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Abstract: Silica nanoparticles (SiO2 NPs), due to their chemical-physical properties, are among the
most widely produced nanomaterials (NMs) in the world, and therefore used in a wide range of
industries. Such widespread use, however, draws attention to the health of workers during the
production of such NMs and the need for techniques to assess occupational exposure. In the present
study, laboratory simulation techniques were used to reproduce a critical work activity in a controlled
environment in order to identify emission profiles useful for studying exposure during NM handling
in the workplace. Weighing activity inside a glove box isolated from the external environment
background and any pollutants was simulated. Real-time instrumentation was used to calculate the
concentration, size distribution and surface area of the particles generated during the simulation, and
time-integrated instrumentation was used to collect dust for off-line analysis.

Keywords: nanomaterials; silica nanoparticles; exposure monitoring; occupational safety and health;
laboratory simulations

1. Introduction

In recent years, nanotechnologies (NTs) and nanomaterials (NMs) have shown a rapid
development in a wide range of sectors such as pharmaceutical, medical, electrical, etc. [1].
NTs have been included among the six key enabling technologies (KETs) considered as
a key tool in the European Commission’s Horizon 2020 programme [2]. NMs have been
defined by the International Organization for Standardization (ISO) as materials with any
external dimension in the nanoscale (dimensions between 1 and 100 nanometers) [3].

Parallel to the innovative properties and enormous potential shown by NMs, the
scientific community has also examined the potential effects of manufactured NMs on
human health [4,5], with specific focus on the health and safety of workers, who produce,
use, transport or handle NMs, and could be therefore exposed during their entire life
cycle [6]. In particular, handling of nano-powders has been recognized as one of the critical
phases for workers exposed in production processes [7]. The handling and transfer of nano-
powders, including weighting, bag emptying, dumping, pouring and scooping activities
may generate aerosols during the downstream use of produced NMs [8–10].

The parameters that can influence toxicity and therefore need to be taken into account
for a comprehensive risk characterization in the study of occupational exposure to NMs
include: size distribution, particle mass and number concentration, lung deposited surface
area, chemical and morphological composition [11,12].
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A key research challenge is to quantify these parameters under real exposure condi-
tions in order to provide useful information for a proper occupational risk analysis. In this
regard, monitoring techniques play a key role in the workplace. Based on the analysis of the
scientific literature, the technical guidelines published by the Organization for Economic
Co-operation and Development (OECD) recommend a harmonized tiered approach that
involves three levels of investigation [13,14]: the first level consists in gathering information
about materials, processes and the exposure scenario, the second level includes preliminary
background and basic exposure assessment and the third level proposes a comprehensive
exposure assessment with the addition of chemical/morphological off-line analyses.

The distinction of background from manufactured NMs emission specifically related
to the process plays a key role in the analysis of workers’ exposure. In fact, the background
can be influenced by sources of ultrafine particles coming from the outdoor environment
or other indoor activities (e.g., polycyclic aromatic hydrocarbons, pollutants from vehicular
traffic, anthropogenic activities, photochemical smog, use of chemical agents, moisture
or steam) and these can create difficulties in identifying the emission of produced NMs.
Bekker et al. [10], for example, found low concentrations during low-energy activities, but
the high background level recorded in the workplace may have corrected emissions from
activities. For this reason, it is essential to characterize the background according to the
main approaches frequently used in exposure measurement studies [14,15].

In this framework, laboratory simulations represent an added value to reproduce
critical NMs handling activities in a controlled environment with extremely low background
levels, representing an important source of information for the assessment of occupational
exposure to NMs [16]. Indeed, the study of critical activities in an environment isolated from
external emissive sources and with very low background levels allows the identification
of potential sources of exposure. Some scientific studies [17–19], for example, evaluated
emission of nanoparticles (NPs) from spray products and laser printers and showed the
effectiveness of such simulations in analyzing occupational risk. On the other hand,
Gomez et al. [20] highlighted the importance of using a controlled environment in order to
determine the emission source.

The present study shows the results obtained by laboratory simulations of handling
activities with SiO2 NPs. Such NMs have become one of the most produced in the world
since 2013 and are used in a wide range of sectors including agriculture, food, cosmetics
and pigments [21]. However, this large use has led to an increased risk of exposure in
workplaces [22,23] raising a global concern regarding the safety and potential adverse health
effects. For this reason, we reproduced working activities in a glove box with low levels of
background to identify emission profiles useful for the exposure assessment during the
production of SiO2 NPs. The study was carried out within the research project “NanoKey”
developed by the Italian Workers’ Compensation Authority (INAIL) in cooperation with
the Italian Institute of Technology (IIT) with the aim to study occupational exposure to
different types of NMs.

2. Materials and Methods

SiO2 NPs, the subject matter of the research, have an average size of 25 nm and they
are produced by liquid synthesis followed by lyophilization in order to obtain the product
in powder form [24,25]. Detailed information on the material is reported in Table 1.

Weighing activity was simulated in the laboratory using an isolated and controlled
environment (glove-box) in order to minimize background levels and highlight airborne NPs.

The glove box (mod. 14302, ITECO Engineering Srl, Castebolognese (RA), Italy) is
isolated from outside influences by a HEPA filter, has a volume of 0.5 m3, a stirring fan
measuring 135 × 135 × 40 mm in thickness and 8 ports incorporated to withdraw samples
for analytical measurements. Three weightings were carried out, using an analytical scale
(Mettler Toledo XS 105 Dual Range, Max 41 g–d = 0.01 mg), each of 5 mg of SiO2 NP.

The measurement instruments used are (Table 2):
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- Condensation Particle Counter (CPC mod. 3007, TSI Inc., Shoreview, MN, USA) in
order to measure the particle number concentration (PNC);

- Fast Mobility Particle Sizer (FMPS mod. 3091, TSI Inc., Shoreview, MN, USA) that
provides the particle size distribution (PSD) over 32 channels and simultaneously also
the PNC;

- Electrical Low Pressure Impactor (ELPI mod. Dekati Ltd., Kangasala, Finland) to
measure real-time total PNC and PSD in the size range 6–10,000 nm and to collect on
plates size classified particles for off-line analysis. Sampling supports are in aluminum
(Al) with 25 mm size;

- Nanoparticle surface area monitor (NSAM mod. 3550, TSI Inc, Shoreview, MN, USA)
for the measurement of lung deposition surface area (LDSA) of particles, which is an
important occupational parameter, corresponding to the active surface area calculated
as the product of the particle area for the probability density of deposition in the
different zones of the respiratory tract (A, alveolar or TB, tracheobronchial), according
to the model published by the ICRP [26].

Table 1. SiO2 physicochemical characteristics declared by the manufacturer.

Technical Name Silica Nanoparticles (SiO2 NPs)

Chemical composition Silicon dioxide

Physical form and shape Zero-dimensional (0-D)
amorphous nanoparticles

Common form Water solution or powder
(white)

Density Average bulk Density: 2.648 g/cm3

Size 25 ± 1 nm

Particle Surface area 1962.5 nm2

Table 2. Main features of the instruments during simulations. TB = tracheobronchial, A = alveolar.

Instrument Class Principle of
Operation Output Size Range

(nm)
Time

Resolution (s)
Aspiration

Flow (L/min)

CPC
TSI Inc.

Mod.3007
Real-time Optical

detection PNC (#/cm3) 10–1000 1 0.7

FMPS
TSI Inc.

Mod.3091
Real-time Electrical

mobility
PNC (#/cm3)

Size distribution
5.6–560 1 10

NSAM
TSI Inc.

Mod.3550
Real-time Diffusion

charging

LDSA (µm2/cm3) and
total (µm2) for

alveolar fraction
10–1000 1 2.5

HR-ELPI
Real-time/

Time-
integrated

Electrical
cascade

impactor

PNC (#/cm3)
Size distribution

Samples for
off-line analysis

6–10,000 0.1 10

Morphological analyses have been performed on materials collected by ELPI using
a High-Resolution Field Emission Scanning Electron Microscope (HR-SEM) Ultra Plus
(ZEISS) equipped with an Energy Dispersive X-ray Spectroscopy (EDS, Oxford Instruments
INCA). For SEM characterization two different kinds of samples were considered. The first
was the “trial sample” obtained by the manufacturer at the end of the production phases;
the second, the “ELPI samples”, were the samples collected on the ELPI filters during the
handling phases simulation. The trial sample was dispersed in 2-propanol and sonicated
for 15 min. The suspension was drop-cast on a stub covered with an aluminum filter.
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These instruments were connected to the glove box, as shown in the Figure 1.
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Figure 1. (a) Glove box and instruments used during simulations and (b) diagram of the instrumental
set-up for glove box measurements.

3. Results and Discussion

Real-time background values were measured using the CPC for 15 min before the
simulations started. Results show that inside the chamber the concentration of the particles
was very low (mean value is 38 #/cm3 and standard deviation is 6 #/cm3) (Figure 2a).
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During the simulation of the weighing phase, the three instruments recorded simulta-
neously, thanks to their high acquisition rate (1 Hz), a very clear event of short duration
(Figure 3).
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The distance of the sampling points from the emission source was significant in both
the timing and in the intensity of the acquisition signals. In fact, while the FMPS and NSAM
were positioned above the scale and in the middle of the glove box, the CPC’s position was
lateral and close to the work surface where the scale was placed. This probably caused
a time delay (about 1 min) of the two instruments positioned in the middle of the test
chamber and further away from the emissive source, but a higher signal intensity due
to the extreme volatility of the particles used in the simulation (25 nm), which tend to
diffuse upwards rather than downwards (conc. peak FMPS 3060 #/cm3-conc. peak CPC
133 #/cm3).

Box plots comparison between background and weighing phase (4 min) are reported
in Figure 2b where the lowest edge of the box indicates the 25th percentile, the line inside
the box marks the median and the top of the box indicates the 75th percentile. Whiskers
above and below indicate the lowest and highest values. The corresponding mean values
are 33 #/cm3 and 105 #/cm3 for the background and weighting phase, respectively. The
box plot height is 7 #/cm3 for the background and 14 #/cm3 for the weighing. These results
show higher variability and a higher median value during the weighing activity. This is
due to a lack of homogeneity of plume diffusion within the glove box.

For the identification of the characteristic emission profiles, we represent the size
distribution as a relative percentage, i.e., the percentage contribution of each single size
channel with respect to the total concentration acquired during the simulation. This
makes it possible to clearly identify which size range can be attributed the greatest
contribution during the entire monitoring period. In Figure 4, the relative percent-
ages concerning the background and the weighing phase have been compared. The
two-dimensional distributions are represented by two main contributions that show a
substantially bimodal distribution. The first contribution, common to both distributions,
is in the 6–10 nm range, known in the literature as the nucleation mode fraction, which
is characteristic of chemical reactions between elements such as NOx, SO2, O3, NH3,
VOCs [27] present in the atmosphere, while the second contribution stands out in the
two size profiles. In the background it falls out of the 60–100 nm range and it may be
attributed to the outdoor emissions contribution due to vehicular traffic and in particular
to the fraction concerning the accumulation mode [27,28]. In the weighing phase, instead,
the second contribution falls out of the 25–34 nm range. In this case the emission is in
the dimensional range characteristic of the SiO2 test material (25 + 1 nm) and confirms
that potential exposure during this phase of the production may happen. During the
weighing phase, the lower percentage contribution in the 6–8 nm range from 8% to
19%, compared to the background (13–23%) shows that the emission in the 25–34 nm
range has a significantly higher influence than the background, in which particles are
mainly distributed in the 60–100 nm range. Furthermore, in the weighing phase, the
contribution between 9 nm and 22 nm shows the presence in the test material of smaller
size fractions than those declared by the manufacturer.

Finally, the LDSA has been identified, which represents the active surface area of
airborne particles, i.e., the alveolar surface area of the particles inhaled by the operator
that deposit in the lung [26]. This is an occupational parameter that identifies a bio-
logically relevant dose metric for spherical nano-objects that explains about 80% of the
observed variability in acute lung toxicity [29]. Figure 5 shows the signal detected by the
NSAM during the weighing phase; it can be seen that at the time of the spill the total
surface area increases from 15 µm2 to more than 20 µm2, showing a large increase in the
occupied alveolar surface area, due to the small size of the particulate matter released
into the environment.
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Figure 5. Cumulative surface area (orange) and second per second (blue) measured by the NSAM.

High resolution SEM images, Figure 6, show the SiO2 NPs [24] used in the laboratory
simulations of the present study; they occur as aggregates consisting of either two or three
units (a,d) or even a higher number of particles (b,c), but also as single particles with a
diameter of 25 nm (d). The shape and size of the aggregates are very different from each
other and their dimensions vary, starting from a minimum of about 50 nm, i.e., two particles
side by side (Figure 6d), to several hundred nanometers (Figure 6a–c).
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The particles diameter distribution was obtained measuring the diameters of 300 NPs
and the corresponding histogram is shown in Figure 7. The distribution is Gaussian with the
mean value at 25 nm and the standard deviation of 4 nm, according to the physiochemical
properties given by the manufacturer [24].
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High resolution SEM images of airborne SiO2 NPs collected on ELPI filters in the glove
box are shown in Figure 8. In the black boxes of Figure 8b the SiO2 NPs diameters, of about
25 nm, collected during the simulation, are highlighted.
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Figure 8. (a,b) High resolution SEM images of SiO2 collected on the ELPI filters and (c) the EDS line
scan mode acquisition following the yellow arrow, on which were acquired (d) the corresponding
k-edge signals (silicon, red line; carbon, green line; oxygen, blue line; sodium, pink line). The
symbol x-x in (b) indicates the length of the SiO2 NPs diameter that is reported in the corresponding
black boxes.

Morphological analysis of SiO2 NPs sampled in the glove box (Figure 8) are in
agreement with those sampled in the workplace during their production as reported
in Boccuni et al. [30].

The EDS acquired in linescan mode (Figure 8c) shows that only the carbon signal
(green line) and oxygen signal (blue line) are present on the substrate (range between
0 and 200 nm on the green line, Figure 8d). On the other hand, the silicon signal (red line),
although low, is measured on an aggregate located between 500 and 1000 nm on the green
line. To sum up, the morphology and the chemical composition of the collected NPs trace
back to the airborne SiO2 NPs generated during the weighing phases simulation in the
glove box.

The observed results represent the fingerprint of the studied SiO2 NPs which may
allow their identification in workplace air under real exposure conditions.
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4. Conclusions

In this study, laboratory simulations of SiO2 NPs handling activities were carried out.
The weighing activity was simulated in a controlled environment (glove box) without any
influence of external emissive sources, using real-time and time-integrated instruments for
the measurement of multiple parameters, in order to obtain the fingerprint of the studied
NM.

Thanks to the very low background average values reached inside the test cham-
ber (38 #/cm3), it was possible to isolate the emission of SiO2 NPs produced during the
weighing phase, determining the related PNC, size distribution and LDSA. All instruments
recorded a very clear event of short duration, with a strong increase in both PNC and LDSA.
For this reason the study highlighted the need to use instrumentation with high-frequency
measurements capable of detecting short-lived spills typical of production processes with
short exposure phases. The comparison between the size distribution of the background
and the weighing activity shows that potential exposure can occur during this activity.
Furthermore, SEM characterization of the collected airborne material during the weighing
phases show the typical morphology, particle size and chemical composition of handled
SiO2 NPs. Results showed that the simulation of the different production phases potentially
at risk is a very important tool to understand the size distribution and behavior of NMs in
the working environment. This makes it possible to plan monitoring and sampling and
represents an important source of information for assessing and managing occupational
exposure to engineered NMs.
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