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Abstract: Estimating the mechanical parameters of concrete is significant towards achieving an
efficient mixture design. This research deals with concrete slump analysis using novel integrated
models. To this end, four wise metaheuristic techniques of biogeography-based optimization (BBO),
salp swarm algorithm (SSA), moth-flame optimization (MFO), and wind driven optimization (WDO)
are employed to optimize a popular member of the neural computing family, namely multilayer
perceptron (MLP). Four predictive ensembles are constructed to analyze the relationship between
concrete slump and seven concrete ingredients including cement, water, slag, fly ash, fine aggregate,
superplasticizer, and coarse aggregate. After discovering the optimal complexities by sensitivity
analysis, the results demonstrated that the combination of metaheuristic algorithms and neural
methods can properly handle the early prediction of concrete slump. Moreover, referring to the
calculated ranking scores (RSs), the BBO-MLP (RS = 21) came up as the most accurate model, followed
by the MFO-MLP (RS = 17), SSA-MLP (RS = 12), and WDO-MLP (RS = 10). Lastly, the suggested
models can be promising substitutes to traditional approaches in approximating the concrete slump.

Keywords: sustainable construction; concrete mixture; slump; neural computing; metaheuristic
optimization

1. Introduction

Having a reliable assessment of concrete slump is a significant task as it is highly linked
to the workability of the mixture [1]. However, like many engineering issues, problems such
as high complexity and non-linearity are serious obstacles. in the way. Up to now, many
experts have tried to analyze slump using traditional and conventional methods. Among
those are empirical methods that are developed based on experimental results. Despite
the extensive use of such models for analyzing a particular characteristic of concrete, they
usually fail in the case of high dimensional problems [2].

In a broader sense, civil engineering has extensively benefitted from recent advances
leading to development of new methodologies and technologies for solving issues related to
various domains e.g., hydraulic [3], traffic [4], safety [5] and geotechnical [6,7] engineering.
Going beyond traditional methods, new approaches are able to deal with dynamic and
non-linear conditions [8,9]. For instance, analyzing the strength of various materials
(e.g., asphalt [10,11], sand, etc. [12–15]) is among the notable applications.

More specific to structural engineering, complicated types of apparatus have been
invented and used to meticulously monitor structural components [16,17] under different
conditions (e.g., seismic loading [18–20]). Structural health monitoring is a branch of this
field, aimed at damage detection and monitoring failure mechanisms [21–23]. Proper eval-
uation of structural behaviors entails knowing the response of materials. As for concrete,
it can be made with various materials, combined with various ratios depending on the
purpose of use [24–27]. In many efforts, engineers have achieved potential methodologies
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for analyzing the strength of concrete-based components in structures (e.g., beam [28] and
column [29,30]) subjected to complex loading conditions [31,32].

Although developing simulation packages (e.g., finite element model [33], image
processing [34–36], etc.) employ reliable methods for such assessments, computer-aided
algorithms have resulted in unsupervised and semi-supervised learning approaches that
increase the efficiency of traditional ones [37–39]. In this sense, machine learning and
deep learning [40,41] have promisingly served in exploring the interrelated relationships
between a set of parameters.

According to earlier studies, machine learning models provide a potential solution for
approximating the mechanical parameters of concrete [42,43]. Artificial neural networks
(ANNs) are non-linear processors which have been extensively used for analyzing the
compressive strength (CS) for diverse types of concrete [44–46]. ANNs have also shown
reliable performances in dealing with elastic modulus, durability, and corrosion simulation
of this material [47–49]. More particularly, such tools have been widely employed in order
to estimate the slump of concrete mixtures [50–52]. Öztaş, et al. [53] successfully employed
an ANN for estimating slump (as well as the CS) of high strength concrete. Jain, et al. [54]
applied an ANN to the results of laboratory tests to predict slump. Nehdi, et al. [55] showed
the capability of this intelligent model for predicting concrete slump, filling capacity and
segregation. Dias and Pooliyadda [56] used an ANN to estimate the CS and slump of
concrete with chemical and/or mineral admixtures. They also showed the superiority of
the ANN to multiple regression models in this task.

More recently, highly non-linear and complicated engineering problems have driven
scientists to employ metaheuristic techniques for diverse optimization objectives [57–61].
Focusing on the civil engineering domain, their application covers a broad range from
structural health monitoring [62] to material strength modeling [63]. In these algorithms,
an optimal solution is sought by a set of populations that update their situation within the
defined search space. Thus, they can properly assist intelligent models to attain a system
preserved from prevalent training issues [64–66].

In the case of concrete parameter modeling, a metaheuristic algorithm tries to establish
the best contribution between the mixture gradients and the purposed parameter. For
instance, Bui, et al. [67] applied whale optimization algorithm to an ANN for predicting CS.
This algorithm achieved root mean square error (RMSE) of 2.6985 which was comparably
lower than the RMSE of dragonfly algorithm (3.3325) and ant colony optimization (3.4452).
In another work by Bui, et al. [68], modified firefly algorithm (MFA) was assigned to
the similar task for high performance concrete. They compared this model with those
in several previous studies (e.g., genetic programming) and found that the MFA-ANN
is superior to them. Zhao, et al. [69] proved the proficiency of equilibrium optimizer for
analyzing the tensile strength. The hybrid model could improve the performance of ANN
(e.g., correlation rose from 0.89 to 0.92).

As for concrete slump, Moayedi, et al. [70] optimized the ANN using ant lion op-
timization (ALO) in predicting slump. Based on the calculated RMSE and mean abso-
lute error (MAE) of 3.0286 and 3.7788, they found the ALO a promising optimizer for
this aim. Moreover, their proposed model surpassed two popular techniques, namely
grasshopper optimization algorithm and biogeography-based optimization. Likewise,
Chandwani, et al. [2] used genetic algorithm to improve the prediction capability of the
ANN. Foong, et al. [71] tested the performance of three potential techniques: electromag-
netic field optimization (EFO), teaching-learning-based optimization (TLBO), water cycle
algorithm (WCA), and multi-tracker optimization algorithm (MTOA). It was shown that
EFO enjoys the highest efficacy.

From the above literature, it can be observed that although regular machine learning
methods and genetic-based approaches [72,73] have been sufficiently used for simulating
slump, the application of metaheuristic optimizers has not been sufficiently studied in this
field. Therefore, this study has been conducted to evaluate the efficiency of biogeography-
based optimization (BBO), salp swarm algorithm (SSA), moth-flame optimization (MFO),
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and wind driven optimization (WDO) in slump prediction. The principal contribution of
the applied algorithms to the above-mentioned problem is characterized by exploring the
slump–ingredients relationship through neural computing rules.

2. Data and Modeling Methodology
2.1. Data

As is known, it is very important to feed machine learning models with proper
data. Each dataset must contain two major groups: (a) a number of input variables as
independent factors of the problem that influence (b) one or more output variable (s) as a
dependent factor. Due to the main objective of the present study, concrete slump is selected
as the dependent factor influenced by concrete contents including cement (X1), slag (X2),
water (X3), fly ash (X4), superplasticizer (X5), fine aggregate (X6), and coarse aggregate (X7).
It should be noted that the mentioned data are provided by Yeh [74] based on the standards
of the American Society of Testing and Materials (ASTM) for making concrete specimens
as well as the conventional slump test (ASTM C143/C143M-00) [75] for determining the
fresh concrete consistence.

The slump values vary from 0.0 to 29.0 cm, and X1, X2, . . . , X7 range in (137.0, 374.0),
(0.0, 260.0), (160.0, 240.0), (0.0, 193.0), (4.4, 19.0), (640.6, 902.0), and (708.0, 1049.9), respec-
tively. The histogram of the input factors as well as the concrete slump are depicted in
Figure 1. In this study, 80% of data (i.e., 82 samples) are used to train the intelligent mod-
els and the rest of the data which are 20% (i.e., 21 samples) are set aside to evaluate the
prediction capability of the models.

Figure 1. Cont.
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Figure 1. The graphical description of (a) X1, (b) X2, (c) X3, (d) X4, (e) X5, (f) X6, (g) X7, and (h) Slump.

2.2. Methodology
2.2.1. Artificial Neural Network

The advent of intelligent techniques, like ANNs and ANFIS, has highly influenced the
computation of non-linear problems. These methods are known as “soft computing” which
are able to analyze the complex relationships between a set of dependent-independent
parameters. Based on the idea presented by McCulloch and Pitts [76], ANNs are designed
to mimic the way that biological systems work. Among the different types of ANNs (e.g., ra-
dial basis function [77] and general regression [78]), multi-layer perceptron (MLP) [79] has
been widely used in many studies [80–84]. As the name denotes, an MLP is a multi-layered
network where there are a number of processors (called nodes or neurons) in each layer
(see Figure 2).

The MLP draws on two main bases, namely learning method backpropagation (BP) [85]
and Levenberg–Marquardt [86] training algorithm. Focusing on the MLP mechanism, as
Figure 2 outlines, the input of each node (T) is multiplied by a weight factor (W). Next, a
bias factor (b) is added to their summation, and finally, the respace is released by applying
an activation function (F). This function is selected to be a Sigmoid one in the present study
(see Figure 3).
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Figure 2. The structure of a single hidden layer MLP.

Figure 3. The Sigmoid function.

2.2.2. Metaheuristic Optimizers

This section briefly describes the metaheuristic techniques used. Generally speaking,
the BBO, SSA, MFO, WDO are swarm-based approaches which mimic a specific nature-
inspired process to implement the optimization. The word “optimization” here means
finding the most optimal solution for the defined problem. Once they are combined with
tools like SVMs [87] and ANNs [88], the objective is fine-tuning the influential parameters.
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This measure enables the model to stay away from computational risks like local minima
and dimension danger [89,90]. This process is detailed in the next section.

Proposed by Simon [91], the idea of the biogeography-based optimization is biogeog-
raphy knowledge (i.e., which deals with the geographical dispersion of biological species.
The individuals in the BBO are known as habitats. The conditions of residence for each
zone and the habitability of these habitats are evaluated by two indices assigned to the
geographic areas, namely habitat suitability index (HSI) and suitability index variable (SIV),
respectively. Important decisions in this scheme are made based on the values of these
indices by migration and mutation operators.

Salps are free-floating tunicates members of Salpidae family. Their foraging behavior
is the basis of the SSA algorithm [92]. For better locomotion, they usually navigate in the
form of so-called groups “salp chains”. In the SSA, each individual indicates a candidate
solution where they can be classified into two groups, namely followers and the leader.
The leader is the first member of the chain and guides the followers toward food sources.
Remarkably, due to the functioning of stochastic operators, the SSA can properly avoid
local solutions that exist within multi-modal spaces [93].

Moths are known as fancy insects with high diversity in nature. The moth-flame
optimization was presented by Mirjalili [94] based on the navigation scheme of moths. This
scheme is named transverse orientation (TO). In this technique, the insects fly at night and
use moonlight to travel long tracks by flying in a straight line. Considering the inefficiency
of the TO, the moths are also lured by artificial light sources and try to fly in a straight
direction through keeping a similar angle with the light. In the MFO, the individuals’
positions represent the variables of the aimed problem.

The wind driven optimization is a heuristic population-based algorithm that is inspired
by the atmospheric motions of air parcels with respect to the rotation of the globe. This
algorithm was first suggested by Bayraktar, et al. [95] for electromagnetics usage. This
method is designed as a combination of ideal gas state equation and Newton’s second law.
It is assumed that four forces in nature including pressure gradient force, frictional force,
gravitational force, and Coriolis force are applied to the air parcels. More details, as well
as the mathematical methodology of the mentioned algorithms, can be found in previous
literature: BBO [96–98], SSA [99–101], MFO [102–104], and WDO [105–107].

2.2.3. Hybridization Process

As explained, the BBO, SSA, MFO, WDO metaheuristic algorithms are coupled with
an ANN to create the BBO-MLP, SSA-MLP, MFO-MLP, and WDO-MLP ensembles. This
task requires the MLP general structure to be yielded as the problem equation. Above all,
based on a trial and error process, the most suitable complexity of the MLP (i.e., the number
of hidden processors) was found to be 5. Therefore, the algorithms were applied to adjust
46 computational parameters (including (7 × 5 =) 35 weights connecting the input and
hidden neurons, (5 × 1 =) 5 weights connecting the hidden and output neurons, 5 biases
belonging to hidden layer, plus 1 bias in the output layer) to remedy the shortcomings of
the neural approach.

Next, the same procedure was carried out for the metaheuristic ensembles to determine
the optimal size of their population. Nine population sizes (Np) in the range (10, 500) were
tested for each ensemble. Similar to previous studies, they performed 1000 iterations to
minimize the error. The RMSE was set as the objective function to calculate the learning
error. The final RMSEs obtained for each algorithm, as well as the computation time, are
shown in Table 1. According to this table, the best complexity of the BBO-MLP, SSA-MLP,
MFO-MLP, and WDO-MLP is indicated by the Nps of 300, 100, 100, and 100, respectively.
Furthermore, the convergence (i.e., optimization) curves for the elite configurations are
shown in Figure 4.
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Table 1. The results of the sensitivity analysis.

Np
BBO-MLP SSA-MLP MFO-MLP WDO-MLP

RMSE Time (s) RMSE Time (s) RMSE Time (s) RMSE Time (s)

10 5.505577 139.4756 6.355048 144.6717 5.8897 127.0382 6.215144 127.2421

25 4.730596 347.3891 5.748444 344.6891 5.540889 334.6007 5.942362 324.4255

50 4.974088 690.5993 5.569974 666.6998 5.610954 673.13 6.144947 632.0315

75 4.858011 1031.498 5.522838 953.5088 5.817214 1000.989 6.133931 986.733

100 4.816898 1310.805 4.920222 1263.715 5.530195 1255.081 5.664862 1398.88

200 4.74319 3025.854 5.10271 2532.209 5.815933 2505.335 6.285705 3270.84

300 4.692921 3870.514 5.104293 3770.992 5.728259 4225.847 6.166536 30,623.5

400 5.043938 5170.186 5.553021 5051.865 5.658828 5861.167 6.11727 5550.942

500 5.061255 6856.051 4.950267 7814.967 5.676524 6622.55 6.178576 6720.605

Figure 4. The convergence curves of the elite models.

3. Results and Discussion
3.1. Accuracy Criteria

Comparing the forecasted slumps with real ones is the principle of performance
evaluation for the models. Two error criteria of MAE and RMSE are used for measuring
the mean absolute and root mean square error values. Equations (1) and (2) express the
formulation of the RMSE and MAE. Moreover, the coefficient of determination (R2) is
used to represent the correlation between the real slumps with forecasted values (see
Equation (3)).

RMSE =

√√√√ 1
K

K

∑
i=1

[(Ziobserved − Zipredicted)]

2

(1)

MAE =
1
K

K

∑
I=1

∣∣∣Ziobserved − Zipredicted

∣∣∣ (2)
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R2 = 1 −

K
∑

i=1
(Zipredicted − Ziobserved)

2

K
∑

i=1
(Ziobserved − Zobserved)

2
(3)

In the above equations, the number of instances is represented by K, the real and
forecasted slump values are shown by Zi predicted and Zi observed, respectively. In addition,
Zobserved symbolizes the mean of real slump values.

3.2. Performance Evaluation

The prediction accuracy of the BBO-MLP, SSA-MLP, MFO-MLP, and WDO-MLP
ensemble models was evaluated by comparing real slump values with their products. This
process was executed for both training and testing phases to assess the ability of the models
in inferring and generalizing the slump pattern. The results of the training data are shown
in Figure 5 depicting a graphical comparison between the mentioned slump patterns.

Figure 5. Cont.
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Figure 5. The training results obtained for (a) BBO-MLP, (b) SSA-MLP, (c) MFO-MLP, and (d) WDO-
MLP predictions.

In this phase, obtained values of RMSE (4.6929, 4.9202, 5.5302, and 5.6649) indicate
that all four models grasped a good perception of the slump–ingredients relationship. The
calculated MAEs (3.6729, 3.8692, 4.3970, and 4.6087) are also evidence for a high level of
accuracy. Regarding the correlation criterion, the obtained R2 values (0.7479, 0.7202, 0.6472,
and 0.6283) show more than 62% correlation for all predictive models.

The testing results also indicate that the models can successfully predict the slump
of unfamiliar concrete specimens. The histogram chart showing the frequency of errors
for each sample (=real slump − predicted slump) is presented in Figure 6. From error
analysis, the error values range in (−4.255009938, 8.75706062), (−4.81094212, 10.4314921),
(−4.494014358, 11.13801659), and (−5.211184587, 11.93617373).
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Figure 6. The testing errors histograms obtained for (a) BBO-MLP, (b) SSA-MLP, (c) MFO-MLP, and
(d) WDO-MLP predictions.

Moreover, both error criteria of RMSE (3.6399, 3.8572, 3.3309, and 3.7540) and MAE
(2.9521, 3.0871, 2.3156, and 2.8368) demonstrate that the models have presented a relatively
accurate prediction of the slump. Furthermore, Figure 7 illustrates the correlation between
the real and forecasted values in this phase. The R2 values are 0.7157, 0.5793, 0.6748,
and 0.6438.

Figure 7. Cont.
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Figure 7. The correlation of testing samples for (a) BBO-MLP, (b) SSA-MLP, (c) MFO-MLP, and
(d) WDO-MLP models.

Evaluation of the results (Table 2) shows that according to the MAE and RMSE criteria,
the models have performed more efficiently in the generalizing the slump pattern. In other
words, the error of testing samples is considerably lower than the training ones. However,
the R2s of the BBO-MLP and SSA-MLP indicate a lower correlation in the testing phase.

Table 2. The achieved accuracy results.

Ensemble Models

Network Results

Training Phase Testing Phase

RMSE MAE R2 RMSE MAE R2

BBO-MLP 4.6929 3.6729 0.7479 3.6399 2.9521 0.7157

SSA-MLP 4.9202 3.8692 0.7202 3.8572 3.0871 0.5793

MFO-MLP 5.5302 4.3970 0.6472 3.3309 2.3156 0.6748

WDO-MLP 5.6649 4.6087 0.6283 3.7540 2.8368 0.6438

Moreover, a well-known comparison model was hired to rank the used models and
address the most reliable predictors. In this regard, the models were ranked based on the
obtained accuracy criteria, and subsequently, three scores were assigned to each model in
both phases. The results are shown in Figure 8. The calculated ranking scores (RSs) show
the superiority of the BBO in training the ANN. After that, the SSA and MFO emerged as
the second and third capable metaheuristic techniques. The performance of the WDO was
weaker than three other colleagues in analyzing the intended parameters.

Focusing on testing scores, it can be seen that there are discrepancies between the
performances of the models in two phases. Figure 8 outlines that the MFO-MLP (RS = 11)
has the highest prediction capability. Considering both training and testing RSs, it can
be determined that the BBO (RS = 21) constructs the most accurate MLP neural network,
followed by the MFO (RS = 17), SSA (RS = 12), and WDO (RS = 10).
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Figure 8. Executed ranking system based on RMSE, MAE, and R2. (a) Training, and (b) Testing.

4. Conclusions

Slump is among the most important mechanical characteristics of concrete. In this
effort, a reliable approximation of concrete slump was presented by considering the effect
of seven concrete factors. Four capable ensembles, namely BBO-MLP, SSA-MLP, MFO-
MLP, and WDO-MLP were successfully applied to this problem. In the computational
sense, optimizing the hyper parameters showed that the population size required by the
optimal BBO is 3 times larger than other algorithms (300 versus 100). On the other hand,
prediction results revealed that the combination of machine learning and metaheuristic
techniques obtains a reliable understanding of the dependency of the slump on the concrete
ingredients. The MLPs constructed by the BBO and MFO were the most efficient models in
the training and testing phases, respectively. Hence, the authors would recommend these
ensembles as inexpensive yet accurate tools for achieving an optimum design of concrete
mixture through estimating the concrete slump. Lastly, there are some ideas that are worth
investigating in future studies. Taking external datasets for increasing the generalizability,
feature selection for simplifying the problem space, and comparative efforts for discovering
the strongest algorithms are strongly suggested.
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