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Abstract: Freight trip generation modelling is important for forecasting freight movements, and
understanding freight movements is crucial to enabling sustainable freight transportation planning.
The existing literature focuses on model development, and most of the previous models are estimated
by ordinary least squares regression. However, few studies have carefully considered the OLS
assumptions. The objective of this paper is to estimate freight trip generation models using deliveries
to commercial establishments in Brazilian municipalities. A procedure is described to estimate
models by ordinary least squares (OLS), and alternative techniques are considered to address the
violations of the OLS assumptions. The analysis was conducted with data from 860 commercial
establishments in nine Brazilian municipalities, and models were estimated for capital, non-capital,
small, medium, and larger municipalities. The findings showed that alternative techniques to OLS
regression can provide better-estimated parameters and more accurate results. Not evaluating the
OLS assumptions could compromise the quality of the model and, consequently, planning using
these models. Moreover, the results showed that the number of employees has a more significant
influence in small cities and a lower influence in medium-sized municipalities. Finally, the findings
demonstrated the importance of local models that include the municipalities’ characteristics and that
can support freight transportation planning. These models can also include sustainable strategies for
freight transport.

Keywords: freight trip generation modelling; urban freight transport; ordinary least squares;
robust regression

1. Introduction

Behavioural choices are influenced by needs, opportunities, and skills [1]. In addition,
the demand for products and services to meet population needs results from behavioural
decisions. Consumption relationships are closely related to the freight demand, which
influences urban freight transport (UFT) planning. However, UFT planning is challenging,
as demand is not always known, and surveys to obtain data are expensive. Freight demand
modelling can then be used to support UFT planning.

Furthermore, cargo movements are much more complex than passenger transport
given that cargo movements involve interactions between companies at different supply
chain stages [2] and different stakeholders and decision makers throughout the process.
However, those who should plan urban transport policies usually lack a detailed view of
the complex factors that influence UFT [2]. Thus, several problems (e.g., congestion, noise,
visual and atmospheric pollution, safety, and damage to the infrastructure) are reflections of
the lack of sustainable planning and operation [3–5]. UFT directly affects the product cost.
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In order to understand UFT as a complex phenomenon, Cassiano et al. [6] proposed
a conceptual model to represent the operation of the last mile in urban areas. The model
focused on impact measures that were capable of guiding decision-makers toward sustain-
able UFT. In addition, this model was based on (1) the relationship between urban activities’
subsystems and the transport subsystem, and (2) on how this relationship impacts UFT
operation and consequently the stakeholders. The model proposed by Cassiano et al.
changes the classic idea of reducing the urban environment to the space where the freight
trip generation process takes place. The framework in Cassiano et al. considers three major
steps: UFT starts in the purchase process from the urban activities’ subsystem, moves
around the transportation system with the freight trip generation model, and reaches the
destination. Therefore, freight transport models are important and can be used to plan
freight policies [7]. Furthermore, understanding the movements of goods is essential to
supporting sustainable planning.

However, freight transport modelling is still in the early stages of development in many
developing countries [8]. For example, in Brazil, freight trip generation models (FTGM) were
estimated for some economic sectors, such as pubs and restaurants [9,10], supermarkets [10],
shopping centres [9], buildings under construction [11], and warehouses [12]. Moreover,
FTGM were used to evaluate parking needs in historical city centres [13] and freight trip
flows in urban areas [14]. As a consequence of the lack of knowledge related to freight
movements, freight policies are flawed and do not address freight problems [15]. Therefore,
modelling efforts are needed to support freight policies. However, the lack of data, political
priorities, and the slow pace of the knowledge-building process are some of the reasons for
these limited research efforts [8]. This context, which is described by authors in India, is
similar in Brazil.

UFT planning in Brazil is neglected by transportation authorities and planning agen-
cies. Furthermore, freight transport is considered a private activity with limited impacts on
the local economy. However, freight transport is of great importance for economic develop-
ment. Creating knowledge and showing the impact of cargo movements in Brazilian cities
are important to include this activity in urban planning.

To the best of the authors’ knowledge, no paper has addressed FTGM estimation using
deliveries to commercial establishments in Brazilian municipalities, as proposed in this
paper. Thus, this paper estimates FTGM considering retail deliveries in Brazilian munici-
palities, which are based on their administrative and populational characteristics. These
differences in administrative and populational characteristics allow dissimilarities between
the estimated models to be discussed, which is better for planning freight movements.

Additionally, FTGM are generally estimated using linear regression [8,16]. However,
this technique has some assumptions that need to be validated to ensure the accuracy of the
estimated models. However, few studies have considered these assumptions explicitly in
the analysis, especially among the existing Brazilian studies. Thus, a procedure is used to
estimate FTGM using ordinary least squares (OLS) regression, and alternative techniques
are considered to address the violations of the OLS assumptions. This procedure is shown
by estimating FTGM using deliveries to commercial establishments in Brazilian municipal-
ities. Furthermore, this study shows that alternative techniques to linear regression can
provide better-estimated parameters and more accurate results.

The contribution of this paper is twofold. First, FTGM are estimated using delivery
data, which contributes to understanding freight movements in Brazilian cities. Second,
this study shows the importance of evaluating the OLS assumptions in FTGM, which is not
always addressed by other studies.

This paper is structured in five sections. Section 2 presents a review of the FTGM
literature and discusses modelling issues for better model accuracy. Section 3 details the
approach used, and an application is shown in Section 4. The conclusion is presented
in Section 5.
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2. Freight Trip Generation Models—The Literature

This paper conducted a systematic literature review to address the research question:
“How does the literature address FTGM?” Figure 1 describes the literature selection proce-
dure. Considering this research question, “freight trip generation” and “modelling” were
selected as search keywords. The search was conducted in Scopus, Web of Science, and
Google Scholar®. Google Scholar® was included since the authors knew beforehand that
some classical papers would not be found in the other two databases. The search was lim-
ited to documents up to August 2021. Then, the search procedure yielded 708 documents:
160 in Scopus, 76 in Web of Science, and 476 in Google Scholar®. The inclusion crite-
ria considered records (1) that were related to the research question and that estimated
FTGM, (2) that were available online in full text, and (3) that were published in English
or Portuguese. The exclusion criteria considered books, chapters, reports, and duplicated
records. The inclusion and exclusion criteria resulted in 43 papers, whose abstracts were
read. Another 21 papers were excluded, which led to 22 remaining papers for the analysis.
Lastly, these 22 papers were read, categorised, and analysed.
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The literature review was then systematised concerning objectives, techniques, goodness-
of-fit measures, and OLS assumptions. Table 1 summarises the literature.

The OLS is the most used regression technique to estimate FTGM. Moreover, al-
ternative regression models have been used to solve the limitations of the OLS as-
sumptions. Examples include generalised linear regression [11,16–18], logit or probit
models [17,19,20], non-linear regression [13,21], negative binomial regression [22–24],
and spatial models [22,23,25–27].

The number of employees and the establishment area are generally the independent
variables used to explain FTGM [11]. In addition, the usual measures for evaluating the
models’ goodness-of-fit are the t-test, the F-test, and the R-squared. Furthermore, the
Akaike information criteria (AIC), the Bayesian information criterion (BIC), the root mean
squared error (RMSE), and the mean absolute percentage error (MAPE) are used to compare
and measure the accuracy of the models.

The reliability of the OLS estimators is verified by evaluating the OLS assumptions:
endogeneity, multicollinearity, linearity of parameters, autocorrelated errors, homoscedas-
ticity, and the normality of the error distribution [18]. Econometric-related studies have
carefully addressed these assumptions, as reported by [28,29], and recommended such con-
siderations for transportation data analysis [30]. However, few studies have evaluated all
the OLS assumptions [16,31]. Therefore, not evaluating the OLS assumptions compromises
the accuracy of the models, which could lead to errors in prediction and thus negatively
impact the planning process.
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Table 1. Summary of the literature.

Issues Analysed in the Papers
References

[10] [11] [13] [16] [25] [32] [33] [8] [34] [17] [35] [36] [26] [18] [19] [20] [21] [22] [23] [24] [27] [31]

Technique

OLS • • • • • • • • • •
Standard trip generation rates • • •

Weighted linear regression
Generalised linear regression • • • •

Logit or probit models • • •
Negative binomial regression • • •

Multiple classification analysis • •
Covariance analysis •

Non-linear regression • • • •
Spatial techniques • • • • •

Independent
variables

Employee • • • • • • • • • • •
Establishment area • • • • • • •

Number of establishments •
Type of establishment • • •

Population •

Goodness-of-fit
measures

t-test • • • • • •
F-test • • • • • •

R-squared • • • • • • •
AIC • •
BIC •

RMSE • • • •
MAPE • •

OLS
assumption

Linearity of parameters • • • • • •
Homoscedasticity • • • • •

Endogeneity • •
Multicollinearity • • •

Autocorrelated errors • •
Normality of the error

distribution • • •
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Some papers focused on the role of the urban environment in freight trip movements [25,32].
Other studies considered freight trip attraction models using the business characteristics
of commercial establishments [8,10,17,33,34]. Finally, several studies evaluated parking
needs [13,16,35], the relationship between freight trip movements and accessibility [34],
and the role of aggregating commercial establishments by categories [25,36]. FTGM can
support both planning and public policies, as they can help regulate freight activities and
forecast future scenarios [8,25,26,34,37].

The literature shows that considerable effort has been made to find the best models
to explain FTGM. Moreover, the OLS regression is usually considered to estimate FTMG.
However, many researchers have not used suitable techniques to support the associated
methodological effort. For example, few studies have evaluated the OLS assumptions
when estimating OLS models. Therefore, this paper intends to contribute to this issue by
describing the fundamental steps for a reliable trip-generation estimation. This procedure
is presented in the next section.

3. Procedure for Estimating FTGM

This section describes the procedure used to estimate FTGM. The OLS regression is a
classical technique to estimate the coefficients of linear regression models. Such regression
is well detailed in the econometric literature since it is a common method to develop
theories or to test existing hypotheses. Nonetheless, in the transportation literature, OLS
regression is a common procedure that presents some flaws. Thus, this work shows, in a
simple way, how to use the classical linear regression theory to estimate FTMG. Figure 2
presents the steps proposed in this procedure, which are detailed in the next subsections.
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This study considered the usual variables in FTGM: The dependent variable (Y) is the
number of deliveries per week, and the independent variables are the number of employees
(X1) and the establishment areas (X2). However, other variables, if collected, can be used for
FTGM. These data were obtained from an establishment-based survey that was conducted
in Brazilian cities. Oliveira et al. [38] presented another study using the same data.
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3.1. Step 1: Data Analysis

Figure 3 shows the sub-steps from the data analysis. Step 1.1 is related to the func-
tional form of the linear models (i.e., model specification). A functional form refers to the
algebraic formula that establishes a relationship between a dependent variable and the
explanatory variables. However, linear regression models may suffer from functional
form misspecification [28]. The Ramsey Regression Equation Specification Error Test
(RESET test) proposed by Ramsey [39] can be used to evaluate the general functional form
misspecification. The null hypothesis considers that the functional form is correctly speci-
fied, and the rejection of the null hypothesis indicates that the model is misspecified [28].
The null hypothesis is rejected at a 95% significance level when the p-value is lower than
0.05. It should be noted that the RESET test is a functional form test; however, a model
can also be misspecified due to omitted variables, which might not be identified by the
RESET test [28]. Therefore, it is essential to ensure that the model variables explain the
phenomenon well. The lmtest package [40] in the R environment was used to perform the
RESET test.
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In a misspecified model, variable transformation is required to identify linear patterns.
The most usual variable transformations are presented in Table 2. After the variable trans-
formation, the RESET test can be used to verify the linear pattern of the functional forms.

Table 2. Variable transformation.

Functional Form Original Form Linearised Form Notes

Linear Y = b0 + b1X Y = b0 + b1X
Log-log Y = b0Xb1 ln(Y) = B0 + b1ln(X) B0 = ln(b0)
Log-linear exponential Y = b0b1

X ln(Y) = B0 + B1X B0 = ln(b0) and B1 = ln(b1)
Linear-log or logarithm-X Y = b0 + b1ln(X)
Inverse Y = b0 + b1X Y = b0 + b1/X
Log-inverse ln(Y) = b0 + b1/X
Reciprocal-Y 1/Y = b0 + b1X Z = b0 + b1X Z = 1/Y
Double reciprocal 1/Y = b0 + b1/X Z = b0 + b1W W = 1/X and Z = 1/Y
Quadratic Y = b0 + b1×1 + b2X2 Y = b0 + b1X1 + b2W W = X2

Assuming the functional form has been verified, step 1.2 concerns outlier identification,
i.e., observations that lie at an abnormal distance from other observations in a random
sample. Outliers are generally observed when modelling systems use real data. However,
outliers can increase the variation of the explanatory variables and lead to models with
lower predictive power. Thus, the decision to keep such observations in a regression
analysis can be challenging [28]. In this study, outliers are removed. Since the data come
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from information declared by interviewees, the questions may be misinterpreted. In
addition, interviewees can answer the questions with inaccurate estimations. For example,
respondents presented difficulties getting to know the establishment area. In addition,
deliveries are known to fluctuate over time due to bank holiday dates. For this question,
the number of deliveries was also an estimate given by the respondents, which was based
on their experiences. Considering the size of the available database, removing the outliers
would be beneficial to improve model estimation.

Thus, influential outliers were identified by the Cook’s distance. First, the regression
model was estimated and the Cook’s distance was calculated to identify the influential
observations, i.e., observations with a Cook’s distance greater than four times the average.
The influential observations were removed from the sample. The process was repeated as
long as there were influential points in the sample. Cook [41] provides additional details
about the mathematical procedure to identify influential measures. The outlier removal
process provides the final database for estimating FTGM.

Step 1.3 requires measuring the level of association between the variables by the
Pearson correlation coefficient. The correlation level varies from −1 (negative correlation)
to +1 (positive correlation). A value below ±0.38 indicates a weak correlation, a value
between ±0.4 and ±0.69 indicates a moderate correlation, a value between ±0.7 and ±0.89
indicates a strong correlation, and a value above ±0.9 indicates a very strong correlation. A
strong correlation between the independent and the dependent variables is desirable.

Finally, step 1.4 summarises the data by calculating their central tendency and the
associated variability.

3.2. Step 2: Estimation of the Linear Model

Figure 4 shows the procedures in step 2. The OLS technique was used to estimate
the linear models. The functional form of the OLS model is represented by Equation (1),
where Y is the dependent variable, X1, . . . , Xn are the explanatory variables, β1, . . . ,
βn are the estimators, εn is the error, and n is the number of observations. The OLS
regression minimises the difference between observed and predicted values (i.e., the sum
of squared errors).

Yn = β1 + β2 X1 +· · ·+ βnXn + εn (1)
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The goodness-of-fit tests indicate the models’ performance. The usual goodness-
of-fit measures are the hypothesis tests of estimators (T-test) and of the model (F-test),
and the measure of the model fit (R-squared). The hypothesis tests of the estimators are
conducted by the T-test, which identifies the linear association between the estimator and
the dependent variable. The F-statistic tests the statistical significance of the independent
variables in the linear regression. Moreover, the R-squared measure evaluates the prediction
power of the OLS model. These statistics are usually verified in FTGM, as pointed out by
the existing literature.

The Akaike information criterion (AIC) and the Bayesian information criterion (BIC)
are used for comparing models. The AIC is a measure for scoring, comparing, and se-
lecting the estimated models by different techniques. The model with the smallest AIC
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is recommended [42]. The BIC, also called the Schwarz information criterion, is used for
selecting econometric models. The model with the lowest BIC is preferred [43].

3.3. Step 3: Evaluation of the OLS Assumptions

Verifying OLS assumptions avoids incorrect parameter estimation [18]. Violation of
the OLS assumptions results in misuse and inaccurate models. The main classical OLS
assumptions are [29,30] (i) linearity of the parameters, (ii) uncorrelated regressors and errors,
(iii) homoscedasticity, (iv) no autocorrelation between the errors, (v) multicollinearity, and
(vi) normally distributed errors. Figure 5 details the required test to evaluate each of
these assumptions.
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The linearity assumption (step 3.1) considers a linear pattern of the parameters. The
RESET test evaluates the models’ functional form, as explained earlier. Additionally,
the response variable Y must be continuous [30] and positive [29]. If a linear pattern
is not identified, alternative techniques (e.g., non-linear regression model, generalised
least-squares, maximum likelihood estimation, Bayesian regression, kernel regression, or
gaussian process regression) must be used to estimate the parameters.

The assumption of uncorrelated regressors and errors (Step 3.2) is known as regressor
exogeneity. An exogenous regressor is uncorrelated with the random error term, i.e., the
regressor has zero variance with the error term. An endogenous regressor is the opposite of
an exogenous regressor and is unsuitable for OLS estimation. The Durbin–Wu–Hausman
(DWH) test (also called the Hausman specification test) checks exogenous regressors. The
null hypothesis assumes an exogenous regressor, and the rejection of the null hypothesis
indicates an endogenous regressor. The instrumental variable technique is an alternative to
endogenous regressors.

Homoscedasticity or constant error variance is evaluated in step 3.3. Homoscedasticity
means constant variance, whereas heteroskedasticity means variance in the errors. The
Goldfeld–Quandt test and the Breush–Pagan test check for homoscedasticity. The null
hypothesis of the Goldfeld–Quandt test is homoscedasticity, whereas the null hypothesis of
the Breush–Pagan test is heteroskedasticity. The rejection of the null hypotheses indicates
heteroskedasticity and homoscedasticity, respectively. Thus, it is expected that the null
hypothesis of the Goldfeld–Quandt test will not be rejected and that the null hypothesis
of the Breush–Pagan test will be rejected. Robust regression can be used to solve the
heteroskedasticity problem.

Step 3.4 evaluates the assumption that the residual errors should be independent
(i.e., without autocorrelation). The autocorrelation of the error terms is a typical problem
in time-series analysis. The Durbin–Watson test is used to evaluate this assumption. The
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null hypothesis assumes that the residual errors are independent, and the rejection of the
null hypothesis indicates autocorrelated errors. Robust regression can be implemented to
account for this violation.

Step 3.5 evaluates the multicollinearity assumption between the regressors. Mul-
ticollinearity is observed when the variables are correlated, and it implies inaccurate
estimation. If multicollinearity is observed, the OLS estimators have no statistical signifi-
cance. Multicollinearity can be detected by measuring the variance inflation factor (VIF).
Alternatively, the Farrar–Glauber test can be used to measure the orthogonality of the
variables, and the condition index can be calculated to diagnose this problem. Eliminating
variables with VIF > 10 might solve the multicollinearity problem. In addition, combining
variables may minimise the multicollinearity problem.

Finally, the assumption of normally distributed errors (step 3.5) is considered. This as-
sumption is not a requirement for estimating linear regression models, but having normally
distributed errors is required to make inferences about the model parameters [30]. The
Kolmogorov–Smirnov and the Shapiro–Wilk tests check whether the errors are normally
distributed (i.e., null hypothesis). Generalised linear models (GLM) are an alternative for
count data, whereas tobit regression can be used for censored data. Moreover, a semi-
parametric regression is an alternative for other cases [44]. More information about the
OLS assumptions is provided in [29].

3.4. Step 4: Estimation of Alternative Regression Models

Violating OLS assumptions requires estimating models by alternative techniques. This
paper used two methods due to the violation of OLS assumptions: robust regression and
tobit regression.

Robust regression is an alternative to OLS regression with less restrictive assumptions.
The residual standard error (RSE) measures the standard deviation of the residuals. A
low RSE value indicates that the model fits the data. More information about robust
regression can be found in [45]. Robust regression models were estimated using the MAAS
package [45] in the R environment. Tobit regression is an alternative for censored data
and for errors that are not normally distributed. For example, Figure 6 shows that the
explanatory variable delivery is right-censored. Therefore, tobit regression can be used.
Wooldridge [28] details the formulation of the tobit model. Tobit models were estimated
using the VGAM package [46] in the R environment. The statistical significance of the
estimated coefficients in both cases was evaluated by the z-value. Finally, the estimated
models were compared by AIC and BIC.
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3.5. Step 5: Cross-Validation Analysis

Cross-validation measures the model’s predictive performance using test data. Two
cross-validation methods were used: leave-one-out cross-validation (LOOCV) and K-fold.
LOOCV uses all observations and reduces potential bias. In this case, one data point is left
out, and the model is estimated with the rest of the data set. Thus, the model’s predictive
power is evaluated using the data point left out and the test error associated with the
prediction is recorded. The process is repeated for all data points, which enables the root
mean squared error (RMSE) and the mean absolute error (MAE) to be computed. The
RMSE is used to measure the difference between observed and predicted values. The MAE
is the average of the absolute error values.

In the K-fold procedure, the dataset is split into k-subsets. Thus, one subset (testing
data) is selected for testing and the model is estimated with the other subsets (training
data). The model is predicted using the testing data, and the prediction error is calculated.
This process is repeated until k subsets are used as a testing set. Finally, the RMSE and the
MAE are computed.
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4. Results

A questionnaire was designed to collect data related to the area of the commercial
establishment, the number of employees, and the number of deliveries per week. The
researchers visited several commercial establishments and invited the employers to answer
the questionnaire. This process resulted in data from 860 commercial establishments from
nine Brazilian cities: Belo Horizonte, Betim, Caruaru, Contagem, Divinopolis, Itabira,
Nova Lima, Palmas, and Quixada. In the analysis, no distinction was made between the
various economic sectors of the commercial establishments. However, we acknowledge the
importance of the economic sector for FTGM and plan to address this issue in the future.

Data grouping was used to analyse differences in the models generated for cities with
similar characteristics. The administrative and population characteristics were then consid-
ered, and the models were estimated for the following subsets: (i) all data; (ii) state capital
cities (Belo Horizonte and Palmas); (iii) non-capital cities (Betim, Caruaru, Contagem, Di-
vinopolis, Itabira, Nova Lima, and Quixada); (iv) larger cities, i.e., cities with a population
greater than 50,000 inhabitants (Belo Horizonte, Betim, and Contagem); (v) medium cities,
i.e., cities with a population between 100,000 and 500,000 inhabitants (Caruaru, Divinopolis,
Itabira, and Palmas); and (vi) small cities, i.e., cities with a population lower than 100,000
inhabitants (Nova Lima and Quixada).

Table 3 shows the Ramsey RESET test results to evaluate the functional form. The
linear functional form was unsuitable for all subsets, i.e., the null hypothesis of the Ramsey
RESET test was rejected, and the functional form was not correctly specified. The log–log
functional transformation was suitable for all subsets. Moreover, the linear–log, the inverse,
and the log–inverse transformations were suitable for some groups: linear–log functional
form for the subsets “all data,” “capital,” “non-capital cities,” and “larger cities”; inverse
functional form for the subsets “larger cities,” “medium cities,” and “small cities”; and
the log–inverse functional form for the subset “non-capital cities.” The results showed
the importance of evaluating the functional form to obtain an accurate linear regression
model. Therefore, unfamiliarity can produce biased estimated models by simply using
inappropriate functional forms.

Table 3. Ramsey RESET results.

Variable
Transformation All Data Capital Non-Capital

Cities Larger Cities Medium Cities Small Cities

Linear 4.90 (0.01) NS 13.76 (0.00) NS 4.016 (0.02) NS 3.20 (0.04) NS 21.64 (0.00) NS 7.04 (0.00) NS

Log–log 0.234 (0.79) 0.11 (0.89) 1.06 (0.35) 1.13 (0.33) 0.24 (0.79) 3.15 (0.05)
Log–linear 17.34 (0.00) NS 3.21 (0.04) NS 13.83 (0.00) NS 3.76 (0.02) NS 3.94 (0.02) NS 17.29 (0.00) NS

Linear–log 2.133 (0.12) 0.93 (0.40) 2.37 (0.09) 0.88 (0.42) 3.86 (0.02) NS 7.58 (0.00) NS

Inverse 4.62 (0.01) NS 17.68 (0.00) NS 5.97 (0.00) NS 1.30 (0.28) 1.06 (0.35) 20.85 (0.00)
Log–inverse 28.03 (0.00) NS 45.48 (0.00) NS 0.74 (0.07) 41.50 (0.00) NS 3.45 (0.03) NS 4.46 (0.01) NS

NS Without statistical significance.

The well-specified model (i.e., the log–log functional form) was considered to identify
the outliers with the Cook’s distance. The outliers were then removed from the sample.
Table 4 shows the variables’ descriptive statistics with and without outliers. The data
with outliers presented a high variation, which showed the heterogeneity of commercial
establishment characteristics in urban areas. For example, in the same downtown area, there
are big stores and nano stores, which were all considered in the sample. After removing
the outliers, the dataset was considered suitable for modelling since influential points were
not considered. Moreover, the sample variation without outliers was reduced. In all the
analysed cases, the sample was greater than 20 observations, which is the minimal sample
size recommended for estimating OLS models (Hair et al., 2019). The data without outliers
showed that the number of deliveries per week varied from 2.11 (non-capital cities) to
2.67 (capital cities). The area varied from 112.72 (medium cities) to 132.87 (small cities), and
the number of employees varied from 5.44 (medium cities) to 7.93 (small cities).
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Table 4. Descriptive statistics of the variables.

Outliers Model Sample
Deliveries Per Week Area Employees

Ave. Sd. Ave. Sd. Ave. Sd.

With
outliers

All data 860 3.23 4.57 150.35 223.01 7.08 7.62
Capital 374 4.12 5.81 170.40 146.74 7.00 7.38

Non-capital cities 486 2.53 3.19 134.95 201.79 7.15 7.80
Larger cities 221 7.96 5.07 150.50 192.52 4.14 8.90

Medium cities 468 3.18 4.95 154.00 230.00 6.55 6.40
Small cities 171 2.21 1.75 140.10 239.41 7.42 8.73

Without
outliers

All data 650 2.32 1.39 122.81 174.46 6.48 7.09
Capital 285 2.67 1.73 130.85 155.81 6.03 6.32

Non-capital cities 361 2.11 1.26 119.79 191.79 6.98 8.02
Larger cities 160 2.51 1.64 131.03 163.29 7.16 7.29

Medium cities 373 2.26 1.32 112.72 142.24 5.44 5.12
Small cities 124 2.44 1.66 132.87 195.72 7.93 8.62

The results from the Pearson correlation show no patterns between the variables.
However, a strong correlation was observed between the independent variables in the
“capital” and “small cities” dataset, and a moderate correlation was observed in the other
cases. In addition, weak or moderate correlations were observed in the datasets between
the independent variables and the dependent variables. This preliminary result indicates
that the OLS technique was not suitable for the datasets, as presented forward.

Table 5 shows the models’ estimated parameters. The estimated parameters had no
statistical significance in the “capital” and “non-capital cities” models, which indicates
that these variables did not influence FTGM. However, other models presented statistical
significance in the F-test, which suggests that they could explain FTGM. The explanatory
power of the model (R-squared) varied from 0.40 (non-capital cities) to 0.52 (capitals).
The performance diagnosis parameters show that the models could be used for FTGM
generation, except for the capital and non-capital models. These two models did not present
statistical significance for the parameters. However, performance diagnosis is insufficient
to ensure the non-violation of the OLS assumptions. Other statistical tests should be run
for it.

Table 5. Estimated parameters using OLS.

Model Variables Estimated
Parameters T-Value F-Statistics R2 AIC BIC

All data Intercept −0.22 −2.53 ** 182.6 *** 0.46 844.15 862.06
Area 0.07 2.70 **

Employees 0.39 12.88 ***

Capital Intercept −0.18 −1.02 61.81 *** 0.52 441.96 456.57
Area 0.08 1.78

Employees 0.41 8.53 ***

Non-capital cities Intercept −0.20 −2.18 * 156.1 *** 0.40 369.47 385.02
Area 0.02 0.80

Employees 0.44 11.39 ***

Larger cities Intercept 0.69 2.88 *** 35.59 *** 0.51 243.25 255.55
Area −0.19 −3.03 ***

Employees 0.56 8.03 ***

Medium cities Intercept −0.42 −3.96 *** 90.79 *** 0.47 492.57 508.26
Area 0.17 5.50 ***

Employees 0.26 6.39 ***

Small cities Intercept 0.59 2.69 *** 116.4 *** 0.41 133.39 144.68
Area −0.40 −5.46 ***

Employees 1.06 12.40 ***

Significance codes: *** p-value < 0.001; ** p-value < 0.01; * p-value < 0.05.
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Table 6 shows the analysis of the OLS assumptions. The results show that no model
met all the OLS assumptions. The assumptions of multicollinearity, linearity, and ho-
moscedasticity were met in all models. However, the endogeneity assumption failed for the
employees’ estimated parameters in capital and non-capital cities. In addition, all models
had autocorrelated errors, and the errors were not normally distributed. Therefore, since
the OLS assumptions were not entirely met, the linear regression models estimated by OLS
should not be used to forecast freight trip demand. This is different from the conclusions if
solely analysing performance diagnosis parameters.

Table 6. Analysis of the OLS assumption (DW = Durbin–Watson; GQ = Goldfeld–Quandt; BP = Breusch–Pagan;
KS = Kolmogorov–Smirnov; SW = Shapiro–Wilk).

Model Variables
Endogeneity Multicol. Linearity Autocorr.

Errors Homoscedasticity Normality of
Errors

Hauss. Test VIF RESET DW Test GQ Test BP Test

All data Area 166 (0.00) 1.68 0.11 (0.89) 1.62 (0.00) 1.09 (0.22) 0.28 (0.87)Employees 7.28 (0.01) 1.68

Capital Area 72.76 (0.00) 1.35 0.33 (0.72) 0.99 (0.00) 1.07 (0.34) 1.10 (0.58)Employees 3.15 (0.08) NS 1.35

Non-capital cities Area 129.7 (0.00) 2.17 0.58 (0.56) 1.80 (0.03) 1.20 (0.10) 0.38 (0.82)Employees 0.64 (0.42) NS 2.17

Larger cities Area 64.53 (0.00) 1.65 0.06 (0.94) 0.84 (0.00) 1.04 (0.44) 0.97 (0.61)Employees 9.16 (0.00) 1.65

Medium cities Area 40.81 (0.00) 1.59 1.12 (0.33) 1.55 (0.00) 1.10 (0.25) 1.26 (0.53)Employees 30.24 (0.00) 1.59

Small cities Area 153.8 (0.00) 3.30 0.14 (0.87) 1.73 (0.06) 0.67 (0.94) 3.62 (0.16)
Employees 166 (0.00) 1.68

NS Without statistical significance.

Robust regression can be used when the error terms are not autocorrelated or not
normally distributed. Using this technique, the statistics are well measured even with
bias, which prevents false positive decisions. Except for the “small cities” model, the other
models violated the assumptions of autocorrelated errors and that the errors were normally
distributed. Thus, robust regression models were estimated, and the estimated coefficients
are shown in Table 7. The estimated parameters had no statistical significance in the
“capital” and “non-capital cities” models. The robust regression models had slightly higher
AIC and BIC values when compared to the previous models. However, this technique
provided more reliable results since the OLS assumptions were violated.

Tobit regression can be used for censored data and for errors that are not normally
distributed. Table 8 shows the estimated parameters using this technique. The estimated
parameters had no statistical significance in the “non-capital” and “larger cities” models.
Tobit regression could be an alternative to OLS linear regression models. However, the
robust regression models provided lower AIC and BIC values when compared to tobit
regression. Thus, the estimated model using robust regression provided more accurate
parameters. However, the estimated parameters were not significant for the “non-capital”
and “larger cities” models.

Cross-validation was conducted only for the subsets “all data,” “larger cities,” “medium
cities,” and “small cities.” These models were estimated by robust regression. For these
subsets, the estimated models using the log–log functional form and the robust regression
had statistical significance. Thus, the cross-validation technique was performed to verify
the accuracy of the estimated models. Table 9 shows the RMSE and the MAE values using
LOOCV and K-fold. In all cases, low error values were obtained, which shows the accuracy
of the estimated robust regression models.
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Table 7. Estimated parameters using robust regression.

Model Variables Estimated
Parameters z-Value

Residual
Standard

Error
AIC BIC

All data Intercept −0.24 −2.53 ** 0.51 844.47 862.38
Area 0.07 2.49 **

Employees 0.40 12.07 ***

Capital Intercept −0.21 −1.09 0.61 441.99 456.60
Area 0.08 1.76 ‘

Employees 0.42 8.17 ***

Non-capital cities Intercept −0.20 −2.11 * 0.46 369.66 385.22
Area 0.02 0.63

Employees 0.45 11.26 ***

Larger cities Intercept 0.69 2.75 ** 0.58 243.26 255.56
Area −0.20 −2.92 ***

Employees 0.56 7.69 ***

Medium cities Intercept −0.43 −3.79 *** 0.54 492.82 508.51
Area 0.17 5.12 ***

Employees 0.27 6.19 ***

Small cities Intercept 0.57 2.43 * 0.38 492.82 508.51
Area −0.40 −5.10 ***

Employees 1.06 11.67 ***
Significance codes: *** p-value < 0.001; ** p-value < 0.01; * p-value < 0.05; ‘ p-value < 0.1.

Table 8. Estimated parameters using tobit regression.

Model Variables Estimated
Parameters z-Value Log-Likelihood AIC BIC

All data Intercept −0.79 −6.04 *** −596.36 1200.7 1218.6
Area 0.11 2.89 ***

Employees 0.55 12.11 ***

Capital Intercept −0.59 −2.42 ** −283.12 574.24 588.85
Area 0.10 1.67 ‘

Employees 0.54 8.23 ***

Non-capital
cities Intercept −0.79 −5.34 *** −292.91 593.81 609.37

Area 0.05 1.05 (0.29)
Employees 0.63 10.27 ***

Larger cities Intercept 0.52 1.62 −155.27 318.54 330.84
Area −0.26 −2.91 ***

Employees 0.74 7.74 ***

Medium cities Intercept −1.18 −6.93 *** −342.81 693.62 709.31
Area 0.26 5.58 ***

Employees 0.39 6.33 ***

Small cities Intercept 0.52 1.72 ‘ −91.33 190.66 201.94
Area −0.53 −5.00 ***

Employees 1.34 10.23 ***
Significance codes: *** p-value < 0.001; ** p-value < 0.01; ‘ p-value < 0.1.

Table 9. Cross-validation results from robust regression.

Technique Statistics All Data Larger Cities Medium
Cities Small Cities

LOOCV RMSE 0.343 0.397 0.307 0.322
R-squared 0.178 0.093 0.18 0.346

MAE 0.262 0.307 0.238 0.241

K-fold RMSE 0.343 0.39 0.305 0.316
R-squared 0.188 0.147 0.214 0.408

MAE 0.262 0.305 0.238 0.241
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5. Discussion of Results

FTGM are critical to understanding freight transport flows. However, as explored in
the literature review, some models reported in the literature have no statistical validation,
which motivated the development of this study. Moreover, verifying the OLS assumptions
is critical for OLS linear regression.

First, this study showed the importance of analysing the functional form of linear
regression models. The Ramsey RESET test indicated that the linear functional form should
not be used, although this form is common in the transportation literature to estimate
linear regression models. Thus, predicting the linear pattern of a phenomenon should be
confirmed by statistical tests.

Although OLS models have statistical validity, not all the assumptions of OLS regres-
sion were met. Thus, estimating OLS models without evaluating their assumptions would
generate biased estimates, and the use of such models would generate distorted results.

However, this problem can be addressed by estimating FTGM using alternative re-
gression techniques. There are specific regression techniques for each violation of the
OLS assumptions, which enable FTGM to be accurately estimated. The results in this
study indicated that the robust regression provided models for “all data”, “larger cities”,
“medium cities”, and “small cities”. Therefore, finding the modelling technique that best
fits the dataset is important for proper model estimation.

The estimated models presented different characteristics considering the several city
groups. However, the coefficient signs show that the estimated parameters of the “all data”
model had the same sign as the “medium cities” model: The intercepts had a negative sign,
and the independent variables had a positive sign. Thus, the size of the “medium cities”
subset could influence the results of the “all data” model. Looking at and understanding
the data is a crucial step in any modelling framework.

For the independent variables, the estimated parameter for the area presented more
influence on medium cities and lower influence on small cities. Conversely, the number of
employees presented more influence on small cities and lower influence on medium-sized
cities. Thus, FTGM are different in Brazilian cities. Therefore, comparing the AIC and
BIC values, FTGM can be used to predict freight trip generation considering the estimated
parameters for larger, medium, and small cities.

Not properly considering autocorrelation, endogeneity, multicollinearity, and het-
eroscedasticity implies calibrating biased parameters, which can result in approving in-
tervention that will result in adverse effects (i.e., different from the intended effects). This
occurs because violating these assumptions results in reducing or amplifying the mag-
nitude of the parameters. For example, a variable might indicate that reducing fares of
a transportation mode implies an increase in demand. However, this parameter could
have an opposite sign if the methodological procedures in this paper (i.e., analysing the
method assumptions) were followed. Then, if the wrong model is used, decision-makers
could make the operation of this mode of transport unfeasible. By reducing the fares, the
profit margin of the operation is also reduced, which could result in frequent damage
to the operator. Consequently, this situation could result in bankruptcy or abandoning
the operation.

Additionally, the results indicate similar signs in all models, which shows that, re-
gardless of the technique, the estimates suggest the correct direction of the effect of the
explanatory variables on the dependent variable. However, violating the OLS assumptions
compromises the metrics for evaluating the statistical significance and the magnitude of
the effects. This requires an alternative estimation, such as using robust regression. For
example, results indicate that the area parameter in the capital model is significant at
the 10% level. If the data have enough quality to consider this level of significance, then
the OLS model would induce the policymaker to disregard the area as a policy variable.
Therefore, inefficient decisions would be made for capital cities. Conversely, if the model
aims to predict freight trips, the robust regression would be more suitable since this tech-
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nique presented lower AIC values. This also occurs in small cities, where the OLS is more
appropriate than the robust regression.

In addition to the modelling process, the results influence freight transportation plan-
ning. The FTGM-estimated coefficients vary depending on the cities’ characteristics. The
models obtained in this research estimated freight movements according to the population
characteristics of the cities (small, medium, and larger cities). As the models can be used
to estimate freight flows in different cities, the models can also be considered to elaborate
public policies to improve freight transport. This occurs because commercial establishments
have different characteristics. For example, Cheah et al. [47] suggested using FTGM for
evaluating building-level urban logistic management initiatives. Moreover, Silva et al. [13]
evaluated the usage of on-street parking using FTGM. Suitable strategies can be set to
reduce the externalities associated with freight transport, such as congestion and emis-
sions. In addition, sustainable solutions can be evaluated and implemented by public
managers to improve the quality of life in urban centres, which contributes to economic
and social development.

6. Conclusions

This paper estimated models using data on deliveries to commercial establishments.
The models were obtained for Brazil and considered the cities’ populational characteristics,
i.e., for larger cities, medium cities, and small cities.

Data were obtained from field research, and the influential observations were removed
from the sample. Therefore, the influential observations were anomalies due to the incorrect
answers reported by the respondents. Identifying data collection strategies to reduce
inconsistencies might be interesting for future works.

The first contribution of this paper concerns the estimated models using delivery data,
which are easy to collect in a scenario with budget restrictions for data collection. The
second contribution is related to the methodological procedure. Although evaluating the
OLS assumptions is common in econometrics, few studies have conducted this procedure
for estimating FTGM. However, the use of different techniques is crucial for accurately
estimating the models.

Finally, results in this study provided insights for policymakers since accurate models
were obtained for freight transport in Brazilian cities. The results could support freight
policies to improve freight operations in urban areas. In accordance with good scientific
practice, the estimated models support forecasting and proposing public policies. Public
managers can use these models for feasibility studies and for solutions with light inter-
ventions and minimal side effects. Coherent measures require following the precepts of
the adopted model. Therefore, the assumptions of the estimation methods are essential to
support policies or feasibility applications.

The models could be used by practitioners to estimate freight movements in urban
areas. The results allow the city impacts and the regions with high freight flow levels to be
identified. Thus, urban planners can identify strategies to accommodate cargo flows, which
are essential for economic development. In addition, planning based on understanding the
problems and based on cargo flows allows suitable alternatives to be identified to reduce
and/or organise freight trips, reduce environmental impacts, and contribute to minimising
the externalities perceived by society. In this way, a sustainable UFT is supported.

Although not evaluated in this paper, the economic sector also influences cargo flows.
Thus, for future works, we suggest estimating FTGM by economic sector. Moreover, many
studies have explored the usage of spatial analysis to understand freight trip movements.
We recommend incorporating spatial and temporal factors. In addition, we recommend the
FTGM estimation by using spatial techniques.
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