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Abstract: The life cycle of textiles (i.e., fabrics and apparel products) generates many environmental
impacts, such as resource consumption, water, soil, and air pollution through the dispersion of
chemical substances and greenhouse gases. For these reasons, in 2019, textiles were identified as a
“priority product category for the circular economy” by the European Commission that proposed
a new circular economy action plan focusing on recycling. An in-depth characterization of textile
fabrics could lead to an ad hoc recycling procedure, reducing resource consumption and chemicals
utilization. In this work, NIR (1000–1650 nm) spectroscopy was applied to extract information
regarding fabric composition, with reference to cotton, silk, viscose, and some of their blends, using
two different devices: a hyperspectral imaging (HSI) platform and a portable spectroradiometer.
The different fabrics were correctly classified based on their spectral features by both detection
instruments. The proposed methodological approach can be applied for quality control in the textile
recycling sector at industrial and/or laboratory scale thanks to the easiness of use and the speed
of detection.

Keywords: end-of-life textiles; fabric; waste characterization; hyperspectral imaging; recycling;
circular economy; near infrared spectroscopy

1. Introduction

Textiles are, after food, housing, and transport, the fourth highest pressure category
for primary raw materials and water use, the second highest for land use, and the fifth for
greenhouse gas (GHG) emissions [1]. Indeed, according to the United Nations website,
the fashion industry (i.e., clothing and footwear) produces more than 8% of the global
greenhouse gases and 20% of the wastewater every year [2]. Moreover, this industry
consumes a large amount of non-renewable resources and requires treatment processes
frequently employing polluting and hazardous substances [3]. It is estimated that the textile
industry is responsible for 10% of the global carbon emissions and it will consume up to
26% of the world carbon budget by 2050 [4–6]. A total of 150 million tons of textile waste is
generated all over the world every year, 5.8 of which is discarded by European consumers,
corresponding to 11.3 kg per person [7]. Therefore, addressing the negative effects of the
textile industry through the benefits of circular economy strategies is of primary importance
for sustainability purposes [8]. Reuse and recycling are the most effective methods of textile
waste disposal, with the lowest environmental impacts. However, currently less than
1% of all textiles are recycled into new textiles globally [9]. More in detail, the textile
recycling rate is about 25% in Europe and even lower in the United States, about 16.2% [10],
indicating that instead of being collected and recycled, millions of tons of textiles end up in
landfills. Considering that almost all textiles are fully recyclable, landfilling should be the
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last management option for this waste [11]. Increasing textile recycling rates would reduce
the already mentioned negative environmental impacts linked to this industrial sector [12].

In this scenario, the European Commission has identified textiles (i.e., apparel and
fabrics) as a “priority product category for the circular economy”, encouraging the devel-
opment of technological applications for textile waste reuse and recycling. Moreover, the
European Directive EU 2018/851 obliges Member States to start the separate collection of
textile waste by 1 January 2025.

In this framework, textile recycling technologies are rapidly growing, with the aim of
increasing the quantity and quality of produced secondary raw materials. One of the most
important issues in textile recycling is the identification of the fiber typologies constituting
the waste. From a recycling perspective, textile fiber identification and sorting according to
material/blend is of primary importance to enable the implementation of a correct recycling
system [13].

Textile fibers are usually classified as natural or man-made [14]. In more detail, natural
fibers can be of: (i) vegetable-based origin (i.e., cellulosic fibers obtained from different
parts of plants such as leaves and seeds), (ii) animal-based origin (i.e., protein fibers), and
(iii) mineral-based origin (i.e., glass fibers). Man-made fibers are artificial materials that
can be regenerated (i.e., viscose derived from cellulose), or synthetic (mostly fossil-based).
Textile waste requires different recycling treatments based on their composition. The
application of low-cost and automatic systems for the identification and sorting of end-of-
life textiles plays an important role in the feasibility of an efficient recycling process [15].
Currently, waste textile sorting takes place mainly through manual operations, accounting
for 30% of the entire recycled textile cost [16]. The realization of an automatic sorting
system could dramatically reduce process costs and time.

The present work is addressed to explore the use near infrared (NIR) spectroscopy
for the recognition of end-of-life natural textile fibers, such as cotton (i.e., vegetable-based
origin) and silk (i.e., animal-based origin), and artificial ones, as viscose, and some of their
blends. In more detail, a methodological approach based on the utilization of two different
devices working in the NIR range (1000–1650 nm), a hyperspectral imaging (HSI) system,
and a portable single-spot spectroradiometer, were developed, set up, and tested for textile
fiber sorting and/or quality control in a recycling process.

NIR spectroscopy and chemometric analyses are widely utilized for material charac-
terization, classification, and quality control in several sectors, such as primary/secondary
raw materials [17–19], pharmaceutical and chemical industry [20–22], cultural heritage,
agricultural/food industry [23–26], medicine and clinical applications [27,28], and, more
generally, in analytical science [29] to perform systematic environmental remote and proxi-
mal sensing.

2. Materials and Methods
2.1. Analyzed Samples

Five textile samples of different colors and compositions have been selected from
end-of-life (EoL) apparels (Figure 1). In more detail, the type of fabric was identified
according to the composition reported by the producers on the apparel labels as:

(a) 100% Cotton;
(b) 100% Silk;
(c) 100% Viscose;
(d) 20% Cotton–80% Viscose;
(e) 50% Cotton–50% Silk.

Cotton and silk are both natural fibers, the first vegetable-based and the second animal-
based. On the contrary, viscose is usually made of wood cellulose and synthetic substances.
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Figure 1. Selected end-of-life textile apparel.

2.2. Methods
2.2.1. Hyperspectral Imaging System

A HSI system is essentially based on an integrated hardware and software architecture
allowing one to acquire and handle spectral data as an image sequence, resulting from a
pre-defined alignment on a sample surface properly energized by a light source [30,31].

The collected spectral information generates a three-dimensional dataset, the so-called
“hypercube”, characterized by two spatial dimensions (X, Y) and one spectral dimension
(λ). The 3D nature of a hyperspectral image enables the investigation of several physical–
chemical characteristics of a sample surface based on the different collected wavelengths
and selected instruments.

The acquisition of hyperspectral images was performed by a NIR Spectral CameraTM

equipped with an ImSpectorTM N17E (SPECIM Ltd., Oulu, Finland) spectrograph, working
in the near infrared wavelength range (1000–1700 nm), with a spectral resolution of 5 nm.

The imaging spectrograph is coupled with a temperature-stabilized InGaAs photo-
diode array (320 × 240 pixels in image frame), positioned above a light source. The light
source consists of a diffused light cylinder architecture that embeds five halogen bulbs.
This architecture is mounted on a conveyor belt, 26 cm wide and 160 cm long, and is able
to move at a variable speed of up to 50 mm/s (DV S.R.L., Padova, Italy). The entire system
is controlled by a personal computer.

The spectrograph ImSpectorTM N17E was calibrated by acquiring a dark image Di
with the camera lens completely closed and by measuring a white reference image (Wi)
on a standardized white Spectralon® ceramic material. The reflectance image (Ri) is then
computed using the collected spectra image (R0i) by the ratio (R0i − Di)/(Wi − Di). The
calibration procedure was performed using the Spectral Scanner software (Version 1.2;
SPECIM Ltd., Oulu, Finland). The same software was used to acquire and collect hyper-
spectral data. Hyperspectral images were then analyzed using PLS_Toolbox (Version 8.7;
Eigenvector Research, Inc., Wenatchee, WA, USA) and MIA_Toolbox (Version 3.0; Eigenvec-
tor Research, Inc., Wenatchee, WA, USA) under MATLAB (Version R2019a, The Mathworks,
Inc., Natick, MA, USA) environment.
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2.2.2. Portable Spectrophotoradiometer

The ASD FieldSpec® 4 Standard–Res (Malvern Panalytical—Spectris Company, Lon-
don, UK) field portable spectrophotoradiometer was used for acquiring spectra in re-
flectance mode. This portable instrument is able to acquire spectra in the Vis–SWIR regions
(350–2500 nm) with a spectral resolution of 3 nm at 700 nm, and 10 nm at 1400/2100 nm [32].

A detector unit and a fiber optics cable connected to a contact probe, controlled
by a personal computer, compose the spectroradiometer. The detection unit is realized
by coupling different separate holographic diffraction gratings with three separate de-
tectors. The detection architecture consists of a VNIR detector (512 element silicon array:
350–1000 nm), a SWIR 1 detector (Graded Index InGaAs. Photodiode, Two Stage TE Cooled;
1001–1800 nm), and a SWIR 2 detector (Graded Index InGaAs. Photodiode, Two Stage TE
Cooled; 1801–2500 nm).

The ASD Contact Probe for reflectance measurements is made up of a halogen bulb
light source with a color temperature of 2901 +/− 10% ◦K and its spot size is 10 mm. Data
acquisition and calibration procedures were carried out through RS3 software (Version
6.02—Malvern Panalytical—Spectris Company, London, UK) [33].

The spectroradiometer calibration was performed by referencing the dark current
calibration file and by means of a white reference measurement, acquiring a standardized
white Spectralon® ceramic material. After this calibration stage, the spectrum is acquired,
and reflectance is then computed for each sample.

The spectroradiometer spectra “.asd” data files were stacked into an ASCII text file
using ViewSpec Pro Ver. 6.2.0. The ASCII text files were then imported into MATLAB®

environment (MATLAB R2019a; The Mathworks, Inc., Natick, MA, USA) using an ad hoc
written routine.

Imported data files were analyzed using Eigenvector Research, Inc PLS_toolbox (Ver-
sion 8.2, Eigenvector Research, Inc., Wenatchee, WA, USA) running in MATLAB® environ-
ment. Data was saved into dataset objects (DSO), and classes were assigned.

2.3. Spectral Data Collection, Processing and Analysis
2.3.1. Experimental Procedure

Three experimental setups were considered:

• 1st experimental setup. Identification of the following three classes of products: 100%
cotton, 100% viscose and a blend of them (20% Cotton–80% viscose);

• 2nd experimental setup. Recognition of 100% cotton, 100% silk and a blend consisting
in 50% cotton and 50% silk;

• 3rd experimental setup. Recognition of 100% cotton, 100% silk, 100% viscose and their
blends (i.e., 20% Cotton–80% viscose and 50% Cotton–50% silk).

Chemometric methods were applied to recognize the studied fabrics.

2.3.2. Data Handling and Explorative Analysis

Acquired fabric sample images were split into two portions: a training set and a
validation set. The first one was used to calibrate the classification model, whereas the
second one tested the ability to discriminate between the different textile classes. In more
detail, the Regions of Interest (ROIs) used to create the training and validation images are
reported in Figure 2.

For each fabric sample, five random spectra were acquired on their surface in re-
flectance mode with the ASD portable spectrophotoradiometer, for a total of twenty-five
collected spectra. Collected reflectance spectra were cut to study only the NIR range
(i.e., 1000–1650 nm).

Different pre-processing algorithms were utilized in order to highlight the spectral dif-
ferences between the investigated textile classes: Detrend, Savitzky-Golay (S-G) Smoothing
filter, Mean Center (MC), and their combinations.
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In more detail, the Detrend algorithm was applied to remove constant, linear, or
curved offset [34]. (S-G) Smoothing filter was used for reducing high frequency noise in the
spectral data [35]. Finally, MC, one of the most common preprocessing methods, was used
to remove constant offset, which is not interesting for data variance interpretation [36].

Furthermore, Principal Component Analysis (PCA) was used to explore the collected
data, followed by Partial Least Squares Discriminant Analysis (PLS-DA) classification
method. PCA is an unsupervised method that allows for the dimensionality reduction in
the considered spectral data matrix, which contains multiple interrelated variables, while
retaining as much variation as possible [37]. The processed spectral data are decomposed
into several principal components (PCs), which are linear combinations of the data, embed-
ding the spectral variations. The first few PCs produced by the PCA are commonly used to
analyze similar features among samples. In fact, in the score plots of the first two or three
principal components, spectra with similar shape tend to aggregate.

PCA was applied to the different training sets of the three experimental setups for
exploring the variability of spectral data and to set classes for the further classification step.

2.3.3. Classification Procedure

To reach the classification target, Partial Least Squares Discriminant Analysis (PLS-DA)
was applied. PLS-DA is a supervised classification method, combining the properties of par-
tial least squares regression with the distinguishing ability of a classification technique [38].
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This technique is used to predict known classes in an unknown data set, and it requires
prior knowledge of the data, thus known samples are used to build the classification model.
PLS-DA was applied to each experimental setup in order to perform textile sample classi-
fication. Models were calibrated using the spectral information contained in the training
sets and cross-validated to assess the optimal complexity of the models. PLS-DA models
were built by adopting the same pre-treatment algorithms used to perform the previous
explorative analysis. The built PLS-DA models were then tested on validation images of
the different textile fabrics.

In order to evaluate the classifier performances, Sensitivity, Specificity, Precision (P), and
Error rate (Err) statistical parameters were calculated [39], according to the following equations:

Sensitivity =
TP

TP + FN
(1)

Speci f icity =
TN

FP + TN
(2)

Precision =
TP

TP + FP
(3)

Err = 1 − Precision (4)

where: TP (True Positive) is a positive instance that is classified as positive; FN (False Negative)
is a positive instance that is classified as negative; TN (True Negative) is a negative instance
that is a classified as negative; and FP (False Positive) is a negative instance that is classified
as positive.

3. Results and Discussion
3.1. Hyperspectral Imaging

The acquired raw and preprocessed spectra are reported in Figure 3. The absorption
bands in the NIR field are mainly due to the stretching vibration of hydrogen groups such
as N–H, O–H, and C–H [40]. In more detail, cotton fibers are mainly made of cellulose,
including C–H, C–C and O–H groups. The absorption showed around 1480 nm is related
to the first overtone of the O–H stretching from semicrystalline cellulose, characterizing
cotton fibers [41]. The characteristic bands of silk, between 1540 nm and 1580 nm, related
to the NH groups, are also visible in the analyzed silk and silk blend. On the contrary, the
cotton band at about 1480 nm is present in the analyzed cotton-silk blend, but it is not so
evident in the studied cotton-viscose blend. This is probably due to the influence of viscose
that is present in a higher percentage (i.e., 80% for viscose vs. 20% for cotton). Viscose
absorption bands between 1100 nm and 1200 nm, and between 1350 nm and 1400 nm,
linked to the CH groups, are, in fact, preserved in the cotton-viscose blend NIR spectrum.

The analysis of the score plot allows us to identify pixel groupings, for each exper-
imental set up, according to their spectral signature (Figure 4). Most of the variance is
captured by the first two PCs. More in detail, PC1 explains 96.88% of the variance in the 1st
Experimental setup, 87.74% in the 2nd Experimental setup, and 87.12% in the 3rd Exper-
imental setup. Furthermore, PC2 explains 1.24% of the variance in the 1st Experimental
setup, 7.24% in the 2nd Experimental setup, and 9.61% in the 3rd Experimental setup.

As shown in Figure 4a, spectral data is clustered into three distinct groups according
to their spectral signatures: PC1 discriminates “100% Cotton” from the other two textile
types, whereas “100% Viscose” and “20% Cotton–80% Viscose” are partially overlapped in
the positive space of PC1. Regarding the 2nd Experimental setup (Figure 4b), PC1 separates
“100% Silk” from the other two categories, whereas PC2 sharply separates “100% Cotton”
from “50% Cotton–50% Silk”. In the 3rd Experimental setup, a more complex scenario
appears: PC2 allows us to discriminate “100% Silk” from the other samples. The “100%
Viscose” scores are separated from the other sample scores, but they are nearer to the scores
of the “20% Cotton–80% Viscose” class.
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The obtained PLS-DA results, in terms of classification images, are shown in Figures 5–7,
while the corresponding performance parameters are reported in Tables 1–3.
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Table 1. Performance indicators (prediction results) for PLS-DA classification model, based on HSI
acquisition, referred to “100% Cotton”, “20% Cotton–80% Viscose”, and “100% Viscose” samples,
corresponding to the 1st Experimental setup.

Class Sensitivity Specificity Err P

Cotton 100% 1.000 1.000 0.000 1.000
Cotton 20%–Viscose 80% 0.997 0.999 0.001 0.999

Viscose 100% 0.999 0.999 0.001 0.998



Sustainability 2022, 14, 10249 10 of 15

Table 2. Performance indicators (prediction results) for PLS-DA classification model, based on
HSI acquisition, referred to “100% Cotton”, “50% Cotton–50% Silk”, and “100% Silk” samples,
corresponding to the 2nd Experimental setup.

Class Sensitivity Specificity Err P

100% Cotton 1.000 1.000 0.000 1.000
50% Cotton–50% Silk 1.000 1.000 0.000 1.000

100% Silk 1.000 1.000 0.000 1.000

Table 3. Performance indicators (prediction results) for PLS-DA classification model, based on HSI
acquisition, referred to “100% Cotton”, “100% Viscose”, “100% Silk”, “20% Cotton–80% Viscose”, and
“50% Cotton–50% Silk” samples, corresponding to the 3rd Experimental setup.

Class Sensitivity Specificity Err P

100% Silk 1.000 1.000 0.000 1.000
20% Cotton–80% Viscose 0.990 0.992 0.008 0.992

50% Cotton–Silk 50% 1.000 1.000 0.000 1.000
100% Viscose 0.975 0.997 0.008 0.997
100% Cotton 1.000 1.000 0.000 1.000

PLS-DA allowed the correct identification of the different categories. Only some pixels
were misclassified between “100% Viscose” and “20% Cotton–80% Viscose”. Indeed, the
Precision related to these two categories is nearly 99% for both the experimental setups in
which “100% Viscose” and “20% Cotton–80% Viscose” are present. The spectral signature
of the two textile types is very similar since the viscose content in the “20% Cotton–80%
Viscose” blend is very high. The performances of the classification models are excellent
and very promising, since Specificity values range from 0.997 to 1.000, Sensitivity values
range from 0.975 to 1.000, and Precision (P) values range from 0.992 to 1.000. Moreover, the
Error rate (Err) is very low, ranging from 0 to 0.001.

3.2. Single-Spot Spectra

Raw and preprocessed spectra are reported in Figure 8, whereas the obtained PCA
outputs in terms of score plots are reported in Figure 9. In the 1st Experimental setup,
PC1 and PC2 explain 97.74% and 2.23% of the variance, respectively, whereas in the 2nd
Experimental setup, PC1 explains 96.29% of the variance and PC2, 3.65%. In the 3rd
Experimental setup, PC1 captures 96.29% of the variance and PC2, 3.65%. Additionally, in
this case, it is possible to note the grouping of the scores based on the textile types. In the
1st Experimental setup, PC1 allows us to distinguish “100% Viscose” from “100% Cotton”,
whereas PC2 discriminates the cotton-viscose blend from the “pure” fibers. In the 2nd
Experimental setup, PC1 separates “100% Silk” from the others, whereas PC2 allows for
discerning between “100% Cotton” and “50% Cotton–50% Silk”. In the 3rd Experimental
setup, sample grouping according to the textile fiber classes is easily detectable and the
situation is very similar to that observed in the corresponding Experimental setup carried
out by the hyperspectral imaging approach.

In Tables 4–6, the prediction results in terms of Sensitivity, Specificity, Error rate (Err),
and Precision (P) for each experimental setup are shown.

PLSDA classification methods enable accurate single-spot spectrum identification
since Sensitivity, Specificity, and Precision are always 1 while the Error rate is 0.

Single spectra classification results are not influenced by sample surface characteristics
(i.e., roughness, crease presence, etc.) and light scattering phenomena because the simpler
acquisition process allows for more homogeneous conditions than those of the HSI scanner.
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Figure 9. PCA score plot (PC1–PC2) for the 1st Experimental setup (a), the 2nd Experimental
setup (b), and the 3rd Experimental setup (c) on single-spot spectra in the NIR wavelength region
(1000–1700 nm).

Table 4. Performance indicators (prediction results) for PLS-DA classification model to perform the
classification based on single-spot collected spectra of “100% Cotton”, “20% Cotton–80% Viscose”,
and “100% Viscose” sample types corresponding to the 1st Experimental setup.

Class Sensitivity Specificity Err P

100% Cotton 1.00 1.00 0.00 1.00
20% Cotton–80% Viscose 1.00 1.00 0.00 1.00

100% Viscose 1.00 1.00 0.00 1.00

Table 5. Performance indicators (prediction results) for PLS-DA classification model to perform the
classification based on single-spot collected spectra of “100% Cotton”, “50% Cotton–50% Silk”, and
“100% Silk” sample types corresponding to the 2nd Experimental setup.

Class Sensitivity Specificity Err P

100% Cotton 1.00 1.00 0.00 1.00
50% Cotton–50% Silk 1.00 1.00 0.00 1.00

100% Silk 1.00 1.00 0.00 1.00

Table 6. Performance indicators (prediction results) for PLS-DA classification model to perform the
classification based on single-spot collected spectra “100% Cotton”, “100% Viscose”, “100% Silk”,
“20% Cotton–80% Viscose”, and “50% Silk–50% Cotton” sample types corresponding to the 3rd
Experimental setup.

Class Sensitivity Specificity Err P

100% Silk 1.00 1.00 0.00 1.00
20% Cotton–80% Viscose 1.00 1.00 0.00 1.00

50% Cotton–50% Silk 1.00 1.00 0.00 1.00
100% Viscose 1.00 1.00 0.00 1.00
100% Cotton 1.00 1.00 0.00 1.00
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4. Conclusions and Future Perspectives

This work was carried out in order to verify the possibility of applying NIR spec-
troscopy to end-of-life textile recycling in agreement with the principles of circular economy.
This goal was achieved using two different devices: a HSI system and a portable spectropho-
toradiometer. The obtained results show that the applied techniques allow us to correctly
identify the different textile types, reaching a Precision rate greater than 99.2% for HSI
images and around 100% for single-spot data. Useful information about the composition of
textile waste types were thus obtained, allowing us to classify pure fabric (i.e., “100% Cot-
ton”, “100% Silk”, and “100% Viscose”) and some blends (i.e., “20% Cotton–80% Viscose”
and “50% Cotton–50% Silk”).

The two different NIR spectra acquisition techniques can be used individually or in
a complementary way. The portable instrument could be applied to perform a rapid test
on textile waste that is fed to the recycling plant, on the recovered final products, and/or
on samples collected at different operation stages for process control. In addition, the
HSI system can be utilized not only for the same purposes, but also as a sensor-based
sorting system.

The developed approach can be considered as a methodological procedure to be sys-
tematically implemented at a recycling plant scale. In fact, by applying these analytical
methods, the recycling process could be efficiently automatized, complementing or replac-
ing manual operations/sorting stages. In this way, recycling operations could be sped up
and improved, thus realizing a significant cost reduction. Moreover, a more circular and
sustainable system would contribute to achieve many of the UN Sustainable Development
Goals (SDGs). Indeed, for the textile industry, “SDG 12: Responsible Consumption and Pro-
duction” is a gateway to many other SDGs, including “SDG 6: Clean water and Sanitation”,
“SDG 7: Affordable and Clean Energy”, and “SDG 13: Climate Action”.

Starting from the obtained results, further classification models will be developed and
applied on a greater variety of textile waste samples, both pure fabrics and blends, not only
to classify as many fabrics as possible, but also to quantify their content in terms of fabric
type percentage.
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