and 

multi-objective, of which the main objective is the minimization of total cost. In terms of 

solution algorithms, most scholars use heuristic algorithms, among which ant colony al-

gorithms have been widely used. However, studies on the simultaneous pickup and de-

livery vehicle routing problem ignore the inherent dangers of transporting goods. Com-

bining the characteristics of lithium battery dangerous goods and the service time con-

straints of the power exchange point, this study adds the consideration of “transportation 
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risk” when building the model and studies the routing problem of vehicles for simultane-

ous pickup and delivery of dangerous goods with on-board capacity and time window 

constraints in detail. 

3. Basic Model 

3.1. Problem Description and Model Assumptions 

In view of the current battery exchange mode, this study proposes a “centralized 

charging + unified distribution” battery exchange mode, with a specific operation flow as 

seen in Figure 2. In other words, there is a centralized charging station and multiple lith-

ium battery exchange stations in a particular area, and the centralized charging station 

provides a battery replacement service by centralized storage, centralized charging, and 

unified distribution for a large number of batteries. 

 

Figure 2. Operation flow of “centralized charging + unified distribution” power exchange model. 

The problem can be specifically described as follows: there exists a centralized charg-

ing station and multiple lithium battery exchange stations in a certain area, and the cen-

tralized charging station is responsible for providing pickup and delivery services of lith-

ium batteries from the lithium battery exchange stations in the area. The locations of the 

centralized charging station and the battery exchange stations are determined each time 

a distribution vehicle with a certain load capacity departs from the centralized charging 

station, delivers the fully charged batteries to each lithium battery exchange station dur-

ing the service time, and then transports the lithium batteries that need to be charged back 

to the centralized charging station for charging. If the delivery vehicle does not deliver the 

lithium battery within the service time required by the lithium battery exchange station, 

a corresponding penalty cost will be paid. In this case, the following factors are known: 

the location and number of centralized charging stations and each lithium battery ex-

change station, the demand for lithium batteries the day before delivery, the service time 

limit, the number of vehicles, the vehicle travel speed, and information related to trans-

portation risk. The objective of the problem is to reasonably arrange vehicles as well as 

driving routes under certain constraints to satisfy the demand for all lithium battery ex-

change stations while minimizing distribution costs and transportation risks. The follow-

ing assumptions are made to facilitate the study. 

1. The “centralized charging + unified distribution” mode of power exchange has been 

applied on a large scale in a certain area, and the number of batteries can meet the 

demand of all lithium battery exchange stations. 
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2. There is a centralized charging station (24 h charging service) in the region, the num-

ber of vehicles is certain, and the starting and ending points of vehicle distribution 

are centralized charging stations. 

3. The location of each lithium battery exchange station and the demand for picking up 

and delivering lithium batteries are known before the vehicle departs. 

4. The distance between the centralized charging station and each lithium battery ex-

change station, the service time, the accident probability of each road section, the 

accident impact radius, the population density, and the number of people affected 

are known. 

5. Each vehicle has the same specification and maximum load capacity. Assume that 

the number of vehicles is three, and the driving speed is constant at 60 km/h. 

6. Each lithium battery exchange station is delivered and picked up by only one vehicle 

and the pickup and delivery demand is met at one time. 

7. The lithium batteries can be mixed and delivered with the same specifications, and 

the actual loading capacity of each vehicle cannot exceed the maximum loading ca-

pacity of the vehicle. 

8. Each lithium battery exchange station has a designated service window, and the dis-

tribution vehicle needs to provide service within this timeframe. 

9. The service time of the distribution vehicle at the lithium battery exchange station is 

not related to the distribution volume. 

10. The distribution cost only considers variable cost (proportional to the number of 

miles driven by the vehicle) and time window penalty cost. Fixed costs (constants, 

including driver’s salary, vehicle insurance, etc.) are not considered for the time be-

ing. 

3.2. Model Constraint 

For the lithium battery distribution business of Company A, the path planning model 

is constructed with the objective of minimizing distribution costs and transportation risks. 

The multi-objective hazardous material vehicle path problem can reflect the trade-off be-

tween cost as well as risk and is closer to the actual research situation. The mathematical 

notations used in this study are listed in Table A1. The specific constraints are explained 

and taken as follows: 

(1) Distribution cost 

The distribution cost includes variable cost and time window penalty cost, where the 

variable cost includes the fuel cost and maintenance cost of each operating vehicle. The 

variable cost is related to the unit transportation cost of the vehicle and the transportation 

distance; the longer the distance the vehicle travels, the higher the fuel cost required. As-

suming there are 𝐾 vehicles serving all lithium battery exchange stations, the variable 

cost of one of the vehicles in the distribution process can be expressed as 𝑓1: 

𝑓1 = 𝐶1 ∑ ∑ ∑ 𝑥𝑖𝑗𝑘𝑘∈𝐾𝑗∈𝑁𝑖∈𝑁 𝑑𝑖𝑗  ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾  (1) 

where 𝐶1 denotes the transportation cost per unit of distance of the distribution vehicle, 

𝑑𝑖𝑗 denotes the distance from lithium battery exchange station 𝑖 to 𝑗, and 𝑥𝑖𝑗𝑘 denotes 

whether the distribution vehicle k drives from lithium battery exchange station 𝑖 to 𝑗. 

In the actual process of distributing lithium batteries, different lithium battery ex-

change stations have different requirements for the delivery service time. If the vehicle 

completes the delivery within the expected time of the lithium battery exchange station, 

the penalty cost is 0. If the vehicle arrives earlier than the expected service time of the 

lithium battery exchange station, the vehicle must wait at the lithium battery exchange 

station and has to pay an additional waiting cost. If it arrives later than the desired deliv-

ery time of the lithium battery exchange station, the exchange station imposes a penalty 

cost to encourage the delivery vehicle to complete the service within the desired service 

time. In this study, a soft time window constraint was applied to the penalty cost incurred 
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by the delivery vehicle k arriving at the lithium battery exchange station j, as shown in 

Equation (2). 

𝑓2 = {

𝐶2(𝐸𝑇𝑗 − 𝑇𝑗𝑘),             𝑇𝑗𝑘 < 𝐸𝑇𝑗

0,                   𝐸𝑇𝑗 < 𝑇𝑗𝑘 < 𝐿𝑇𝑗

𝐶3(𝑇𝑗𝑘 − 𝐿𝑇𝑗),           𝐿𝑇𝑗 <   𝑇𝑗𝑘

 (2) 

where [𝐸𝑇𝑗, 𝐿𝑇𝑗]  denotes the best service time range required by the lithium battery re-

placement station 𝑗. 𝑇𝑗𝑘 denotes the moment the delivery vehicle 𝑘 arrives at the lithium 

battery swap station 𝑗. (𝐸𝑇𝑗 − 𝑇𝑗𝑘) denotes the length of time that the vehicle 𝑘 arrives 

early at the lithium battery exchange station 𝑗. 𝐶2 denotes the unit penalty cost incurred 

for arriving earlier than the optimal service time required by the lithium battery exchange 

station 𝑗. (𝑇𝑗𝑘 − 𝐿𝑇𝑗) denotes the delayed arrival of vehicle 𝑘 at the lithium battery ex-

change station 𝑗 for the length of time. 𝐶3 denotes the unit penalty cost incurred for ar-

riving later than the optimal service time required by the lithium battery exchange sta-

tion 𝑗. 

In summary, the distribution cost of the distribution vehicle is shown in Equation (3). 

𝑓3 = 𝑓1 + 𝑓2 (3) 

(2) Transportation risk 

Transportation risk, i.e., the impact of possible accidents during transportation on 

people, property, and the environment, depends on the rate of transportation accidents 

and the consequences of the impact of accidents [52]. In the vehicle path problem of haz-

ardous materials transportation, the risk factors are mostly random and uncertain, which 

makes the process of quantification complicated, and no unified evaluation model has 

emerged to address this so far. Measuring transportation risk by personnel risk is still a 

widely used method by scholars [53]. The equation is: Personnel risk = Probability of ac-

cident × Number of people affected within a given distance [54], defined as Equation (4). 

𝑅𝑖𝑗 = 𝑝𝑖𝑗𝑃𝑖𝑗 (4) 

where  𝑅𝑖𝑗  denotes the risk of people in the section of road from the lithium battery ex-

change stations 𝑖 to 𝑗. 𝑝𝑖𝑗  denotes the probability of an accident from lithium battery ex-

change stations 𝑖 to 𝑗. 𝑃𝑖𝑗  denotes the number of people that can be affected in the area in 

case of an accident in the section of road from lithium battery exchange stations 𝑖 to 𝑗. 

The specific definition is given in Equation (5). 

𝑃𝑖𝑗 = 2𝑑𝑖𝑗𝜆𝜌𝑖𝑗 (5) 

where 𝑑𝑖𝑗  denotes the distance from lithium battery exchange stations 𝑖 to 𝑗. λ denotes 

the radius of the area that can be affected in case of an accident in the section of road from 

lithium battery exchange stations 𝑖 to 𝑗. 𝜌𝑖𝑗 denotes the population density from the lith-

ium battery exchange stations i to j. The values of 𝑝𝑖𝑗 and 𝜌𝑖𝑗 are randomly generated 

similarly as in [43]. 𝑝𝑖𝑗  is taken in the range [1, 2],  𝜌𝑖𝑗  is taken in the range [300, 600] (in 

people), and the value of λ is 0.1 km. 

3.3. Multi-Objective Model 

The objective of this study is to minimize distribution cost and transportation risk, 

which is part of the multi-objective model. The solution methods for multi-objective prob-

lems mainly include the weighting method, hierarchical solution method, and multi-ob-

jective evolutionary method (e.g., NSGA-II). Referring to the literature [48], in this study, 

distribution cost and transportation risk are transformed into a single-objective function 

using a weighting method. The problem of setting the weighting coefficients of it can be 

determined based on the importance of distribution cost and transportation risk of com-

pany A (the weighting coefficients of both need to satisfy the summation equal to 1). 



Sustainability 2022, 14, 9883 10 of 24 
 

Target model: 

𝑚𝑖𝑛 𝑍 = 𝜔1𝐶1 ∑ ∑ ∑ 𝑥𝑖𝑗𝑘𝑘∈𝐾𝑗∈𝑁𝑖∈𝑁 𝑑𝑖𝑗 

 +𝜔1[𝐶2 ∑ ∑ ∑ 𝑥𝑖𝑗𝑘 𝑚𝑎𝑥{ (𝐸𝑇𝑗 − 𝑇𝑗𝑘),0}𝑘∈𝐾𝑗∈𝑁𝑖∈𝑁   

+𝐶3 ∑ ∑ ∑ 𝑥𝑖𝑗𝑘 𝑚𝑎𝑥{ (𝑇𝑗𝑘 − 𝐿𝑇𝑗),0}𝑘∈𝐾𝑗∈𝑁𝑖∈𝑁 ] 

 
 +𝜔2 ∑ ∑ 𝑅𝑖𝑗𝑗∈𝑁𝑖∈𝑁  

(6) 

𝜔1 + 𝜔2 = 1 (7) 

Load capacity constraint: 

𝑓𝑤𝑎𝑔𝑜𝑛
𝑖𝑘 + ∑ 𝑥𝑖𝑗𝑘(𝑝𝑖 − 𝑣𝑖)𝑗∈𝑁 ≤ 𝐿, 𝑖, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐾  (8) 

Vehicle number constraints: 

∑ ∑ 𝑥𝑂𝑖𝑘𝑘∈𝐾𝑖∈𝑁 ≤ 𝐾   (9) 

∑ ∑ 𝑥O𝑖𝑘𝑘∈𝐾𝑖∈𝑁 = ∑ ∑ 𝑥𝑗O𝑘𝑘∈𝐾𝑗∈𝑁   (10) 

Demand non-splittable constraints: 

∑ 𝑥𝑖𝑗𝑘 = 𝑦𝑗𝑘
𝑁̄
𝑖=1 , ∀𝑗 ∈ 𝑁, 𝑘 ∈ 𝐾  (11) 

∑ 𝑥𝑖𝑗𝑘
𝑁̄
𝑗=1 = 𝑦𝑖𝑘, ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾  (12) 

Delivery time continuity constraint: 

𝑇𝑗𝑘 = 𝑇𝑖𝑘 + 𝑡𝑖𝑗 + 𝑠𝑖𝑘, ∀𝑖, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐾 (13) 

Variable Constraints: 

𝑥𝑖𝑗𝑘 ∈ {0,1}, ∀𝑖, 𝑗, 𝑘 (14) 

𝑦𝑖𝑘 ∈ {0,1}, ∀𝑖, 𝑘 (15) 

Sub-tour elimination constraint: 

∑ ∑ ∑ 𝑥𝑖𝑗𝑘 ≤ |𝑆| − 1, 𝑆 ⊂ {1,2, . . , 𝑁̅ + 1},2 ≤ |𝑆|𝑘∈𝐾𝑗∈𝑁𝑖∈𝑁 ≤ 𝑁̅  (16) 

Constraint (6) indicates that the total distribution cost and transportation risk are 

minimized, and consists of three items, which are the distribution cost, the penalty cost 

for early or late delivery time, and the transportation risk. The second term of max (x, 0) 

indicates that the penalty cost is 0 if the vehicle arrives within the best service time re-

quired by the lithium battery exchange station, otherwise, either early or late arrival will 

incur the corresponding penalty cost. Constraint (7) indicates the weight relationship, and 

the sum of the two equals 1. Constraint (8) indicates that the actual weight of the vehicle 

k after completing the task of delivering or picking up lithium batteries at each lithium 

battery exchange station cannot exceed the maximum weight of that vehicle. Constraint 

(9) ensures that the number of vehicles departing from the centralized charging station 

does not exceed the maximum number of vehicles. Constraint (10) ensures that the vehicle 

departs from and eventually returns the centralized charging station, and the number of 

departure vehicles is equal to the number of return vehicles. Constraints (11) and (12) in-

dicate that each lithium battery exchange station has and can only be delivered by one 

vehicle, and there must be a path connected to it when the demand is not split and the 

lithium battery exchange station is served by the same vehicle. Constraint (13) ensures 

continuity in the distribution process. Constraints (14) and (15) represent variable con-

straints. Constraint (16) means that the vehicle only visits each lithium battery exchange 

station once. 
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4. Ant Colony Genetic Hybrid Algorithm Design and Verification 

4.1. Algorithm Design 

To address the problems of traditional heuristics such as failure to converge and the 

tendency to fall into local optimality, optimizing a single heuristic algorithm or combining 

multiple heuristics into a hybrid metaheuristic algorithm can improve the solving ability. 

From reviewing the literature, it can be seen that the two algorithms, ant colony and ge-

netic, have a wide research base and have relative advantages in solving vehicle path op-

timization problems. The ant colony algorithm can produce good quality solutions with a 

small number of iterations, while the genetic algorithm has a good global search capabil-

ity, which can effectively solve the problems faced by the ant colony algorithm in the local 

optimization problem. Therefore, this study proposes the ant colony genetic algorithm to 

solve the model. 

The basic design idea is shown in Figure 3; the ant colony algorithm is used as the 

main body, and the feasible solution is first output as a new population by the algorithm. 

Then, the fitness function is used to evaluate the new population; that is, the objective 

function is used to judge the quality of the individuals in the population. Since the objec-

tive function in this study is to minimize the delivery cost and risk, the inverse of the 

objective function is taken as the value of the fitness function. The solution corresponding 

to the minimum value of the objective function is chosen. Then, the solution is inserted 

into the genetic algorithm; the crossover and variation operators of the genetic algorithm 

are used to further optimize the better solution obtained by the ant colony algorithm, so 

as to expand the search space. In the case of satisfying the termination condition, the con-

vergence speed of the algorithm is accelerated to improve the quality of the solution. 
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Figure 3. Flow chart of ant colony genetic hybrid algorithm. 

These are some explanations for the specific steps: 

(1) Initialization parameters. Set the initial value of the iteration number iter = 1 and the 

maximum iteration number iter_max = 100. The definitions and values of other pa-

rameters (m, 𝜕, 𝛽, 𝜌, 𝑄, 𝑃𝑐 , 𝑃𝑚) are shown in Table 4. 

(2) Pheromone updating. Set the initial pheromone of all locations to 1, so that the ants 

have the same probability of crawling to each location. Calculate the length path trav-

ersed by the ants, record the current optimal solution, and update the pheromone. 

(3) Transfer of ants. When choosing the next place to visit, the ants will use the phero-

mone concentration on each connection path as a reference. 𝑃𝑖𝑗
𝑘(𝑡) denotes the prob-

ability that ant k moves from point i to j at time t. 

𝑃𝑖𝑗
𝑘(𝑡) = {

[𝜏𝑖𝑗(𝑡)]
𝛼

⋅ [𝜂𝑖𝑗(𝑡)]
𝛽

∑  𝑠∈allow𝑘
[𝜏𝑖𝑠(𝑡)]𝛼 ⋅ [𝜂𝑖𝑠(𝑡)]𝛽

,     𝑠 ∈ allow𝑘

0,     𝑠 ∉ allow𝑘

 (17) 

𝜂𝑖𝑗(𝑡) denotes the heuristic function, the value is the reciprocal of the distance be-

tween points i and j, which represents the expected degree of ants 𝑖 transferring from 
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point i to j. 𝑎𝑙𝑙𝑜𝑤𝑘(𝑘 = 1,2, … , 𝑚) denotes the set of all locations except the departure lo-

cation of ant k, including (n − 1) elements. It can be seen from Equation (18) that after the 

ants release the pheromone, the pheromone concentration between the sites decreases 

with time. 

{
𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌)𝜏𝑖𝑗(𝑡) + Δ𝜏𝑖𝑗

Δ𝜏𝑖𝑗 = ∑  𝑛
𝑘=1 Δ𝜏𝑖𝑗

𝑘 , 0 < 𝜌 < 1   (18) 

Δ𝑡𝑖𝑗 denotes the sum of the pheromone concentrations released by all ants on the 

way from point i to j. The pheromone released by ants was studied through the ant density 

system, the concentration of pheromone released in this model was a constant value Q. 

(4) Load capacity check of the visiting location: if the load constraints are met, continue 

to visit, otherwise re-select the next place to be visited. The sites visited by the ants 

are added to the taboo list until the ants have visited all the sites. 

(5) Evaluate the new population: In this study, the fitness function was used to evaluate 

the new population judging the quality of individuals in the group through the ob-

jective function. Since the objective function in this study is to minimize the delivery 

cost and transportation risk, the inverse of the objective function is used as the value 

of the fitness function. 

(6) Crossover and mutation: according to the crossover probability 𝑃𝑐, some genes on 

the chromosomes corresponding to the two individuals are crossed to generate a new 

individual. Then, according to the mutation probability 𝑃𝑚, the gene on the chromo-

some is mutated. Through crossover and mutation, new individuals can be generated 

to increase population diversity. 

4.2. Validity Verification 

Based on the Solomon arithmetic example set, 15 rows of the dataset from the R class 

test set were selected to validate the model as well as the algorithm effectiveness. The 

original data is improved by borrowing the data generation of pickups and deliveries 

from the literature [55]. In this case, the basic data in the example are kept unchanged, and 

the data of delivery quantity 𝑑𝑖 and pickup quantity 𝑝𝑖 are generated according to the 

following rules: let the demand of customer i in the original example be 𝐺𝑖, the coordinates 

of station i are (𝑥𝑖, 𝑦𝑖), and let 𝑟𝑖 = min(𝑥𝑖/𝑦𝑖, 𝑦𝑖/𝑥𝑖), then 𝑑𝑖 = 𝐺𝑖𝑟𝑖, 𝑝𝑖 = 𝐺𝑖(1 − 𝑟𝑖). The de-

tails of the coordinate system, coordinate position, delivery volume, pickup volume, time 

window, and service time corresponding to each station are shown in Table 5. The specific 

calculation of personnel risk refers to Equations (4) and (5). Referring to the method in 

[43], relevant information such as the accident rate between points, the radius of the af-

fected area when the accident occurs, and the population density, are generated. The ac-

cident rate between points is randomly generated in the range [1, 2], the population den-

sity between points is randomly generated in the range [300, 600] (in people) (for specific 

values, see Tables A2 and A3 in Appendix A). Referring to the analysis of parameters in 

[56], the settings of other parameters required are shown in Table 5. 

Table 4. Algorithm parameter settings. 

Parameters Parameter Meaning Parameter Value 

𝑚 Population size 10 

𝜕 Information heuristic factor 1 

𝛽 Expectation heuristic factor 5 

𝜌 Information volatility factor 0.75 

𝑄 Total pheromone release 10 

𝑃𝑐 Crossover probability 0.5 

𝑃𝑚 Mutation probability 0.1 
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𝐶1 
Delivery vehicle unit distance transportation 

cost 
3 CNY/km 

𝐶2 Unit penalty cost for early arrival 20 CNY/h 

𝐶3 Unit penalty cost for being late 30 CNY/h 

𝜆 The radius of influence of the accident 0.1 km 

Table 5. Detailed information table for each location. 

Serial Num-

ber 

Customer  

Coordinates 

Delivery 

Quantity 

(Pieces) 

Pickup 

Quantity 

(Pieces) 

Time 

Window 

(min) 

Service Time 

(min) 

0 (35, 35)     

1 (41, 49) 8 2 [161, 171] 10 

2 (35, 17) 3 4 [50, 60] 10 

3 (55, 45) 11 2 [116, 126] 10 

4 (55, 20) 7 12 [149, 159] 10 

5 (15, 30) 13 13 [34, 44] 10 

6 (25, 30) 3 0 [99, 109] 10 

7 (20, 50) 2 3 [81, 91] 10 

8 (10, 43) 2 7 [95, 105] 10 

9 (55, 60) 15 1 [97, 107] 10 

10 (30, 60) 8 8 [124, 134] 10 

11 (20, 65) 4 8 [67, 77] 10 

12 (50, 35) 13 6 [63, 73] 10 

13 (30, 25) 19 4 [159, 169] 10 

14 (15, 10) 13 7 [32, 42] 10 

15 (30, 5) 1 7 [61, 71] 10 

In order to compare the results in a more stable and scientific manner, each algorithm 

is run ten times, and the average value of the weighted function value is output (see Table 

6). The platform for running the algorithm is a laptop with an Intel(R) Core(TM) i7-8565U 

CPU. 

Table 6. Algorithm result comparison. 

Algorithm 
𝝎𝟏 − 𝝎𝟐 

Number of Iterations 
0.8–0.2 0.6–0.4 0.5–0.5 0.4–0.6 0.2–0.8 

ACO-GA 1008.23 889.22 789.14 708.29 556.42 35 

ACO 1015.13 865.88 801.90 725.51 560.19 45 

GA 1471.99 1232.84 1200.59 1007.75 767.58 68 

SAA 1547.08 1377.72 1202.06 983.86 728.12 89 

As can be seen from Table 6, when the weights are combined as (0.8, 0.2), (0.5, 0.5), 

(0.4, 0.6), and (0.8, 0.2), the average value of the ten-run results of the improved ant colony 

algorithm (ACO-GA) is the smallest. When the weight combination is (0.6, 0.4), the 

weighting function value of ACO-GA is the second smallest. It can be seen that the ACO-

GA proposed in this paper can obtain better objective function values than the benchmark 

algorithm in most cases. 

5. Empirical Analysis 

5.1. Case Introduction and Preprocessing 

Company A is a lithium battery sales and operation and R&D company, and its loca-

tion is in Beijing. Company A’s stores are located in several districts in Beijing; nine stores 
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plus one warehouse of Company A were selected for this study. There are three vehicles 

in the warehouse, which are used to provide the delivery service for each store. Figure 4 

shows the locations of Company A’s warehouses and stores. Location 0 is the warehouse 

of Company A, and locations 1–9 are the stores. The specific latitude and longitude infor-

mation is given in Table A4. 

 

Figure 4. Store location map of Company A. 

Since the distance data between each store are required for the calculation of the dis-

tribution cost and transportation risk, the latitude and longitude between two points 

needs to be transformed into the actual distance. According to Equation (17) [57], the 

transformed distance matrix is shown in Table 7, where it is assumed that B2 denotes the 

latitude of Store 1, C2 denotes the longitude of Store 1, D2 denotes the latitude of Store 2, 

E4 denotes the longitude of Store 2, F2 denotes the actual distance between Store 1 and 

Store 2, and R = 6371.373 (km) denotes the radius of the Earth. 

F2 = R ∙ arcos[cos(B2) ∙ cos(D2) ∙ cos (C2 − E4) + sin (B2) ∙ sin (D2)] (19) 
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Table 7. Distance matrix between stores of Company A (kilometers). 

Stores 

No. 
0 1 2 3 4 5 6 7 8 9 

0 0 22.4 42.2 43.4 20.1 42.8 102.3 43.0 31.4 72.3 

1  0 43.6 50.1 26.5 59.4 89.2 33.3 38.8 63.8 

2   0 11.4 61.1 36.1 66.7 21.1 13.3 39.9 

3    0 63.3 26.1 75.3 32.2 12.1 49.3 

4     0 61.5 11.5 57.4 51.2 88.8 

5      0 100.9 54.6 26.5 75.3 

6       0 59.1 80.0 27.8 

7        0 28.2 31.6 

8         0 52.6 

9          0 

Company A’s delivery vehicle has a maximum loading capacity of 50 pieces, and the 

vehicle travels at a constant speed of 60 km/h. The warehouse provides services 24 h a 

day, and the pickup requirements, service hours and time windows of each store are 

shown in Table 8. 

Table 8. Detailed information table of each store. 

Serial Store Name Delivery Pickup Time Service Time 

Number  
Quantity 

(Pieces) 

Quantity 

(Pieces) 

Window 

(min) 
(min) 

0 
Company A 

warehouse 
    

1 Store 1 10 2 [7:30–7:45] 8 

2 Store 2 7 10 [7:45–8:00] 10 

3 Store 3 6 3 [8:10–8:35] 5 

4 Store 4 5 6 [7:05–7:20] 5 

5 Store 5 4 14 [8:15–8:25] 10 

6 Store 6 14 7 [8:30–9:00] 10 

7 Store 7 11 6 [7:55–8:10] 9 

8 Store 8 6 3 [7:50–8:15] 6 

9 Store 9 14 2 [8:00–8:30] 7 

5.2. Parameter Combination Analysis 

Determining the appropriate parameter values not only reduces the program run-

ning time, but also finds the optimal value of the objective function. Since the algorithm 

in this study is a hybrid algorithm, it is necessary to perform sensitivity analysis on the 

main parameters of the ant colony algorithm and the genetic algorithm to determine the 

optimal parameter combination. Parameters such as α, β, and ρ in the ant colony algo-

rithm have great impact on the performance of the algorithm. Regarding the parameter 

settings of the ant colony algorithm, it is generally believed that the larger the values of α 

and β, the larger the computational effort and the longer the program run time. In the case 

that satisfactory solutions can be obtained, it is recommended that α and β be relatively 

small values. Generally, values of α between 1 and 2, β between 1 and 5, and ρ between 0 

and 1 will achieve a solution with better results. 

The initial values of the parameters were set as follows: population size m = 10, in-

formation heuristic factor α = 1, expectation heuristic factor β = 5, information volatility 

factor ρ = 0.75, total pheromone release Q = 10 (constant, the total amount of pheromone 
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released by ants in one cycle), 𝑃𝑐 = 0.5, and 𝑃𝑚 = 0.1. Under the condition that other pa-

rameter values remain unchanged, only one parameter value is changed for analysis. If 

some optimal parameters have been determined in the previous step, we proceed to the 

sensitivity analysis of the next parameter based on the existing optimal combination. In 

this section, we set the weights as: 𝜔1 = 𝜔2 = 0.5; indicating that the company places 

equal emphasis on delivery costs and transportation risks. After ten repeated tests, objec-

tive function values and iteration times of different combinations are compared, and a 

more appropriate parameter combination is finally selected. 

(1) Information heuristic factor 𝛼 and the expectation heuristic factor β 

From Tables 9 and 10, it can be seen that while keeping other parameters constant, 

the larger the values of α and β, the faster the algorithm converges. The results are that 

the optimal values of α and β are 2 and 5, respectively, at which time the weighted objec-

tive function value and the number of iterations to achieve convergence are minimal. 

Table 9. Results of the effect of α value on the ant colony genetic hybrid algorithm. 

𝛼 β 

Average 

Cost 

(CNY) 

Average 

Risk 

Weighted Objective 

Function Value (CNY) 

Number of Iterations to 

Reach Convergence 
Time (s) 

0 5 32.30 5.78 19.04 89 11.70 

0.5 5 37.84 5.76 21.80 32 12.91 

1 5 34.91 5.99 20.45 79 12.57 

2 5 21.37 5.41 13.88 7 11.73 

Table 10. Results of the effect of β value on the ant colony genetic hybrid algorithm. 

𝛼 β 

Average 

Cost 

(CNY) 

Average 

Risk 

Weighted Objective 

Function Value 

Number of Iterations to 

Reach Convergence 
Time (s) 

2 0 41.65 8.68 24.90 20 13.83 

2 2 33.08 6.25 19.66 38 17.60 

2 4 34.33 5.66 20.00 6 16.20 

2 5 32.89 5.87 19.38 5 11.86 

(2) Information volatility factor ρ 

As can be seen from Table 11, when ρ is relatively small, the pheromone volatilizes 

slowly, and the algorithm has strong global search ability, but requires a larger number 

of iterations to achieve convergence. When ρ is relatively large, the pheromone volatilizes 

quickly, the convergence speed is fast, and the global search ability of the algorithm is 

weak, making it is easy to fall into the local optimum. After comprehensive consideration, 

the value of ρ was chosen to be 0.8 in this study. At this time, the value of the weighted 

objective function value is minimal and convergence can be achieved in 36 iterations. 

Table 11. Results of information volatility factor ρ on hybrid ant colony genetic algorithm. 

ρ 
Average Cost 

(CNY) 
Average Risk 

Weighted Objective  

Function Value 

Number of Iterations to 

Reach Convergence 
Time (s) 

0.2 36.11 5.69 20.90 52 13.78 

0.4 33.88 5.67 19.78 42 12.03 

0.6 38.17 5.94 22.06 57 12.10 

0.8 32.36 5.90 19.13 36 13.29 

(3) Crossover operator 𝑃𝑐 and variational operator 𝑃𝑚 
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It can be seen from Table 12 that while keeping the value of the variational operator 

𝑃𝑚 constant, 𝑃𝑐 is taken as 0.2, the weighted objective function value and the number of 

iterations to reach convergence are minimal. 

Table 12. Results of 𝑃𝑐 on the ant colony genetic algorithm. 

𝑷𝒄 𝑷𝒎 
Average Cost 

(CNY) 

Average 

Risk 

Weighted Objective 

Function Value 

Number of Iterations to 

Reach Convergence 
Time (s) 

0.2 1 28.11 5.85 16.98 23 16.11 

0.4 1 29.53 5.98 17.75 56 13.06 

0.6 1 28.29 5.77 17.03 71 14.64 

0.8 1 29.64 5.92 17.78 95 12.35 

It can be seen from Table 13 that while keeping the value of the crossover operator 

𝑃𝑐 constant, and 𝑃𝑚 is taken as 0.6, the weighted objective function value and the number 

of iterations to reach convergence are minimal. Although, the transportation risk and run-

ning time of the model are not minimal when 𝑃𝑐  = 0.6. But, based on the total cost 

(weighted value of the objective function), we determine the optimal 𝑃𝑐 = 0.6. 

Table 13. Results of 𝑃𝑚 on the ant colony genetic hybrid algorithm. 

𝑷𝒄 𝑷𝒎 

Average 

Cost 

(CNY) 

Average 

Risk 

Weighted Objective 

Function Value 

Number of Iterations to 

Reach Convergence 
Time (s) 

1 0.2 33.75 5.89 19.82 88 13.23 

1 0.4 30.69 5.46 18.08 31 13.76 

1 0.6 28.85 5.79 17.32 14 14.32 

1 0.8 28.98 5.85 17.42 17 12.75 

Therefore, the algorithm parameters in this study will be taken as follows: m = 10, α 

= 2, β = 5, ρ = 0.8, Q = 10, 𝑃𝑐 = 0.2, 𝑃𝑚 = 0.6. 

5.3. Path Preference Analysis 

In order to explore how to choose the best route solution under different preferences, 

different weights are set for distribution cost and transportation risk for total cost account-

ing, where the size of the weights represent the importance of the decision makers, and a 

larger weight indicates that the decision makers want the goal to be smaller. Since the cost 

and risk have different orders of magnitude and units, they are standardized to ensure 

the uniformity of the scale in the weighting process. When setting weights for distribution 

cost and transportation risk, the principle that the sum of the two weights is equal to 1 is 

observed. By setting different weights for distribution cost and transportation risk, indi-

cating different transportation preferences of enterprises, the optimal path is shown in 

Table 10, and the route planning schematic is shown in Figure 5. 
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(A)  ω1 = 0.2, ω2 = 0.8 (B)  ω1 = 0.4, ω2 = 0.6 

  

(C) ω1 = 0.5, ω2 = 0.5 (D) ω1 = 0.6, ω2 = 0.4 

 

(E)  ω1 = 0.8, ω2 = 0.2 

Figure 5. Distribution route diagram. 

According to Table 14, companies will have five different options when setting dif-

ferent weights on distribution costs and transportation risks. When an enterprise is facing 

the decision of both distribution cost and transportation risk, the more the enterprise 

cares, the greater the corresponding weight value, and the resulting value of this part will 

be small. The smaller the weight value, the lower the degree of concern of the enterprise, 

and the resulting value of this part will be larger. 
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Table 14. Path selection preference results with different weights. 

Strategy 

Weights Optimal Path 

𝝎𝟏 𝝎𝟐 Vehicle 1 Vehicle 2 Vehicle 3 

Normalized  

Objective Func-

tion Value 

Distribu-

tion Cost 

Shipping  

Risks 

Programs  

Preference 

A 0.2 0.8 

0→4→1 

→2→3→8→5

→0 

0→7→9 

→6→0 
 0.76 60.14 5.40 

Very concerned 

about risk 

B 0.4 0.6 
0→1→4 

→8→2→7→0 

0→3→5 

→6→0 

0→5→3 

→2→0 
0.47 29.34 8.67 

More concerned 

about risk 

C 0.5 0.5 
0→4→1 

→7→0 

0→8→3 

→2→9→0 

0→5→6 

→0 
0.83 55.17 8.08 

Intentional risk 

and cost 

D 0.6 0.4 
0→4→1 

→7→2→8→0 

0→5→3 

→9→0 
0→6→0 0.42 29.88 7.85 

More concerned 

about cost 

E 0.8 0.2 
0→4→1 

→7→2→8→0 

0→3→5 

→9→0 
0→6→0 0.80 28.40 8.51 

Very concerned 

about cost 

6. Conclusions 

In view of the practical problems of unsafe home charging, insufficient number of 

charging piles, high purchase cost of lithium batteries, and difficulty in charging distribu-

tion vehicles, this paper proposes a battery replacement mode of “centralized charging + 

unified distribution” for small electric vehicles based on the lithium battery leasing and 

distribution business of company A. 

The proposed dual-objective model and improved ant colony algorithm (ACO-GA) 

can provide an optimal path that takes into account the distribution cost and transporta-

tion risk when solving the transportation path problem of hazardous goods such as lith-

ium batteries. This can also provide reference for other enterprises that intend to develop 

power exchange businesses. When verifying the effectiveness of the improved algorithm, 

different weight combinations are used to verify the effectiveness of ACO-GA on the R-

type dataset in the Solomon test set, which make the results more stable. After determin-

ing the optimal parameter combination through sensitivity analysis, we set different 

weight coefficients when calculating the weighted objective function value, which meet 

the distribution needs of enterprises with different risk preferences. 

The study also has several limitations, which we plan to improve in our future work. 

Firstly, in terms of algorithm improvement, it can be combined with more intelligent al-

gorithms suitable for VRPSPDSTW to carry out a variety of algorithm variants. Secondly, 

on the scale of the calculation example, a larger-scale data set can be further selected for 

experiments. Finally, in the comparison of algorithms, comparisons with other deep learn-

ing and reinforcement learning-based algorithms can be added in the future. 
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Appendix A 

Table A1. Table of notations. 

Sets and Parameters 

𝑂 Centralized charging station 

𝑁 = {𝑖|𝑖 = 1,2, … , 𝑁̅} The number of lithium battery exchange stations 

𝐾 = {𝑘|𝑘 = 1,2, … , 𝐾} The number of delivery vehicles at centralized charging stations 

𝑑𝑖𝑗 The distance from station 𝑖  to  𝑗 for lithium battery exchange 

𝑡𝑖𝑗 Delivery time for lithium battery exchange station 𝑖  to  𝑗 

𝑠𝑖𝑘 Service hours of delivery vehicles 𝑘  at battery exchange station 𝑖 

𝑣𝑖 Lithium battery exchange station 𝑖 delivery volume 

𝑝𝑖 Pickup volume at lithium battery exchange station 𝑖 

[𝐸𝑇𝑖 , 𝐿𝑇𝑖] 
The best service time range required by the lithium battery exchange station  𝑖 

𝐶1 
Delivery vehicle unit distance transportation cost 

𝐶2 
Unit penalty cost for early arrival 

𝐶3 
Unit penalty cost for being late 

𝐿
 

Maximum load capacity of the vehicles. 

𝑅𝑖𝑗 
Personnel risk from lithium battery exchange station 𝑖  to  𝑗 

𝑝𝑖𝑗 
Accident probability from lithium battery exchange station 𝑖 to 𝑗 

𝑃𝑖𝑗 
The number of people affected from lithium battery exchange station 𝑖 to 𝑗 

𝜆
 

The radius of influence of the accident 

𝜌𝑖𝑗 
Population density of lithium battery exchange station 𝑖 to 𝑗 

𝜔1 
Weighting factor for delivery cost 

𝜔2 
Weighting factor for transportation risk 

𝑇𝑖𝑘 
The time the delivery vehicle 𝑘  arrives at the lithium battery exchange station  𝑖  

𝑓𝑤𝑎𝑔𝑜𝑛
𝑖𝑘

 
The load of the delivery vehicle k when it arrives at the lithium battery exchange 

station  𝑖 
𝑥𝑖𝑗𝑘 = {0,1}

 
delivery vehicle 𝑘 heading to 𝑗 from the lithium battery exchange station  𝑖 

𝑦𝑖𝑘 = {0,1}
 

lithium battery exchange station 𝑖 is serviced by the vehicle 𝑘
 

Table A2. Annual transport accident rate of road section. 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0 1.13 1.76 1.44 1.51 1.45 1.84 1.22 1.64 1.06 1.48 1.90 1.43 1.27 1.01 1.39 

1 1.13 0 1.28 1.33 1.79 1.33 1.35 1.90 1.54 1.21 1.80 1.56 1.87 1.02 1.48 1.14 

2 1.76 1.28 0 1.50 1.36 1.81 1.26 1.37 1.08 1.59 1.31 1.29 1.01 1.67 1.17 1.91 

3 1.44 1.33 1.50 0 1.56 1.28 1.75 1.09 1.37 1.61 1.35 1.93 1.26 1.43 1.61 1.69 

4 1.51 1.79 1.36 1.56 0 1.25 1.31 1.45 1.81 1.44 1.56 1.27 1.02 1.42 1.63 1.43 

5 1.45 1.33 1.81 1.28 1.25 0 1.30 1.81 1.47 1.39 1.93 1.46 1.38 1.40 1.04 1.49 

6 1.84 1.35 1.26 1.75 1.31 1.30 0 1.21 1.08 1.32 1.69 1.64 1.50 1.83 1.05 1.73 

7 1.22 1.90 1.37 1.09 1.45 1.81 1.21 0 1.87 1.21 1.10 1.34 1.68 1.35 1.45 1.88 

8 1.64 1.54 1.08 1.37 1.81 1.47 1.08 1.87 0 1.39 1.05 1.49 1.33 1.40 1.35 1.08 

9 1.06 1.21 1.59 1.61 1.44 1.39 1.32 1.21 1.39 0 1.33 1.47 1.45 1.05 1.46 1.39 

10 1.48 1.80 1.31 1.35 1.56 1.93 1.69 1.10 1.05 1.33 0 1.01 1.59 1.39 1.04 1.30 

11 1.90 1.56 1.29 1.93 1.27 1.46 1.64 1.34 1.49 1.47 1.01 0 1.38 1.29 1.90 1.07 

12 1.43 1.87 1.01 1.26 1.02 1.38 1.50 1.68 1.33 1.45 1.59 1.38 0 1.28 1.42 1.47 

13 1.27 1.02 1.67 1.43 1.42 1.40 1.83 1.35 1.40 1.05 1.39 1.29 1.28 0 1.17 1.03 

14 1.01 1.48 1.17 1.61 1.63 1.04 1.05 1.45 1.35 1.46 1.04 1.90 1.42 1.17 0 1.29 

15 1.39 1.14 1.91 1.69 1.43 1.49 1.73 1.88 1.08 1.39 1.30 1.07 1.47 1.03 1.29 0 
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Table A3. Average density of people affected by transport sections (people/km). 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0 572 338 574 490 329 383 464 588 590 347 592 588 446 540 342 

1 572 0 538 588 497 310 555 581 504 528 523 418 497 351 512 309 

2 338 538 0 547 509 395 586 310 432 414 530 539 356 447 434 494 

3 574 588 547 0 497 348 335 450 588 402 476 367 526 376 452 510 

4 490 497 509 497 0 377 553 376 545 373 579 405 359 375 485 442 

5 329 310 395 348 377 0 527 526 414 470 322 316 459 534 581 339 

6 383 555 586 335 553 527 0 459 349 481 379 496 507 525 435 325 

7 464 581 310 450 376 526 459 0 332 589 300 533 546 561 325 420 

8 588 504 432 588 545 414 349 332 0 474 465 343 556 487 405 454 

9 590 528 414 402 373 470 481 589 474 0 447 589 556 487 405 454 

10 347 523 530 476 579 322 379 300 465 447 0 406 547 304 312 350 

11 592 418 539 367 405 316 496 533 343 589 406 0 534 324 579 533 

12 588 497 356 526 359 459 507 546 556 556 547 534 0 582 563 465 

13 446 351 447 376 375 534 525 561 487 487 304 324 582 0 429 355 

14 540 512 434 452 485 581 435 325 405 405 312 579 563 429 0 452 

15 342 309 494 510 442 339 325 420 454 454 350 533 465 355 452 0 

Table A4. Coordinates of distribution center and store locations. 

Number Store Name Longitude Latitude 

0 
Company A 

warehouse 
116.650873 40.154191 

1 Store 1 116.394265 40.200878 

2 Store 2 116.441387 39.810124 

3 Store 3 116.563345 39.769598 

4 Store 4 116.653201 40.334977 

5 Store 5 116.864538 39.805573 

6 Store 6 115.721256 39.577671 

7 Store 7 116.244193 39.923892 

8 Store 8 116.569297 39.878586 

9 Store 9 115.990276 39.71676 
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