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Abstract: In this study, we propose a robust bi-objective optimization model of the green closed-loop
supply chain network considering presorting, a heterogeneous transportation system, and carbon
emissions. The proposed model is an uncertain bi-objective mixed-integer linear optimization model
that maximizes profit and minimizes carbon emissions by considering uncertain costs, selling price,
and carbon emissions. The robust optimization approach is implemented using the combined interval
and polyhedral, “Interval+ Polyhedral,” uncertainty set to develop the robust counterpart of the
proposed model. Robust Pareto optimal solutions are obtained using a lexicographic weighted
Tchebycheff optimization approach of the bi-objective model. Intensive computational experiments
are conducted and a robust Pareto optimal front is obtained with a probability guarantee that the
constraints containing uncertain parameters are not violated (constraint satisfaction).

Keywords: green closed-loop supply chain; bi-objective; robust optimization; carbon emissions;
lexicographic weighted Tchebycheff; probability of constraint violation

1. Introduction

In April of 2018, the concentration of carbon dioxide, CO2, in the atmosphere reached
410 parts per million (ppm), which was the highest level in the previous 800,000 years;
compared to the previous highest level in 1780 which was just 280 ppm [1,2]. Many crises
have resulted from carbon emissions, including rising sea levels and accelerating species
extinction [2,3].

The transportation sector was the second-largest source of CO2 emissions in 2018,
around 25% of the total carbon emissions, according to a report by the International Energy
Agency [4]. As a result, limiting transportation’s excessive CO2 emission growth has
become a critical component of global CO2 emission reduction [5].

Many governments pay attention to conducting measures and refining legislation to
motivate organizations and a broad sector of customers to adopt green and sustainable
practices in their production and service activities [6,7]. Approximately 197 countries at
the UN climate summit in November 2021 agreed on new measures for carbon emission
reduction, including standards for reporting national emissions and the ground rules for
trading credits [8].

A green closed-loop supply chain (GCLSC) involves the integration of environmental
aspects into all activities of the traditional closed-loop supply chain (CLSC) network [9,10].
Recently, customers’ behavior has remarkably changed. They are concerned about the
environmental aspects of the products and their price and quality [11,12].

Numerous companies are pursuing greenness and sustainability by employing in-
spection, recycling, and refurbishing activities to recover the used products collected from
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end customers to increase their return rates [13]. For instance, Xerox, Canon, Kodak, Dell,
and Acer have been pushing green operations. For example, by the year 2012, Xerox had
effectively cut their emissions by 42% and their energy consumption by 31% [14].

Transportation fleets that move goods between supply chain hubs are a significant
contributor to rising environmental consequences. According to Golicic et al. [15], fleet
management has a favorable influence on energy efficiency and reduces fleet-related
environmental consequences.

Using a heterogeneous fleet comprised of vehicles of varied sizes, the amount of fuel
required to serve a given request portfolio can be drastically reduced [16]. Moreover, it pro-
vides a better balance of economic and environmental sustainability simultaneously [17,18].

Government policymakers should incentivize businesses to collect used products
from customer zones for reverse logistics activities that in turn consolidate greenness and
sustainability [19]. Considering efficient presorting centers at the customer zones substan-
tially separates the low-quality returned products at the early stage from the refurbishment
stream, thereby causing a reduction in the induced cost and carbon emissions [20].

Most real-life optimization problems are multi-objective and, usually, are uncertain
due to the inherent errors of parameter values [21]. These errors result from inappropriate
measurement or estimation due to a lack of knowledge of parameter values [22], a highly
dynamic environment, and the physical impossibility to implement a computing solution
in real-life problems [23]. Ignoring these uncertainties in optimization problems leads to
infeasible and sub-optimal solutions [24].

Stochastic optimization (SO) and robust optimization (RO) are well-known approaches
for solving uncertain optimization problems. In the SO approach, the probability of un-
certain parameters must be defined accurately, but precisely defining this probability is
difficult [23,25]. In addition, this approach devastates the convexity property and alleviates
the complexity of the original problem in the chance constraints. However, in the RO ap-
proach, the uncertainty of the parameter is predefined in an uncertainty set characterized by
its shape and size, and this approach overcomes some drawbacks of the SO approach [26].

As far as we are aware, few studies [27–29] have focused on the RO-based multi-
objective optimization of CLSC networks. In these investigations, the implemented un-
certainty set is the box uncertainty set with a homogeneous transportation system and no
presorting centers in client zones. Motivated by the above facts, we developed a bi-objective
robust optimization model for the GCLSC by considering presorting and heterogeneous
transportation systems. The logical interpretation of the proposed study’s framework is
depicted in Figure 1. The main contributions of this study are as follows:

• Presenting a bi-objective mixed-integer linear programming (MILP) model for the
GCLSC while considering presorting and a heterogeneous transportation system as
well as uncertain cost, selling price, and carbon emissions uncertainties.

• Presenting a robust counterpart model formulation of the bi-objective MILP model of
the GCLSC network under uncertainties using the well-known RO approach based on
the "Interval + Polyhedral" uncertainty set.

• Performing intensive computational experiments using a lexicographic weighted
Tchebycheff (LWT) approach to obtain the Pareto optimal solutions of the robust
bi-objective model, in which the probability bounds on constraint satisfaction are
not violated.

The remainder of this paper is organized as follows. Section 2 presents the relevant
literature pertaining to the uncertain GCLSC model from the previous studies. Section 3
discusses the problem description and mathematical modeling of the bi-objective GCLSC
model. Section 4 presents the robust counterpart formulation of the bi-objective GCLSC
model based on the combined "Interval+Polyhedral" uncertainty set. Section 5 presents the
solution approach, LWT approach, and the conducted computational experiments. Finally,
the conclusion and possible recommendations for future work are presented in Section 6.
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Figure 1. The logical framework of the proposed study.

2. Relevant Literature

Recently, several studies have focused on the uncertain and multi-objective nature
of CLSC optimization models. Uncertainty is inherent in the CLSC models due to the
dynamic nature of parameter data and errors that occur when measuring or estimating the
input data. While some of these studies have focused on the uncertain CLSC optimization
problem with a single objective, which is their primary target of minimizing the total
cost incurred in the CLSC network, the rest are concerned with the inherent nature of the
uncertainties and conflicting objectives of CLSC optimization networks.

Two streams of literature are reviewed: the first deals with the design of uncertain
CLSC with a single objective, whereas the second involves the design of uncertain CLSC
with multiple objectives.
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2.1. Uncertain Single Objective CLSC

The uncertain optimization problem of single objective CLSC models based on the RO
technique has recently been developed and expanded; its efficiency and robustness have
also been demonstrated. For designing the CLSC, Pishvaee et al. [26] presented an MILP
model, which was further extended to tackle uncertain parameters, such as transportation
costs, returned products from first-hand customers to collection centers, and the demand
of second customers for recovered products using the RO approach; their study objective is
a minimization of the total cost.

The RO model for the CLSC network based on the regret value to determine facil-
ities’ locations and quantity of flows between facilities in the network were studied by
Wang et al. [30].

Almaraj and Trafalis [31] proposed an adjustable RO approach for designing an uncer-
tain CLSC network based on the budget uncertainty set to model the dynamic behavior of
the customer demand over the planning horizon to minimize the total cost of the CLSC
network. Ramezani et al. [32] proposed a scenario-based optimization model using the
min–max regret criterion with uncertain demand and the return rate for designing the
CLSC to maximize the total profit using a scenario relaxation algorithm.

Some studies are concerned with real case studies of the uncertain CLSC. For instance,
Gholizadeh et al. [33] suggested a robust CLSC optimization model for disposable ap-
pliances considering demand, transportation, and operational costs uncertainties using
a robust scenario-based stochastic optimization to maximize the profit of the network.
Hasani et al. [34] proposed a mixed-integer nonlinear programming (MINLP) model for
designing a global CLSC network for a medical device manufacturer, considering uncertain
purchasing costs and consumer demand, managed with an RO technique based on the
budget uncertainty, “Bertsimas and Sim”, set. Jabbarzadeh et al. [35] proposed an SO
approach for designing a CLSC network of glass companies by considering disruption risks
across different disruption scenarios using the Lagrangian relaxation algorithm.

Gao and Ryan [36] proposed a hybrid model for designing a GCLSC network that
combines SO and RO approaches aimed at minimizing the total cost incurred in the network.
Samuel et al. [20] presented a scenario-based robust model for designing a GCLSC network
of electronic products with considering the uncertain quality of the returned product to
minimize the total cost.

2.2. Uncertain Multi-Objective CLSC Network

Due to the realistic multi-objective and uncertain nature of the CLSC design and
optimization problems, researchers have paid attention to designing robust models that
hedge against uncertain realization and provide optimal solutions for the conflicting nature
of objectives.

The uncertainty in a multi-objective CLSC network using the SO approach is usu-
ally characterized by a probability distribution on the parameters. Zhalechian et al. [37]
proposed an MINLP model to minimize the total cost and environmental impacts and
maximize the positive social impacts of designing a supply chain network using a hybrid
meta-heuristic algorithm; they applied SO and modified the game theory to handle uncertainty.

Ghasemzadeh et al. [38] suggested an MILP model to develop a stochastic CLSC
network aimed to minimize Eco-indicator 99 and maximize profit. The model imple-
mented in a real-world case study of the tire manufacturing industry, a two-stage stochastic
optimization approach was implemented to cope with uncertainties in their study.

Moheb-Alizadeh et al. [39] developed a stochastic integrated multi-objective MINLP
model, in which the design of a sustainable CLSC network considers sustainability out-
comes and the efficiency of facility resource utilization, using a Lagrangian relaxation
algorithm. A chance-constrained programming model has been proposed for handling
uncertainties in a GCLSC network design aimed to minimize the expected value and
variance of the total of cost, CO2 emissions are controlled by providing a novel chance
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constraint approach using the general algebraic modeling system (GAMS) software; four
multi-objective decision-making methods were applied by Abad and Pasan [40].

The fuzzy robust optimization (FRO) approach was implemented for dealing with
uncertain parameters when the available information is vague.

Soleimani et al. [41] developed a multi-objective model for designing a CLSC net-
work using an FRO approach, and their objective was to maximize the total profit and
the responsiveness of customer demand while minimizing lost working days due to oc-
cupational accidents. In addition, a genetic algorithm was implemented for solving their
model. Nayeri et al. [42] proposed an MILP model for designing a sustainable CLSC
network for a water tank industry using an FRO approach to handle uncertainties in order
to minimize the cost and environmental impact and maximize the social impacts using the
goal programming approach.

Hybridization between SO and FRO approaches was implemented by Yu and Solvang [43]
for handling uncertainties in designing the CLSC network to minimize the total cost and
carbon footprint induced by the network. Scenario-based robust optimization (SRO) was
also implemented to handle the uncertain parameters of the design of CLSC networks.

Ruimin et al. [44] proposed a robust MINLP model to deal with GCLSC by considering
two conflicting objectives simultaneously, the economic cost and environmental impact,
using scenario-based optimization.

An uncertain multi-objective MILP model of the CLSC network design was studied to
minimize the total costs, maximize the on-time delivery of the products purchased from
suppliers, and maximize the quality of the produced products on the forward chain that can
be recovered in the reverse supply chain using an SRO method [45]. Gholizadeh et al. [46]
proposed a bi-objective model to minimize the environmental impact and maximize profit
for a dairy CLSC using a heuristic approach and robust optimization scenario-based.
Some studies have implemented an interval-based RO approach where the uncertain
parameters are predefined within an uncertainty set which characterized by its shape
and size [22]. Darestani and Hemmati [28] used the RO approach for designing a CLSC
network for perishable products to minimize the environmental and cost objectives. Yavari
and Geraeli [47] proposed an MILP model for a multi-period and multi-product GCLSC
network of dairy products with limited life shelf under uncertainties of demands, rate of
return, and the quality of returned products based on the RO approach using a heuristic
method to minimize the total cost and the environmental pollutants.

Jiao et al. [48] proposed a data-driven model in CLSC to mitigate recovery uncertainty
and greenhouse emissions (GHE) based on uncertain customer demand to minimize
the total cost using the chance constraint method to control the GHE and define the
perturbation of uncertain demand using the RO approach based on the “Bertsimas and
Sim” uncertainty set.

According to the above-mentioned literature, which is summarized in Table 1, re-
searchers seldom consider the RO based on a predefined uncertainty set while designing
multi-objective CLSC models with the heterogeneous transportation system and presorting
consideration. To fill this gap, the current study proposes a bi-objective robust optimization
model for designing a GCLSC network based on the “Interval + Polyhedral” uncertainty
set while considering presorting and heterogeneous transportation system to maximize the
profit and minimize the carbon emissions in the entire network.
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Table 1. Relevant literature pretaining to uncertain CLSC models.

Author (s)
Presorting Presence Model’s Objective(s) Uncertainty Modelling Transportation System

Formulation
Yes No Single Multiple SO IRO SRO FRO Homogeneous Heterogeneous

Pishvaee et al. [26] X X X X MILP
Mohammed et al. [49] X X X X MILP
Samuel et al. [20] X X X X MILP
zhalechian et al. [37] X X X X SMIP
Soleimani et al. [41] X X X X FMIP
Fathollahi-Fard et al. [50] X X X X SMIP
Wang et al. [30] X X X X MILP
Jabbarzadeh et al. [35] X X X X SMIP
Gao and Ryan [36] X X X X X SMIP
Ramezani et al. [32] X X X X MILP
Hasani et al. [34] X X X X MINLP
Ghasemzadeh et al. [38] X X X X MILP
Moheb-Alizadeh et al. [39] X X X X MINLP
Yavari and Geraeli [47] X X X X MILP
Abad and Pasan [40] X X X X MINLP
Abdolazimi et al. [45] X X X X MILP
Almaraj and Trafalis [31] X X X X MILP
Gholizadeh et al. [46] X X X X MILP
Jiao at al. [48] X X X X X SMIP
Yu and Solvang [43] X X X X X FMIP
Ruimin et al. [44] X X X X MINLP
Nayeri et al. [42] X X X X FMIP
Darestani and Hemmati [28] X X X X MINLP
Ghahremani Nahr et al. [27] X X X X MINLP
Homayouni and Pishvaee [29] X X X X MILP
The proposed study X X X X MILP

IRO: interval-based robust optimization; SMIP: stochastic integer programming; FMIP: fuzzy mixed-integer programming.

3. Problem Statement and Mathematical Modeling

The GCLSC proposed in this study compromises a set of customer zones where
the returned products are collected, a set of presorting centers located at these zones,
a recycling center, and an inspection and refurbishment (IR) center with different capacity
sizes: small, medium, and big. The structure of the proposed GCLSC network (Figure 2) is
the same structure presented by Samuel et al. [20]. Transportation between the facilities is a
heterogeneous transportation system comprising different vehicle fleets that are varied in
capacity, cost, and carbon emissions. The returned products at customer zones are either
subject to presorting or nonpresorting, depending on the quality of the returned products.
For high or very low-quality products, it is obvious that they can be transferred directly to
the IR and recycling centers, respectively. Otherwise, the returned products are presorted
in the presorting center depending on the quality of these products and the efficiency of
the presorting center. A fraction of these products are sent to the recycling center, and the
rest are sent to the IR center.

To maximize the profit that results from the difference between the selling of refur-
bished products and the total cost incurred in the network and minimize the total carbon
emissions due to processes and transportation activities in the network, we consider further
assumptions as follows:

• The refurbished products are in a condition as good as new ones.
• Selling price, costs, and carbon emissions are subject to uncertainty with an unknown

probability distribution.
• The capacities, costs, and carbon emissions due to transportation modes are predefined.

Costs and emissions are based on the round trip distances between network facilities.
• The locations of customers zones, the recycling center, and the IR center are predefined.
• The capacities of the facilities are predefined and deterministic.
• Only one transportation mode can be used between any two consecutive facilities in

the GCLSC network.
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Recycling 
Center 

Customer
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refurbishment center Presorting 

Center 

From reverse logistics to
customers 

From  customers to  reverse
logistics  

Figure 2. The proposed green closed-loop supply chain network.

Based on the above assumptions and description, an MILP model of the proposed
bi-objective GCLSC network and its nomenclature presented at the end of this paper.

On the one hand, the first objective function, g̃pro, of the proposed model is the maxi-
mization of the profit; it comprises four parts: the first part, g̃1, represents the selling price
of the refurbished products at the IR center; the second part, g̃2, represents the fixed costs
of opening facilities in the entire network; the third part, g̃3, represents the transportation
costs due to transportation activities in the GCLSC network using heterogeneous modes of
transportation of vehicles v; the last part, g̃4, represents the cost of processing activities in
the network, including presorting, inspection, refurbishment, and recycling.

On the other hand, the second objective function, g̃emi, of the proposed model is the
minimization of the carbon emissions due to the various activities in the GCLSC network;
it comprises two parts: the first part, ẽmtr, represents the emissions due to transportation
activities using different modes of transportation vehicles in the network part of the objec-
tive function. The second part, ẽmpr, is the emissions due to different processing activities
in the network, such as presorting, inspection, refurbishing, and recycling.

PMOMILP :

{
Max g̃pro = g̃1 − g̃2 − g̃3 − g̃4

Min g̃emi = ẽmtr + ẽmpr
(1)

where
g̃1 = ∑

p∈P
∑
k∈K

∑
v∈V

s̃pk Zre f
pkv (2)

g̃2 = ∑
s∈S

f̃s Us + ∑
k∈K

f̃ p
k Uk + f̃r Ur (3)

g̃3 = ∑
p∈P

∑
k∈K

∑
v∈V

c̃ tr
v wp dki Xins

pkv + ∑
p∈P

∑
k∈K

∑
v∈V

c̃ tr
v wp dki Yins

pkv

+ ∑
p∈P

∑
k∈K

∑
v∈V

c̃ tr
v wp dki Zre f

pkv + ∑
p∈P

∑
v∈V

c̃ tr
v wp dir Zrec

pv

+ ∑
p∈P

∑
k∈K

∑
v∈V

c̃ tr
v wp dkr Yrec

pkv + ∑
p∈P

∑
k∈K

∑
v∈V

c̃ tr
v wp dkr Xrec

pkv

(4)
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g̃4 = ∑
p∈P

∑
k∈K

p̃ pre
pk Xpre

pk + ∑
p∈P

p̃ ins
p Gins

p + ∑
p∈P

∑
k∈K

∑
v∈V

p̃ re f
p Zre f

pkv

+ ∑
p∈P

∑
k∈K

∑
v∈V

p̃ rec
p Yrec

pkv + ∑
p∈P

∑
k∈K

∑
v∈V

p̃ rec
p Xrec

pkv + ∑
p∈P

∑
v∈V

p̃ rec
p Zrec

pv

(5)

ẽmtr = ∑
p∈P

∑
k∈K

∑
v∈V

ẽvv wp dki Yins
pkv + ∑

p∈P
∑
k∈K

∑
v∈V

ẽvv wp dki Xins
pkv

+ ∑
p∈P

∑
k∈K

∑
v∈V

ẽvv wp dki Zre f
pkv + ∑

p∈P
∑

v∈V
ẽvv wp dir Zrec

pv

+ ∑
p∈P

∑
k∈K

∑
v∈V

ẽvv wp dkr Yrec
pkv + ∑

p∈P
∑
k∈K

∑
v∈V

ẽvv wp dkr Xrec
pkv

(6)

ẽmpr = ∑
p∈P

∑
k∈K

ẽm col
p rpk + ∑

p∈P
∑
k∈K

ẽm pre
p Xpre

pk + ∑
p∈P

ẽm ins
p Gins

p +

+ ∑
p∈P

∑
k∈K

∑
v∈V

ẽm re f
p Zre f

pkv + ∑
p∈P

∑
k∈K

∑
v∈V

ẽm rec
p Yrec

pkv

+ ∑
p∈P

∑
v∈V

ẽm rec
p Zrec

pv + ∑
p∈P

∑
k∈K

∑
v∈V

ẽm rec
p Xrec

pkv

(7)

Constraint (8) ensure the equilibrium at customer zone k; that is, the amount of returned
product p equals the quantities sent to the recycling center for scrapping and IR center
without presorting in addition to the amount sent for presorting centers.

∑
v∈V

Xins
pkv + Xpre

pk + ∑
v∈V

Xrec
pkv = rpk ∀p, k (8)

Constraint (9) guarantees that the amount sent for presorting cannot exceed the amount of
returned products.

∑
p∈P

Xpre
pk ≤ Uk ∑

p∈P
rpk ∀k (9)

Constraint (10) governs the quantity sent from the presorting center to the IR center,
which comprises good-quality products and a fraction of bad-quality products due to the
inefficiency of the presorting process.

∑
v∈V

Yins
pkv = Xpre

pk

(
qpk +

(
1− qpk

)
β
)

∀p, k (10)

Constraint (11) guarantees that the amount sent from the customer zone k to the IR center
of size s without presorting cannot exceed the maximum capacity of the biggest size of the
IR center.

∑
p∈P

∑
v∈V

Xins
pkv ≤ cabig (1−Uk) ∀k (11)

Constraint (12) governs the quantity sent from the presorting center to the recycling center
for scrapping.

∑
v∈V

Yrec
pkv = (1− β)

(
1− qpk

)
Xpre

pk ∀p, k (12)

Constraint (13) ensures that the presorted quantity is presorted is directed to the IR center
or the recycling center for each product p and customer zone k.

Xpre
pk = ∑

v∈V
Yrec

pkv + ∑
v∈V

Yins
pkv ∀p, k (13)

Constraint (14) governs the quantity of product p sent to the IR center from customer zone
k, considering both presorted and non-presorted products. Constraint (15) guarantees the
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equilibrium at the IR center that the quantity of inspected product p is directed either for
refurbishing or scrapping.

Gins
p = ∑

k∈K
∑

v∈V
Yins

pkv + ∑
k∈K

∑
v∈V

Xins
pkv ∀p (14)

Gins
p = ∑

k∈K
∑

v∈V
Zre f

pkv + ∑
v∈V

Zrec
pv ∀p (15)

Constraint (16) determines the quantity of a product p directed from the IR center to the
recycling center; this quantity comprises a fraction due to the presorting center inefficiency,
and the rest due to the bad quality of non-presorted products.

∑
v∈V

Zrec
pv = ∑

k∈K
∑

v∈V

(
1− qpk

)
Xins

pkv + ∑
k∈K

(
1− qpk

)
βXpre

pk ∀p (16)

Constraint (17) stipulates that the quantity sent from the customer zones in the presence
and absence of presorting in addition to the IR center to the recycling center cannot exceed
its capacity.

∑
v∈V

Xrec
pkv + ∑

v∈V
Yrec

pkv + ∑
v∈V

Zrec
pv ≤ car Ur (17)

Constraint (18) ensures that the total quantity of inspected products cannot exceed the
capacity of the IR center of size s.

∑
p∈P

Gins
p ≤ cas Us ∀s (18)

Constraint (19) forces one size s of the IR center.

∑
s∈S

Us ≤ 1 (19)

Set of constraints with respect to multimode transportation vehicles v, constraints (20)–(25)
ensure that only one type of vehicle is used to transport the products between every two
facilities in the proposed GCLSC network.

∑
v

Ȯkv ≤ 1 ∀k (20)

∑
v

Ore f
kv ≤ 1 ∀k (21)

∑
v

Ȯpre
kv ≤ 1 ∀k (22)

∑
v

Ökv ≤ 1 ∀k (23)

∑
v

Öpre
kv ≤ 1 ∀k (24)

∑
v

...
Ov ≤ 1 (25)

The set of constraints (26)–(31) guarantee that the quantity of transported products between
two facilities cannot exceed the capacity of the total number of the vehicles of selected
transportation mode v.

∑
p∈P

wp Xins
pkv ≤ cav Ṅkv ∀k, v (26)

∑
p∈P

wp Xrec
pkv ≤ cav N̈kv ∀k, v (27)
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∑
p∈P

wp Yins
pkv ≤ cav Ṅpre

kv ∀k, v (28)

∑
p∈P

wp Yrec
pkv ≤ cav N̈pre

kv ∀k, v (29)

∑
p∈P

wp Zre f
pkv ≤ cav Nre f

kv ∀k, v (30)

∑
p∈P

wp Zrec
pv ≤ cav

...
Nv ∀v (31)

The set of constraints (32)–(37) that ensure the total number of vehicles of transportation
mode v if this mode already has been selected.

Ṅkv ≤ big M Ȯkv ∀k, v (32)

N̈kv ≤ big M Ökv ∀k, v (33)

Ṅpre
kv ≤ big M Ȯpre

kv ∀k, v (34)

N̈pre
kv ≤ big M Öpre

kv ∀k, v (35)

Nre f
kv ≤ big M Ore f

kv ∀k, v (36)
...
Nv ≤ big M

...
Ov ∀v (37)

The set of constraint (38) ensures that the total number of transported quantities between the
facilities using the selected vehicle modes v equals the total number of returned products p.

∑
k∈K

∑
v∈V

cav Ṅkv + ∑
k∈K

∑
v∈V

cav N̈kv + ∑
k∈K

∑
v∈V

cav Ṅpre
kv + ∑

k∈K
∑

v∈V
cav N̈pre

kv

+ ∑
k∈K

∑
v∈V

cav Nre f
kv + ∑

v∈V
cav

...
Nv = ∑

p∈P
∑
k∈K

rpk
(38)

Constraint (39) ensures that the carbon emissions due to transportation and processes
activities cannot exceed the maximum allowable carbon emissions, that is, the carbon
cap limit.

ẽmtr + ẽmpr ≤ ĉcap (39)

Constraints (40)–(42) represent the non-negativity, binary, and integrity constraints, respectively.

Zre f
pkv Gins

p , Xrec
pkv, Yrec

pkv, Zrec
pv , Xpre

pk , Yins
pkv, Xins

pkv ∈ R≥0 (40)

Uk, Us, Ur, Ȯkv, Ȯpre
kv , Ökv, Öpre

kv , Ȯre f
kv ,

...
Ov ∈ {0, 1} (41)

Ṅkv, N̈kv, Ṅpre
kv , N̈pre

kv , Nre f
kv ,

...
Nv ∈ Z∗ (42)

4. The Robust Model of Bi-Objective Green Closed-Loop Supply Chain

RO is designed to deal with a lack of information. The uncertain parameters in
robust optimization are taken at their worst case values; therefore, the robust optimization
approach results in a solution that is immunized against uncertainty [24].
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A general uncertain MILP model is given by

P : min
xj , yk

∑
j

c̃jxj + ∑
k

ẽkyk

s.t.

∑
j

ãijxj + ∑
k

b̃ikyk ≤ d̃i ∀i ∈ I

xj ∈ R ∀j ∈ J

yk ∈ Z ∀k ∈ K,

(43)

where xj and yk represent continuous and integer decision variables, respectively, c̃j and
ẽk are the uncertain coefficients of the objective function, and ãij, b̃ik, and d̃i are the true
values of the ith constraint coefficients that are subjected to uncertainty; the P model can
be reformulated as follows:

P : min
xj , yk , β

β

s.t.

∑
j

c̃jxj + ∑
k

ẽkyk ≤ β

∑
j

ãijxj + ∑
k

b̃ikyk ≤ d̃i ∀i ∈ I

xj ∈ R ∀j ∈ J

yk ∈ Z ∀k ∈ K

(44)

Without loss of generality, we consider the general ith constraint, where the true value
of uncertain constraint parameters ãij, b̃ik, and d̃i are aij + âijξij, bik + b̂ikξik, and di + d̂iξi0,
respectively; aij, bik, and di are the nominal value of the parameters, âij, b̂ik, and d̂i are
the perturbations of the parameters around their nominal values respectively, and ξij, ξik,
and ξi0 are random independent variables that take values of [−1, 1]. Hence, the ith
constraint can be reformulated as follows:

∑
j/∈Ji

aijxj + ∑
j∈Ji

ãijxj + ∑
k/∈Ki

bikyk + ∑
k∈Ki

b̃ikyk − d̂iξi0 ≤ di (45)

Ji and Ki are the sets that contain the uncertain parameters in the ith constraint. For sim-
plicity, we consider ξ = {ξij, ξik, ξi0} and U as the predefined set of random variables.
To become immune against infeasibility that would result from any realization of uncer-
tainty, the ith constraint can be rewritten as follows:

∑
j

aijxj + ∑
k

bikyk + max
ξ∈U

{
∑
j∈Ji

ξij âijxj + ∑
k∈Ki

ξik b̂ikyk − d̂iξi0

}
≤ di (46)

The robust counterpart optimization formulation of the ith constraint based on the com-
bined interval and polyhedral, “Interval + polyhedral” uncertainty set is as follows:

∑j aijxj + ∑k bikyk +
[
ωiΓ + ∑j∈Ji

θij + ∑k∈Ki
ηik + ϕi0

]
≤ di

ωi + θij ≥ âij|xj| ∀j ∈ Ji
ωi + ηik ≥ b̂ik|yk| ∀k ∈ Ki
ωi + ϕi0 ≥ d̂i
ωi, θij, ηik, ϕi0 ≥ 0 ∀j ∈ Ji, ∀k ∈ Ki, ∀i ∈ I,

(47)

where θij, ηik, ϕi0, and ωi are positive dual variables, and Γ represents the adjustable size
parameter of the “Interval + Polyhedral” uncertainty set which reflects the degree of
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conservativeness. Figure 3 illustrates different geometrical representations of the combined
“Interval + Polyhedral” uncertainty set based on the value of the adjustable parameter
Γ. The proof of robust counterpart formulation of the ith constraint, which is shown in
Equation (47) is available in Li et al. [51] and Bertsimas and Sim [52].

Following the practical guide of the robust optimization approach proposed by Goris-
sen et al. [23] when the coefficients of the objective functions have uncertainty, constraints
have been introduced to model the coefficients in the objective functions and approximate
their values using auxiliary variables.

The robust counter reformulation of the PMOMILP based on the “Interval + Polyhedral”
uncertainty set induced an MILP model,RC I−P −PMOMILP, as follow:

(a) 0 < Γ < 1. (b) Γ = 1. (c) 1 < Γ < |Ji |+ |Ki |. (d) Γ = |Ji |+ |Ki |.

Figure 3. Illustration of the “Interval + Polyhedral” uncertainty set.

RC I−P −PMOMILP :

{
Max δpro

Min δemi
(48)



g1−
[
∑p∈Po ∑k∈Ko θpk

]
− g2 −

[
∑s∈So θs + ∑k∈Ko θk + θr

]
−

g3−
[
∑v∈Vo

(
θ1v

ins + θ2v
ins + θ3v

re f + θ4v
rec + θ5v

rec + θ6v
rec
)]
−

g4−
[
∑p∈Po ∑k∈Ko θpk

pre + ∑p∈Po θp
ins + ∑p∈Po θp

re f +

∑p∈Po θ1p
rec + ∑p∈Po θ2p

rec + ∑p∈Po θ3p
rec
]
− Γ1ω1 ≥ δpro

(49)

ω1 + θpk ≥ ŝpk Zre f
pkv ∀p ∈ P, k ∈ K, v ∈ V (50)

ω1 + θs ≥ f̂s Us ∀s ∈ S (51)

ω1 + θk ≥ f̂ p
k Uk ∀k ∈ K (52)

ω1 + θr ≥ f̂r Ur (53)

ω1 + θ1ins
v ≥ ĉv Xins

pkv ∀p ∈ P, k ∈ K, v ∈ V (54)

ω1 + θ2ins
v ≥ ĉv Yins

pkv ∀p ∈ P, k ∈ K, v ∈ V (55)

ω1 + θ3re f
v ≥ ĉv Zre f

pkv ∀p ∈ P, k ∈ K, v ∈ V (56)

ω1 + θ4rec
v ≥ ĉv Xrec

pkv ∀p ∈ P, k ∈ K, v ∈ V (57)

ω1 + θ5rec
v ≥ ĉv Yrec

pkv ∀p ∈ P, k ∈ K, v ∈ V (58)

ω1 + θ6rec
v ≥ ĉv Zrec

pv ∀p ∈ P, v ∈ V (59)

ω1 + θpk
pre ≥ p̂pre

pk Xpre
pk ∀p ∈ P, k ∈ K (60)

ω1 + θp
ins ≥ p̂ins

p Gins
p ∀p ∈ P (61)
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ω1 + θp
re f ≥ p̂re f

p Zre f
pkv ∀p ∈ P, k ∈ K (62)

ω1 + θ1p
rec ≥ p̂rec

p Xrec
pkv ∀p ∈ P, k ∈ K (63)

ω1 + θ2p
rec ≥ p̂rec

p Yrec
pkv ∀p ∈ P, k ∈ K (64)

ω1 + θ3p
rec ≥ p̂rec

p Zrec
pv ∀p ∈ P, v ∈ V (65)


emtr +

[
∑v∈Vo

(
η1ins

v + η2ins
v + η3re f

v + η4rec
v + η5rec

v + η6rec
v

)]
empr +

[
∑p∈Po

(
η1col

p + η2pre
p + η3ins

p + η4re f
p + η5rec

p + η6rec
p + η7rec

p

)]
+

Γ2ω2 ≤ δemi

(66)

ω2 + η1ins
v ≥ êvv Xins

pkv ∀p ∈ P, k ∈ K, v ∈ V (67)

ω2 + η2ins
v ≥ êvv Yins

pkv ∀p ∈ P, k ∈ K, v ∈ V (68)

ω2 + η3re f
v ≥ êvv Zre f

pkv ∀p ∈ P, k ∈ K, v ∈ V (69)

ω2 + η4rec
v ≥ êvv Xrec

pkv ∀p ∈ P, k ∈ K, v ∈ V (70)

ω2 + η5rec
v ≥ êvv Yrec

pkv ∀p ∈ P, k ∈ K, v ∈ V (71)

ω2 + η6rec
v ≥ êvv Zrec

pv ∀p ∈ P, v ∈ V (72)

ω2 + η1col
p ≥ êmcol

p rpk ∀p ∈ P, k ∈ K (73)

ω2 + η2pre
p ≥ êmpre

p Xpre
pk ∀p ∈ P, k ∈ K (74)

ω2 + η3ins
p ≥ êmins

p Gins
p ∀p ∈ P, k ∈ K (75)

ω2 + η4re f
p ≥ êmre f

p Zre f
pkv ∀p ∈ P, k ∈ K, v ∈ V (76)

ω2 + η5rec
p ≥ êmrec

p Xrec
pkv ∀p ∈ P, k ∈ K, v ∈ V (77)

ω2 + η6rec
p ≥ êmrec

p Yrec
pkv ∀p ∈ P, k ∈ K, v ∈ V (78)

ω2 + η7rec
p ≥ êmrec

p Zrec
pv ∀p ∈ P, v ∈ V (79)

and set of constraints that have been depicted in Equations (8)–(42).
The auxiliary variables, δpro and δemi, are introduced to approximate the profit and

carbon emissions, respectively. A set of constraints are presented in Equations (49)–(65) to
model the robust counterpart of the first uncertain objective function (Max g̃pro).

A set of constraints are presented in Equations (66)–(79) to model the robust counter-
part of the second uncertain objective function (Min g̃emi).

4.1. Probability Upper Bound of Constraint Violation in the Robust Optimization

In contrast to stochastic programming, RO does not require a known probability distri-
bution to handle uncertain parameters. Probabilistic guarantees can be used to determine
the lower bound on constraint satisfaction based on the desired constraint violation.
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The probability upper bound of the constraint violation of the robust counterpart
formulation based on the “Interval + Polyhedral” uncertainty set is proposed by Bertsimas
and Sim [52] and Li et al. [53]. It is bounded B(|Qi|, Γ), where |Qi| is the cardinality of
the uncertain parameters in the ith constraint. Assuming the probability distribution of
uncertainty is symmetric, independent, and bounded, it is given as follows:

Pr

{
∑

j
aijxj + ∑

k
bikyk + ∑

j∈Ji

ξij âijxj + ∑
k∈Ki

ξik b̂ikyk − d̂iξi0 > di

}
≤ B(|Qi|, Γ)

(80)

B(|Qi|, Γ) =
1

2|Qi |

(1− µ)
|Qi |

∑
l=bνc

(
|Qi|

l

)
+ µ

|Qi |

∑
l=bvc+1

(
|Qi|

l

) (81)

where
v = ((Γ + |Qi|)/2), µ = v− bvc.

The proof of upper bounds on the probability of constraint violation is provided by Bertsi-
mas and Sim [52] and Li et al. [53].

4.2. Solution Approach

Consider that f (x) is a multi-objective model (MOM) with m objectives as f (x) =
{ f1(x), f2(x), . . . , fm(x)}. The general formulation of MOM is given below:

Min f (x)
s.t.
x ∈ S

(82)

Definition 1. A decision vector x∗ ∈ S is called Pareto optimal, or efficient, if there is no other
decision vector x ∈ S such that x dominates x∗. If x∗ ∈ S is a Pareto optimal solution, the vector
f (x∗) is said to be a non-dominated point in the objective space [54]. For instance, suppose that S
⊂ R3 and its feasible region f ⊂ R2, the continuous thick line contains all Pareto optimal solutions
and f (x∗) as one of these solutions (Figure 4).

Figure 4. Pareto optimal solutions representation.

Definition 2. A decision vector x∗ ∈ S is a weakly Pareto optimal, or weakly efficient, if there is
no feasible solution x ∈ S such that f (x) < f (x∗) is a weakly efficient solution, and the vector
f (x∗) is said to be a weakly non-dominated point in the objective space.

Definition 3. A Pareto optimum solution is said to be supported if there are positive weights
λ1, λ2, . . . , λk that make the solution optimal in terms of the linear combination (weighted sums
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problem): min
{

∑i=k
i=1 λi fi(x)

}
s.t. x ∈ S with coefficients λ1, λ2, . . . , λk. If this is not the case,

the solution is referred to be non-supported [55].

The solution approach implemented in this study is the LWT method which was
developed by Steuer and Choo [56] to obtain Pareto optimal solutions by minimizing the
maximum deviation of the objective functions from their values where they are optimized
individually. The LWT approach outperforms existing techniques because of the following
advantages [57,58]:

• Achieves adequate optimal solutions of MOMs.
• Provides both supported and non-supported Pareto solutions, whereas the weighted

sum method, which is widely utilized in the literature, can only achieve supported
Pareto solutions.

• Obtains Pareto optimal solutions in both the convex and concave space hulls.

The mathematical formulation of the LWT approach for MOM is given below:

Min α
s.t.
λi
(

fi(x)− f ∗i (x∗)
)
≤ α

...
λm( fm(x)− f ∗m(x∗)) ≤ α

∑m
i=1 λi = 1

0 ≤ λi ≤ 1

(83)

The mathematical formulation of LWT approach for the robust counterpart model, RCI−P−
PMOMILP, of the bi-objective GCLSC based on the "Interval + Polyhedral" uncertainty set is
as follows:

LWT − (RC I−P −PMOMILP) : Min α

s.t

λpro

(
δ*

pro − δpro

)
≤ α

λemi (δemi − δ∗emi) ≤ α

λpro + λemi = 1

0 ≤ λpro, λemi ≤ 1

(84)

and set of constraints that have been depicted in Equations (8)–(42) and Equations (49)–(79).

5. Computational Experiments

In this section, to evaluate the performance of the proposed robust model of the
GCLSC network by considering a presorting and heterogeneous transportation system
using the LWT approach discussed in Section 4.2, a set of computational experiments was
conducted using GAMS/CPLEX optimization solver. Most of the model input parameters
were adopted from the literature [20], which are based on realistic data. Vehicle capacity and
CO2 emissions were calculated for road transport operations as in Mohammed et al. [49],
and the transportation cost based on vehicle type was calculated as in Wangsa and Wee [59]
as shown in Table 2. The number of returned products, selling price of refurbished products
at customer zones, operations costs, and weight of returned products are presented in
Table 3. Capacities and fixed opening costs of different sizes of the IR center are presented
in Table 4. Distances between customer zones, the IR center, and the recycling center are
presented in Table 5, and the rest of the model parameters are presented in Table 6.
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Table 2. Cost, carbon emissions rate, and capacity of transportation modes.

Cost (USD/kg-km) CO2 (g/kg km) Emissions Vehicles Capacity (kg)

Light duty vehicles 0.00028 0.0000236 Uniform (0–4536)
Medium trucks 0.00014 0.0000452 Uniform (4537–11793)

Heavy duty trucks 0.00006 0.0000824 Uniform (11794–14969)

Table 3. Returned products, operations cost, and selling price of refurbished products.

spk rpk
ppre

p pre f
p prec

p pins
p wp

k1 k2 k3 k1 k2 k3

p1 200 200 200 40,000 40,000 40,000 10 20 10 15 0.5
p2 300 300 300 45,000 45,000 45,000 10 25 10 18 0.8
p3 250 250 250 40,000 40,000 40,000 10 30 10 20 1.1

Table 4. Capacities and fixed opening costs of different IR center sizes.

cas fs

Small 120,000 200,000
Medium 220,000 350,000

Big 300,000 500,000

Table 5. Distances between customer zones, the IR center, and the recycling center.

From\To IR Center Recycling Center

k1 100 200
k2 150 300
k3 200 400

Table 6. Rest of the model’s input parameters.

Parameter Value

emcol
p 0.03 kg CO2 per product

empre
p 0.07 kg CO2 per product

emins
p 0.09 kg CO2 per product

emre f
p 0.21 kg CO2 per product

emrec
p 0.07 kg CO2 per product

ĉcap 120,000 kg CO2
f p
k USD 150,000
fr USD 250,000

dir 150 km
car 30,000 units
qpk 0.7
β 0.05

For model verification and to show the robustness of the RO approach, we consider
that the perturbation of uncertain parameters are 5% and 10% around their nominal values
assuming that the upper bounds of constraint violation are 10%, 15%, and 20%. In other
words, the lower bounds of constraint satisfaction are 90%, 85%, and 80%, respectively.
Five different weight sets (λpro and λemi) were considered for both the objective functions.

Increasing the lower bound of the probability of constraint satisfaction results in an
increase in the conservative of the obtained solutions; that is, increasing the size of the
uncertainty set Γ increases the costs that result in a decrease in the profit from the economic
aspect. However, from the environmental perspective, increasing the uncertainty set leads
to more carbon emission trade-offs between the conservatives and the values of profit and
carbon emissions.
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Robust objective function values were achieved at lower levels than the deterministic
model. The values of the objective functions worsened as the perturbation around the
nominal values increased (Tables 7–12). On the one hand, when the perturbation was
increased from 5% to 10%, for example, at a lower bound of the probability of constraint
satisfaction of 80% and weights of λpro = λemi = 0.5, the profit declined by 6.62% and
13.42%, respectively, from their deterministic values. The value of carbon emissions, on the
other hand, decreased by 1.10% and 2.29% from their deterministic levels, as shown in
Tables 7 and 8, respectively.

Table 7. Robust Pareto front at 80% constraints satisfaction (5% perturbations).

λpro λemi Profit Deviation Carbon
Emissions Deviation

0.1 0.9 23,169,888 −7.29% 70,394 +1.10%
0.3 0.7 26,125,054 −7.28% 74,526 +1.09%
0.5 0.5 29,488,946 −6.60% 79,191 +1.10%
0.7 0.3 33,207,854 −6.09% 84,761 +1.34%
0.9 0.1 37,607,983 −5.24% 91,607 +1.52%

Table 8. Robust Pareto front at 80% constraints satisfaction (10% perturbations).

λpro λemi Profit Deviation Carbon
Emissions Deviation

0.1 0.9 21,346,559 −14.59% 71,162 +2.21%
0.3 0.7 24,190,076 −14.15% 75,283 +2.12%
0.5 0.5 27,335,999 −13.42% 80,122 +2.29%
0.7 0.3 31,043,425 −12.21% 85,910 +2.71%
0.9 0.1 35,530,213 −10.47% 93,000 +3.07%

Table 9. Robust Pareto front at 85% constraints satisfaction (5% perturbations).

λpro λemi Profit Deviation Carbon
Emissions Deviation

0.1 0.9 23,071,378 −7.69% 70,433 +1.16%
0.3 0.7 25,959,839 −7.86% 74,525 +1.09%
0.5 0.5 29,233,674 −7.41% 79,195 +1.10%
0.7 0.3 32,897,246 −6.97% 84,816 +1.40%
0.9 0.1 37,291,491 −6.03% 91,693 +1.62%

Table 10. Robust Pareto front at 85% constraints satisfaction (10% perturbations).

λpro λemi Profit Deviation Carbon
Emissions Deviation

0.1 0.9 21,137,593 −15.42% 71,241 +2.32%
0.3 0.7 23,844,940 −15.37% 75,287 +2.12%
0.5 0.5 26,866,979 −14.91% 80,088 +2.24%
0.7 0.3 30,423,876 −13.96% 86,015 +2.84%
0.9 0.1 34,897,458 −12.07% 93,171 +3.26%

Table 11. Robust Pareto front at 90% constraints satisfaction (5% perturbations).

λpro λemi Profit Deviation Carbon
Emissions Deviation

0.1 0.9 22,977,737 −8.06% 70,533 +1.30%
0.3 0.7 25,809,698 −8.40% 74,611 +1.21%
0.5 0.5 29,045,184 −8.01% 79,282 +1.21%
0.7 0.3 32,687,050 −7.56% 84,920 +1.53%
0.9 0.1 37,076,867 −6.57% 91,808 +1.74%
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Table 12. Robust Pareto front at 90% constraints satisfaction (10% perturbations).

λpro λemi Profit Deviation Carbon
Emissions Deviation

0.1 0.9 20,930,083 −16.25% 71,443 +2.61%
0.3 0.7 23,533,196 −16.48% 75,462 +2.36%
0.5 0.5 26,525,935 −15.99% 80,226 +2.42%
0.7 0.3 30,025,146 −15.09% 86,169 +3.02%
0.9 0.1 34,465,757 −13.15% 93,412 +3.52%

For the lower bound of constraint satisfaction at 80% with 5% data perturbations,
the deviation of the robust profit decreased from its deterministic value by 5.24% to 7.29%.
Meanwhile, the robust values of the carbon emission increase ranging from 1.09% to 1.52%
(Table 7). By increasing the data perturbations to 10% the robust values for the profit and
carbon emissions deviated by 10.47% to 14.59% and 2.12% to 3.07%, respectively (Table 8).

Increasing the lower bound of constraints satisfaction to 85% with 5% perturbations
resulted in an increase in the deviation, ranging from 6.03% to 7.86% and 1.09% to 1.62%
for the profit and carbon emissions, respectively, (Table 9). However, considering 10%
perturbation, the deviation ranged from 12.07% to 15.42% and 2.12% to 3.26% for the profit
and carbon emissions, respectively (Table 10).

For the lower bound of the probability of constraints satisfaction at 90% with 5%
perturbation of the uncertain parameters, the deviation ranged from 6.57% to 8.40% and
1.21% to 1.74% for the profit and carbon emissions respectively (Table 11). In addition,
considering 10% data perturbations, the deviation ranged from 13.15% to 16.25% and 2.61%
to 3.52% for the profit and carbon emissions, respectively (Table 12).

Moreover, the robust optimal Pareto front of the bi-objective GCLSC model with
90% probability of constraints satisfaction with 5% and 10% is presented in Figure 5a,b,
respectively. By increasing the deviation from the nominal values, the optimal values of the
objective functions become worse as shown in the Pareto front representation in Figure 5.
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(a) With 5% perturbation.

Figure 5. Cont.
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Figure 5. Robust Pareto front with 90% probability of constraints satisfaction.

On one hand, the obtained robust Pareto front of the proposed bi-objective GCLSC
model is achieved with the levels of 80%, 85%, and 90% probability of constraints sat-
isfaction and 5% and 10% of data perturbations, revealing that our model yields more
conservative solutions that are immune against the uncertainty and comply with the nature
of conflicting bi-objective functions.

On the other hand, increasing the probability of constraints satisfaction increases the
uncertain space beside the integer variables of the model, hence increasing the model’s com-
plexity.

6. Conclusions and Outlook

This study provided a robust bi-objective optimization model for the GCLSC network
by considering a presorting and heterogeneous transportation system. The proposed bi-
objective MILP model aims to maximize the profit and minimize the total carbon emissions
incurred in the entire network by considering the selling price, costs, and carbon emissions
uncertainties. A robust optimization approach based on the “Interval + Polyhedral” uncer-
tainty set was adopted to tackle these uncertainties. An LWT approach was implemented
to obtain the Pareto optimal solutions, which were hedges against perturbations of the
uncertain parameters. A set of computational experiments was conducted to validate and
show the performance of the proposed model.

Pareto optimal fronts of the robust bi-objective GCLSC model were examined consid-
ering the maximum probability of constraint violation. In other words, the lower bound of
constraint satisfaction was considered at three levels: 80%, 85%, and 90% combined with 5%
and 10% perturbations of the uncertain parameters around their nominal values. The lower
the bound of constraint satisfaction, the more conservative as well as the less profit and
more carbon emissions. Comparing the obtained robust solution with the deterministic so-
lution in the experiments showed that our proposed model is more conservative and robust.
Finally, the limitations of the proposed study, which can provide possible recommendations
for future research, are as follows: the amount of time needed for computing is directly
proportional to the number of integer variables; in other words, the amount of time needed
for computation increases as the number of integer variables increases [60]. Small size
instances are used in this paper for model validation. For large-scale problems, the model
becomes computationally hard to obtain the optimal solution using the GAMS solver.
Therefore, it is one of our future extension directions to propose heuristic or metaheuristic
approaches to handle the large-size instances of the developed GCLSC.
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However, future studies should extend the proposed robust bi-objective model to
a multi-objective model by considering a social objective that contributes to the welfare
and prosperity of society, such as maximizing the number of job opportunities and fair
salaries for employees. Enhancement can be made using the quality of the robust solutions,
the iterative solution framework proposed by Li and Floudas [61], and different uncertainty
sets shapes such as ellipsoidal, polyhedral, combined “ellipsoidal and polyhedral”, and
combined “box + ellipsoidal + polyhedral”.
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Nomenclature

Sets and Indices
p Set of products {1, 2, 3 . . . . . . .P}.
v Set of transportation modes {1, 2, 3 . . . . . . .V}.
k Set of customer zones{1, 2, 3 . . . . . . .K}.
s Set of IR center sizes {small, medium, big}.
Binary variables

Ȯpkv
A binary variable, if the mode of transportation v is used to transfer product p from customer zone k
to the IR center without presorting, take a value of 1, otherwise 0.

Ȯpre
pkv

A binary variable, if the mode of transportation v is used to transfer product p from customer zone k
to the IR center after presorting, take a value of 1, otherwise 0.

Ore f
pv

A binary variable, if the mode of transportation v is used to transfer refurbished product p from IR
center to customer zone k, take a value of 1, otherwise 0.

Ökv
A binary variable, if the mode of transportation v is used to transfer scrapped product p without
presorting from customer zone k to the recycling center, take a value of 1, otherwise 0.

Öpre
kv

A binary variable, if the mode of transportation v is used to transfer scrapped product p after presorting
from customer zone k to the recycling center, take a value of 1, otherwise 0.

...
Okv

A binary variable, if the mode of transportation v is used to transfer scrapped product p
shipped from IR center to the recycling center, take a value of 1, otherwise 0.

Us A binary variable, if the IR center of size s opens, take a value of 1, otherwise 0.
Uk A binary variable, if the presorting center opens at customer zone k, take a value of 1, otherwise 0.
Ur A binary variable, if the recycling center opens, take a value of 1, otherwise 0.
Continuous variables

Xins
pkv

Quantity of returned product p sent from customer zone k to the IR center without
presorting using transportation mode v.

Xpre
pk Quantity of product p presorted at the presorting center at customer zone k.

Xrec
pkv

Quantity of product p transported from customer zone k to the recycling center without presorting
using transportation mode v.

Yins
pkvt

Quantity of presorted product p sent from the presorting center at customer zone k
to the IR center using transportation mode v.
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Yrec
pkv

Quantity of presorted product p transported from the presorting center at customer zone k to the recycling
center using transportation mode v.

Zre f
pkv

Quantity of product p sent from customer zone k to the IR center without presorting using
transportation mode v.

Zrec
pv Quantity of recycled product p sent from the IR center to the recycling center using transportation mode v.

Integer Variables
Ṅkv Number of selected vehicle v for transporting products from customer zone k to the IR center without presorting.
Ṅpre

kv Number of selected vehicle v for transporting products from customer zone k to the IR center after presorting.
Nre f

kv Number of selected vehicle v for transporting refurbished products from the IR center to customer zone k.

N̈kv
Number of selected vehicle v for transporting scrapped products without presorting from customer
zone k to the recycling center.

N̈pre
kv

Number of selected vehicle v for transporting scrapped products after presorting from customer
zone k to the recycling center.

...
Nv

Number of selected vehicle v for transporting scrapped product p shipped from the IR center to the
recycling center.

Parameters
rpk Collected product p at customer zone k.
spk Selling price of refurbished product p at customer zone k using transportation mode v.
fs Fixed cost of opening an IR center of size s.
f p
k Fixed cost of opening a presorting center at customer zone k.

qpk Quality of returned product p at customer zone k.
β Inefficiency of the presorting centers.
ctr

v Cost of transportation of a unit weight of product using transportation mode v .
evv Carbon emissions due to using transportation mode v.
ĉcap Carbon cap (kg of co2).
emcol

p Carbon emissions due to collecting product p.
empre

p Carbon emissions due to presorting product p.
emins

p Carbon emissions due to inspecting a product p at the IR center.

emre f
p Carbon emissions due to refurbishing a product p at the IR center.

emrec
pt Carbon emissions due to scrapping a product p at the recycling center.

pins
p Operation cost of inspecting a product p.

prec
pt Operation cost of recycling a product p.

pre f
p Operation cost of refurbishing a product p.

ppre
p Operation cost of presorting a product p.

dki Distance between customer zone k and the IR center.
dkr Distance between customer zone k and the recycling center.
dir Distance between the IR center and the recycling center.
cas Capacity of the IR center of size s.
cabig Capacity of the IR center of size “big”.
cav Capacity of vehicle mode v (kg).
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