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Abstract: Global soils are under extreme pressure from various threats due to population expansion,
economic development, and climate change. Mapping of land degradation vulnerability (LDV)
using geospatial techniques play a significant role and has great importance, especially in semi-arid
climates for the management of natural resources in a sustainable manner. The present study was
conducted to assess the spatial distribution of land degradation hotspots based on some important
parameters such as land use/land cover (LULC), Normalized Difference Vegetation Index (NDVI),
terrain characteristics (Topographic Wetness Index and Multi-Resolution Index of Valley Bottom
Flatness), climatic parameters (land surface temperature and mean annual rainfall), and pedological
attributes (soil texture and soil organic carbon) by using Analytical Hierarchical Process (AHP)
and GIS techniques in the semi-arid region of the Bundi district, Rajasthan, India. Land surface
temperature (LST) and NDVI products were derived from time-series Moderate-Resolution Imaging
Spectroradiometer (MODIS) datasets, rainfall data products from Climate Hazards Group InfraRed
Precipitation with Station data (CHIRPS), terrain characteristics from Shuttle Radar Topography
Mission (SRTM), LULC from Landsat 9, and pedological variables from legacy soil datasets. Weights
derived for thematic layers from the AHP in the studied area were as follows: LULC (0.38) > NDVI
(0.23) > ST (0.15) > LST (0.08) > TWI (0.06) > MAR (0.05) > SOC (0.03) > MRVBF (0.02). The consistency
ratio (CR) for all studied parameters was <0.10, indicating the high accuracy of the AHP. The results
show that about 20.52% and 23.54% of study area was under moderate and high to very high
vulnerability of land degradation, respectively. Validation of LDV zones with the help of ultra-high-
resolution Google Earth imageries indicates good agreement with the model outputs. The research
aids in a better understanding of the influence of land degradation on long-term land management
and development at the watershed level.

Keywords: analytical hierarchical process; land degradation vulnerability; NDVI; land surface
temperature; soil properties

1. Introduction

Land is a vital and precious resource to produce food, fiber, fuel, and other ecosys-
tem services for the survival of humans and animals [1,2]. However, the constant pace
of degradation and deterioration due to persistent human-induced disturbances and cli-
matic irregularities [3] places livelihood and sustainable progress under acute threat [4].
Land degradation is a major environmental problem all around the world and influences
human society and its livelihoods. Globally, the life of around 3.2 billion people totally
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depends on degraded lands, and around one-third of the world’s lands are affected by land
degradation [5,6]. In recent years, land degradation has been considered a pivotal factor
in environmental issues and has attracted the attention of all stakeholders [7]. The United
Nations General Assembly adopted Sustainable Development Goal 15.3 in September 2015,
which focuses on achieving land degradation neutrality (LDN) by implementing the best
management practices that reduce the loss of healthy land and maintain or improve the
productivity of the land [8,9]. Land degradation can be defined as a spatio-temporal de-
terioration of physico-chemical and biological properties of land, making it unsuitable
for human society, and a deterioration of the soil ecosystem, influencing agricultural
production and ecological instability [10,11].

Around 24% of the world’s total geographic area (approximately 3500 Mha) is severely
affected by land degradation [11,12]. Around 20% of cropland, 10% of grassland, and
30% of forests are under the process of land degradation throughout the world [13]. In
India, around 36.7% of total geographical area (TGA) (120.7 Mha) is under different types
of land degradation such as soil erosion, soil acidity, soil salinity and alkalinity, and
waterlogging [14], and soil salinity and alkalinity alone affect 6.73 Mha in different arid,
semi-arid, and sub-humid areas [15]. According to the Indian Space Research Organiza-
tion (ISRO), land degradation accounts for around 29.32% of the TGA of India. It covers
96.4 Mha of agricultural, forest, and non-forest land spread across the country [16]. India
joined the Bonn Challenge and the United Nations Decade on Ecosystem Restoration
2021–2030 to maximize ecological and economic advantages from the restoration of de-
graded ecosystems, pledging to rehabilitate 26 Mha of degraded land by 2030 [17].

The problem of land degradation is especially severe in arid and semi-arid areas of the
country, such as the state of Rajasthan. Land degradation affects 67% of Rajasthan’s land,
where wind erosion contributes to the maximum percentage (44.2%), and water erosion
(11.2%), vegetal degradation (6.25%), and salinization (1.07%) are the next most common
forms of degradation. Chambal ravines in the state of Rajasthan are perhaps among the
worst physically degraded lands, as cultivated fertile lands were engulfed by ravines and
rendered unsuitable for agricultural activities [18]. The Chambal ravines are very typical as
they are deep to very deep (>20 m) and are devoid of any kind of vegetation, with ravines
and gullies being the typical forms of degradation [19]. For the development of effective
strategies to minimize and lessen the effects of land degradation, it is a prerequisite to
understand the process of land degradation, including the causes and its consequences for
major functions of the ecosystem and the proper identification of the affected area and the
regions at high risk.

Modeling and assessing the vulnerability of land degradation play a pivotal role in
land degradation neutrality planning and prioritization processes and in fulfilling targets
for restoration. Assessment of land degradation requires various information such as
climate, soil properties, topography, land use, etc. Several techniques are being adopted
in monitoring and evaluating the area, rate, and type of land degradation. A survey
using satellite images overcomes the time-consuming and expensive traditional survey,
particularly in areas tough to assess [20]. Geospatial techniques such as remote sensing
(RS) and geographic information system (GIS) play an important role in the assessment
and monitoring of land degradation vulnerability. Satellite imageries with precise spatial
and spectral resolution are excellent resources for detecting, mapping, and monitoring
various degradation kinds and issues in a rapid, consistent, reliable, and cost-effective
manner [21–25].

The integrated use of geospatial techniques with the multi-criterion decision anal-
ysis (MCDA) method is the most feasible option to assess and map land degradation
vulnerability. This MCDA technique has numerous applications in multiple areas such
as groundwater potential mapping, crop suitability zonation, and land degradation vul-
nerable mapping. It is mostly used to solve complex problems by breaking them up into
sections, then solving and integrating each section to obtain the ultimate results. The
AHP, which was first developed by Saaty (1980), is the most widely used multi-criterion



Sustainability 2022, 14, 10198 3 of 16

decision method for the mapping of vulnerable zones [26,27]. Decisions may be made
using this strategy based on judgements, hierarchical structure, and accurate perception,
all of which have a dominant influence on the final decision [27,28]. The AHP approach is
a widely recognized, basic, and well-structured decision-making technique. Few research
findings have been generated by other researchers [12,13,29] with respect to the assessment
and mapping of land degradation vulnerability zones (LDVZ) based on AHP and GIS
modeling approaches and their validation with Google Earth imageries. Considering the
importance of land degradation vulnerability assessment through remote sensing and
GIS and AHP approaches, the present study was carried out in the semi-arid region of
Rajasthan, western India. In the present study area, water erosion is the most important
cause of land degradation due to favorable erosion geology, vegetal degradation, and the
perennial Chambal River. Despite this fact, so far, no studies have been carried out in this
area to assess and prepare a land degradation susceptibility map. The core objectives of
the study are to (i) characterize the terrain, climatic, vegetative, and pedological variables
of the watershed and (ii) identify the most vulnerable areas to land degradation using
remote sensing and geospatial techniques. Furthermore, the research provides important
information for long-term land use management and development.

2. Materials and Methods
2.1. Study Area

The Chanda Kalan Watershed is in the Bundi district of Rajasthan, western India, and
it lies between latitude 25◦41′ N to 25◦46′ N and longitude 76◦16′ E to 76◦22′ E. Geographi-
cally, it covers an area of 2629 hectares (Figure 1). The watershed falls within the Northern
Plain (and Central Highlands) including Aravalli, a hot semi-arid eco-region (4.2) denoted
as an agro-ecological sub-region (AESR). The climate of the study area is semi-arid with
an average annual rainfall of 681 mm, in which the southwest (SW) monsoon contributes
roughly 90% of the rainfall. The altitude ranges from 187 to 459 m from the mean sea
level (MSL). The watershed is mainly drained by the Chambal River and its tributaries.
Major soils are deep brown loamy and brown clayey. The important crops cultivated in the
study area are wheat, maize, rapeseed, soybean, paddy, etc. Geologically, the watershed is
exposed by rock formations belonging to the Vindhyan Super Group. Vindhyan sedimen-
tary sequences have occupied a major part of the watershed. The Bhander Group of the
Vindhyan Super Group and their formations (Upper Bhander shale, Balwan Limestone,
Maihar Sandstone) are well exposed in the study area [30]. The watershed has a systematic
drainage system, and most of the study area is drained by the southwest to northeast
flowing Chambal River and its tributaries. The aquifer area formed in the watershed comes
under younger alluvium.

2.2. Dataset Used

In the current study, eight thematic layers were considered to identify the land degrada-
tion vulnerable zones, including Moderate Resolution Imaging Spectroradiometer (MODIS)
Normalized Difference Vegetation Index (NDVI), MODIS land surface temperature (LST),
Climate Hazards Group Infrared Precipitation with Station data (CHIRPS) rainfall, land
use/land cover (LULC), Topographical Wetness Index (TWI), Multi-Resolution Index of
Valley Bottom Flatness (MRVBF), and soil texture and soil organic carbon. The Landsat
9 images and Shuttle Radar Topography Mission (SRTM) DEM data were collected from the
United States Geological Survey (USGS) website (https://earthexplorer.usgs.gov, accessed
on 10 February 2022). The CHIRPS rainfall, MODIS NDVI, and MODIS LST products
were downloaded for the period of 10 years (2011–2020) using Google Earth Engine. Soil
organic carbon data were downloaded from Soil Grids (https://soilgrids.org/, accessed on
11 February 2022). In addition, soil texture data were collected from the ICAR—National
Bureau of Soil Survey and Land Use Planning, Nagpur, at 1:250,000 scale. Various datasets
and their specifications are summarized in Table 1.

https://earthexplorer.usgs.gov
https://soilgrids.org/
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Figure 1. Location map of the study area.

Table 1. Datasets and their specifications.

S. No. Dataset Variable Temporal
Resolution

Spatial
Resolution

Temporal
Coverage

1 MODIS MOD13Q1 NDVI 16 days 250 m 2011–2020
2 MODIS MOD11A2 LST 8 days 1 km 2011–2020
3 SRTM DEM Elevation - 30 m -
4 Soil Grids 250 m Soil organic carbon - 250 m -
5 CHIRPS Rainfall - 5 km 2011–2020

6 SRM data,
NBSS&LUP Soil texture - 2.5 km -

2.3. Processing of Data
2.3.1. Processing of Terrain Parameters

The SRTM DEM was downloaded and reprojected to Universal Transverse Mercator
(UTM), 43 N coordinate system, and filled in QGIS. After that, the filled DEM was used
to produce TWI and MRVBF of the watershed. The TWI is widely used to evaluate the
impact of topography on different hydrological processes, and it is considered an important
indicator of the wetness conditions of a particular region [31]. TWI depicts the water
accumulation tendency of a region [32]. Therefore, with respect to land degradation, a
higher value of the TWI indicates less vulnerability to degradation or water erosion, and
vice versa. In this study, TWI was computed in the SAGA GIS using the following equation:

TWI = ln(As/tanβ ) (1)

where As is the area of the ascending slope and β is the gradient of the slope.
The flatness and lowness of valley bottoms are measured by an index called the Multi-

Resolution Index of Valley Bottom Flatness (MRVBF). A higher value of MRVBF denotes
a flatter valley with higher deposition, and vice versa. MRVBF values range from 0 to a
positive integer value. In this study, MRVBF was computed in the SAGA GIS.
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2.3.2. Processing of Climate Parameters

The combined effects of climate, physical processes, and land use practices are often
the cause of land degradation. Rainfall is the most significant factor in land degradation,
and it has a direct impact on the detachment of soil particles and migration of eroded
sediment [33]. As a result, it is recognized as a major factor in assessing land degradation.
In this study, CHRIPS-based rainfall products of 5 km spatial resolution were downloaded
for 10 years (2011–2020) using Google Earth Engine and reprojected from the Geographic
Coordinate System (GCS) to the UTM 43N coordinate system in QGIS. The downloaded
products were resampled to 30 m resolution in QGIS by using the bilinear interpolation
technique. The intensity and distribution of land surface temperature are directly linked to
the vegetative condition of a region [13]. Therefore, land surface temperature is considered
as an important indicator of land degradation. In the present study, MODIS MOD11A2
products for the period of 10 years (2011–2020) were downloaded using Google Earth
Engine. The data were converted to degrees Celsius (◦C) by using Equation (2).

LST = 0.02×DN− 273.15 (2)

Subsequently, the datasets were reprojected from the sinusoidal coordinates system to
the geographical coordinate system and resampled to 30 m by using the bilinear interpola-
tion technique in QGIS. Finally, the thematic layer was classified into five subclasses: <32.70 ◦C,
32.70–33.30 ◦C, 33.30–33.91 ◦C, 33.91–34.52 ◦C, and >34.52 ◦C.

2.3.3. Processing of Vegetation Parameters

Vegetal degradation is a direct indicator of land degradation. Therefore, LULC and
NDVI were taken as important thematic layers for assessing land degradation. The LULC
map was prepared from the downloaded Landsat 9 images using supervised classification
in the QGIS environment. In the present study, MODISMOD13Q1 NDVI products were
downloaded for a period of 10 years (2011–2020) using Google Earth Engine. NDVI, which
is a dimensionless index, depicts the difference of reflectance between near-infrared and
red bands and can be used to analyze vegetative greenness over an area. It ranges from
−1 to +1, where low NDVI values indicate stressed vegetation and higher values indicate
healthy vegetation. Temporal smoothing of the NDVI time series data was carried out with
the Savitzky–Golay (SG) filter [34]. SG filter fits a polynomial function based on a weighted
least squares regression approach. The processing was executed in Google Earth Engine and
downloaded. It was then reprojected from GCS to the UTM 43N coordinate system in QGIS.
Datasets were resampled to 30 m resolution by using the bilinear interpolation technique in
the QGIS. The layer was classified into six subclasses: <0.15, 0.15–0.20, 0.20–0.25, 0.25–0.30,
0.35–0.40, and >0.40.

2.3.4. Processing of Soil Parameters

Soil organic carbon data downloaded from Soil Grids were reprojected to the geograph-
ical coordinate system and resampled to 30 m resolution in QGIS. The layer was classified
into five subclasses: <122.5, 122.5–176.5, 176.5–230.5, 230.5–284.5 and >284.5 decigram/kg.
Soil texture data were taken from NBSS&LUP and resampled to 30 m in the QGIS environ-
ment. Soil texture data were classified into three classes, namely, fine loamy, clayey, and
rock outcrops. The detailed methodology is given in Figure 2.
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Figure 2. Methodology followed in the present study.

2.4. Analytical Hierarchical Process (AHP)

The most widely used and well-known GIS-based method for demarcating land
degradation vulnerability zones is MCDA using the AHP technique. To make an organized
decision of priorities, we need to make comparisons and a scale of numbers that show how
much more important one parameter is in comparison to another in terms of the criterion
being compared. The AHP is a pairwise comparison assessment theory, where parameters
are compared with each other using Saaty’s scale of relative importance (Table 2) [31,35].

Table 2. Saaty’s 1–9 scale of relative importance in AHP.

Scale Importance

1 Equal significance
2 Intermediate between 1 and 3
3 Moderate significance
4 Intermediate between 3 and 5
5 Strong
6 Intermediate between 5 and 7
7 Very strong
8 Intermediate between 7 and 9
9 Maximum importance

The relative weight of each variable was determined by a knowledge-based spatial
decision support system and referring to the literature [13,29]. We selected LULC as the
first significant layer since LULC changes are one of the main human-induced activities
affecting the land degradation of a region. NDVI was selected as the second most important
parameter in the hierarchy as it is the most significant indicator of vegetal degradation. The
soil texture was chosen as the third element in the hierarchy because soil erosion is directly
controlled by the size and distribution of soil particles. The LST was selected as the fourth
layer in the hierarchy, and it was mainly based on the assumption that higher LST zones
have low vegetation cover compared to low LST. Other remaining layers were assigned
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lower order in the hierarchy. Consequently, all layers were compared to one another in a
pair-wise comparison matrix.

2.5. Consistency Analysis

To authenticate the decision on the pair-wise comparison of the thematic layers and
their sub-classes, the consistency ratio (CR) was utilized [28]. For computing the CR, the
following equation was used:

CR =
CI

RCI
(3)

where RCI stands for Random Consistency Index, and its values are based on Saaty’s stan-
dard (Table 3). CI indicates consistency index, which was computed using the following equation:

CI =
(λmax− n)
(n− 1)

(4)

where λmax is the principal eigenvalue and n is the total number of thematic layers used in
the study.

Table 3. Saaty’s Random Consistency Index.

N 1 2 3 4 5 6 7 8 9 10 11

RCI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 1.51
N, Order of the matrix; RCI, Random Consistency Index.

A CR value ≤0.10 is acceptable to conduct a weighted overlay analysis using AHP. If
the CR is >0.10, the judgement must be revised to identify the cause of the inconsistency
and fix it until the CR ≤0.10 is reached.

2.6. Mapping of Land Degradation Vulnerability Zones
In GIS-based modeling, AHP-based weights were given to thematic layers and their

sub-classes to demarcate the land degradation vulnerability (LDV) zones. In the present
study, the following equation was used to delineate the land degradation vulnerability map:

LDV = LULCCwi × LULCSCwi + NDVICwi × NDVISCwi + STCwi × STSCwi +
LSTCwi × LSTSCwi + TWICwi× TWISCwi + MARCwi × MARSCwi +
SOCCwi× SOCSCwi0.05 × MRVBFCwi + MRVBFSCwi

(5)

where LULC, NDVI, ST, LST, TWI, MAR, SOC, and MRVBF indicate land use/land cover, Normalized
Difference Vegetation Index, soil texture, land surface temperature, Topographic Wetness Index,
mean annual rainfall, soil organic carbon, and Multi-Resolution Index of Valley Bottom Flatness,
respectively; Cwi is the class weight and SCwi is the sub-class weight. The generated LDV map was
classified into five classes, namely, very low, low, moderate, high, and very high. Using the ultra-high
resolution Google Earth imagery of 2022, the very high and high LDV classes were validated at
five randomly selected sites. Finally, validation of the results was performed using the ROC curve
generated from the site selected from the Google Earth image. The area under the curve (AUC) was
estimated from the ROC curve and its values range from 0.5 to 1. The AUC value closer to 1 implies
great model performance, whereas a value near to 0.5 indicates poor prediction accuracy.

3. Result
3.1. Input Parameters and Their Variability

TWI of the watershed ranged between 1.46 and 25.94, as illustrated in Figure 3a. Five classes—
less than 6.13, 6.13–9.45, 9.45–12.77, 12.77–16.10, and more than 16.10—were generated after reclas-
sification. Nearly 64% of the district area came under the first and second subclass of TWI and the
remaining 36% came under other subclasses. TWI values show the parts in the study area that are
more prone to water erosion.
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In this study, MRVBF is classified into three classes, namely, first class (<1.33), second class
(1.33–2.77), and third class (>2.77) (Figure 3b). The highest percentage of the study area comes under
third class (43%), followed by first class (35%) and second class (22%). The land surface temperature
of the study area divides the whole area into six subclasses: <32.7 ◦C, 32.70–33.30 ◦C, 33.30–33.91
◦C, 33.91–34.52 ◦C, and >34.52 ◦C (Figure 3c). The highest area 801.54 ha (30.51%) comes under
subclass LST 33.91–34.52 ◦C, followed by subclass LST >34.54 ◦C occupying 630.9 ha (24.02%), and
the lowest area comes under subclass LST <32.7 ◦C of an area 271.89 (10.35%). Nearly 54.53% of
the study area came under LST values >34.52 ◦C and 33.91–34.52 ◦C, which lies in the central part
of the watershed, and the remaining 45.37% of the area came under other subclasses. The analysis
of decadal (2011–2020) mean annual rainfall trends shows that the study area is divided into two
subclasses (Figure 3d), where northern, northeastern, eastern, and the majority of the central area
received relatively higher annual rainfall (>843.10 mm), covering an area of 1760.04 ha that accounts
for 66.88% of the total area, while southwestern and southern parts received relatively less annual
rainfall (<843.1 mm), covering an area of 871.65 ha that accounts for 33.12% of the total study area.

The spatial analysis of the mean NDVI values from 2011 to 2022 divides the whole area of the
Chanda Kalan Watershed (2626.56 ha) into six subclasses: 0.15–0.20, 0.20–0.25, 0.25–0.30, 0.30–0.35,
0.35–0.40, and >0.40 (Figure 4a). The highest area, 926.19 ha (35.26%), comes under the low vegetal
degradation category with NDVI values of 0.30 to 0.35, followed by an area of 851.13 ha (32.4%)
covering maximum greenness with very low vegetal degradation with NDVI values of 0.35–0.40.
The lowest area, 40.5 ha (1.54%), falls under the very severe vegetal degradation category with
NDVI values of 0.15 to 0.2. Nearly 67.66% of the study area came under NDVI values 0.30–0.35 and
0.35–0.40, which lies in the southeast and southwest watershed, and the remaining 32.34% of the
area came under other subclasses. The LULC map was prepared from Landsat 9 using supervised
classification classes (Figure 4b). The study area of Chanda Kalan Watershed is divided into seven
classes, namely, Agriculture, Bare Ground, Shrubs/Scrub, Open Forest, Ravines, Built Up, and Water
Bodies, based on the LULC map, where the area under Agriculture covers the highest area of the
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watershed, which lies in the central and northeast part of the watershed. The soil textural map of the
study area divides the whole area into three textural classes, namely, (i) clayey, (ii) fine loamy soil, and
(iii) rock outcrops (Figure 4c). Most of the study area comes under clayey soil, particularly the central
and the southeastern parts, while the northern and northeastern areas come under the fine loamy soil
category and the southwestern area comes under the rock outcrop category. The study area is divided
into five soil organic carbon class for soil depth of 0–15 cm based on soil organic carbon content
(decigram/kg): <122.5, 122.5–176.5, 176.5–230.5, 230.5–284.5, and >284.5 (Figure 4d). The maximum
area of 1707.84 ha covering 65.26% comes under the subclass with SOC content <122.5 decigram/kg
and lies in the northwest and central part of the watershed, while the minimum area with <284.5
decigram/kg covers 57.24 ha (2.19%) and lies in the lower part of the watershed.
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3.2. Land Degradation Vulnerability
Consistency ratios for each thematic layer (Table 4), normalized matrix (Table 5), and subcate-

gories of each thematic layer (Table 6) were calculated before the integration of thematic layers. The
results revealed that the judgement matrices utilized in the investigation were accurate (CR < 0.10)
and had reasonable consistency. The reclassified thematic layers are combined using the weighted
overlay approach based on their respective weight. In this study, five LDVZ categories, namely, very
low, low, moderate, high, and very high, were identified through the AHP- and GIS-based modeling
approach. The quantile breaks were used for the above classification of the integrated product. The
results represent that about 1444.68 hectares of the total study area (55%) are under very low to
low classes of land degradation vulnerability, and these lands covered almost half the area of the
watershed (Figure 5). About 530.01 hectares (20.52%) of the watershed came under the moderate class
of the LDVZ and covered mainly southern to southeastern parts of the watershed. High and very
high classes of LDVZ zones covered about 607.95 hectares (23.54%) of the watershed. These classes
covered the area mostly the northern and somewhat central and southern parts of the study area.
These two classes showed high to very high severity of land degradation, such as ravines and gullies.



Sustainability 2022, 14, 10198 10 of 16

Table 4. AHP pairwise comparison matrix for thematic layers.

LULC NDVI ST LST TWI MAR SOC MRVBF Weight CR

LULC 1 3 5 5 7 7 8 9 0.38 0.098
NDVI 0.3 1 2 5 5 6 7 8 0.23

ST 0.2 0.5 1 3 3 4 6 7 0.15
LST 0.2 0.2 0.3 1 2 3 3 4 0.08
TWI 0.1 0.2 0.3 0.5 1 2 2 3 0.06
MAR 0.1 0.2 0.3 0.3 0.5 1 2 3 0.05
SOC 0.1 0.1 0.2 0.3 0.5 0.5 1 2 0.03

MRVBF 0.1 0.1 0.1 0.3 0.3 0.3 0.5 1 0.02
LULC, land use/land cover; NDVI, Normalized Difference Vegetation Index; ST, soil texture; LST, land sur-
face temperature; TWI, Topographic Wetness Index; MAR, mean annual rainfall; SOC, soil organic carbon;
MRVBF, Multi-Resolution Index of Valley Bottom Flatness.

Table 5. Normalized matrix for thematic layers.

LULC NDVI Texture LST TWI MAR SOC MRVBF
LULC 0.44 0.56 0.54 0.32 0.36 0.29 0.27 0.24
NDVI 0.15 0.19 0.22 0.32 0.26 0.25 0.24 0.22

Texture 0.09 0.09 0.11 0.19 0.16 0.17 0.20 0.19
LST 0.09 0.04 0.04 0.06 0.10 0.13 0.10 0.11
TWI 0.06 0.04 0.04 0.03 0.05 0.08 0.07 0.08
MAR 0.06 0.03 0.03 0.02 0.03 0.04 0.07 0.08
SOC 0.06 0.03 0.02 0.02 0.03 0.02 0.03 0.05

MRVBF 0.05 0.02 0.02 0.02 0.02 0.01 0.02 0.03

Table 6. Weighting of sub-classes.

Thematic Layer Subclass Weight CR

LULC Ravines 0.511 0.085
Bare ground 0.292
Shrub/scrub 0.097
open forest 0.062
Agriculture 0.039

NDVI 0.15–0.20 0.449 0.095
0.20–0.25 0.275
0.25–0.30 0.120
0.30–0.35 0.076
0.35–0.40 0.050

>0.40 0.032
Soil texture Rock outcrops 0.633 0.062

Fine loamy 0.260
Clayey 0.106

LST <32.7 0.062 0.026
32.70–33.30 0.099
33.30–33.91 0.161
33.91–34.52 0.262

>34.52 0.416

TWI <6.13 0.520 0.08
6.13–9.45 0.220

9.45–12.77 0.149
12.77–16.10 0.073

>16.10 0.038

MAR <843.2 0.082 0.042
843.2–846 0.343

>846 0.575

SOC <122.5 0.487 0.045
122.5–176.5 0.256
176.5–230.5 0.133
230.5–284.5 0.081

>284.5 0.044

MRVBF <1.33 0.633 0.062
1.33–2.70 0.260

>2.70 0.106
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3.3. Validation of Land Degradation Vulnerability Zones
Validation of LDVZ of the study area was conducted by the visual validation method. In this

process, validation was performed with the help of high-resolution Google Earth images. Five sites
from the degraded part of the study area were validated with the high-resolution Google Earth
images. The visual assessment of high and very high classes using high-resolution Google Earth
images of growing season of 2022 indicated that the degree of land degradation (ravines, gullies, and
bare grounds) in the selected watershed is in accordance with the outcomes of the model used in this
study (Figures 5 and 6).
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Figure 7 shows the ROC curve of the LDVZ map generated using the AHP method. The AUC
value of the ROC curve was found to be 86%. Hence, it was determined that the AHP model derives
reasonable results in predicting land degradation vulnerability zones in the study area.
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4. Discussion
Land degradation is generally considered one of world’s most serious environmental issues.

In India, the western state of Rajasthan is a part of the Thar Desert, where degradation is a severe
issue. The Chambal River valley in the state of Rajasthan is one of the severely affected regions in
the country, where gully erosion/ravines have major physical and economic implications [18,19,36].
For sustainable agricultural planning and development, the identification of vulnerable hotspots to
soil/water erosion is the need of the hour. Therefore, the present research was carried out to identify
hot spots of land degradation in a small watershed using an AHP- and GIS-based modeling approach.
Previous research has found that only a few variables play an important role in the assessment of
land degradation [13,37]. In the present investigation, LULC, NDVI, TWI, MRVBF, LST, MAR, soil
texture, and SOC were considered for the mapping of land degradation vulnerable zones. LULC and
NDVI were taken as the most influential layers for land degradation vulnerability. Land use/land
cover implies man-made and natural modification of the land surface, and it is a major cause of
land degradation [38,39]. The NDVI has long been recognized as a useful measure for determining
the greenness of flora and it is well accepted in science that a decrease in NDVI is a sign of land
degradation and is closely linked to climatic conditions [40,41]. The most basic soil physical property,
on the other hand, is soil texture, which impacts hydraulic properties and surface soil loss [42].

LST is an important parameter in the semi-arid region as it is directly linked with soil moisture
availability and indirectly linked with the flora conditions of the study area [43,44]. A rise in the LST
might result in a reduction in vegetative greenness and an increase in land degradation. Increased
rainfall during the monsoon season increases the risk of topsoil loss by higher water velocity, which
causes more soil erosion [37]. SOC is a universal biomarker of soil degradation since its decrease
may have severe consequences for soil-derived ecosystem services [45]. Similarly, TWI is one of
the most important terrain parameters and plays a significant role in assessing land degradation
vulnerability. A higher TWI value is associated with good vegetation cover, and vice versa [46].
As a result, vegetation cover promotes infiltration, reduces surface runoff, and thus greatly delays
the incidence of soil erosion [47]. Therefore, thematic layers were given weights based on their
importance. The AHP model assigned the weightage of each factor, i.e., LULC (0.38), NDVI (0.23),
soil texture (0.15), LST (0.08), TWI (0.06), MAR (0.05), SOC (0.03), and MRVBF (0.02). The higher the
index value, the more exposed the area is to land degradation, whereas the lower the value, the less
vulnerable it is. Consistency ratios for each thematic layer and subclasses of each thematic layer were
calculated before the integration of thematic layers. The computed CR value was less than 0.1, which
shows that all the parameters’ assumptions about their impact on soil erosion are valid.

Research findings showed that five land degradation vulnerability zones (LDVZ) namely, very
low, low, moderate, high, and very high, were identified in the study area. Very low, low, moderate,
high, and very high classes covered 27%, 29%, 20%, 11%, and 12% of the area of the watershed,
respectively. Parmar et al. (2021) [48] also conducted a study to assess land degradation vulnerability
using the geospatial technique in the Kutch district of Gujarat, India, and the results revealed that
67% of the land area has high vulnerability to land degradation, and 27% of the area falls under
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the moderate class. Similarly, an assessment of potential land degradation using the geospatial
technique and multi-influencing factor technique was carried by Senapati et al. (2020) [49] in the
Akarsa Watershed, West Bengal, and they also classified the study area into five land degraded zones.
The analysis revealed that the very low to low categories of land degradation vulnerability covered
almost half of the area of the watershed, and this portion of the study area is associated with good
vegetative coverage with open forest, very low vegetative degradation, adequate rainfall (843.21–846
mm), and well-drained soils deep in nature with clayey texture.

All the environmental covariables are linked with each other, e.g., adequate rainfall positively
correlates with NDVI and LULC and a good amount of LULC links with optimum SOC content and
better soil health, which directly relate to a lower chance of land degradation [50]. The moderate
class of LDVZ was related to very less vegetative coverage in the scrub/shrub class of LU/LC, with
normal rainfall (<843.20 mm) and rock outcrops. This class also represented a low to medium MRVBF
value with low TWI. High and very high classes of LDVZ covered about 607.95 hectares (23.54%)
of the watershed. These two classes showed high to very high severity of land degradation, such
as ravines and gullies. This section of the watershed had no or very little vegetation cover, higher
rainfall (>846 mm), high valley bottom flatness, higher LST, and clay to fine loamy texture soils with
low soil organic carbon. In this research, the AHP- and GIS-based modeling approach showed its
potential for the assessment of vulnerability to land degradation by compiling different parameters.
Validation of LDVZ was carried out with the help of Google Earth images of high resolution and the
results were very well in agreement with the AHP–GIS model-based approach. Similar work has been
conducted by several researchers [12,13,29,51–54] with respect to assessment and mapping of LDVZ
based on an AHP and GIS modeling approach and their validation with Google Earth imageries.

This study has identified areas that are more prone to land degradation, which can help prioritize
and implement soil water conservation practices to reduce the consequences of degradation. Farmers
should be encouraged to grow cover crops and crop rotation practices to maintain soil quality over
time. Farmers should maintain crop residue and biomass over soil surface after harvesting to avoid
exposing the topsoil. Furthermore, the findings of this research may be useful in developing better
soil and water management policies. Although this study was carried out at the watershed level,
it should be replicated to the sub-district or district level. The pedological parameters used in this
study are available at coarse resolution, which caused some challenge and gaps in the results. Future
research should concentrate on high-resolution satellite and soil survey data to delineate degradation
zones with higher accuracy.

5. Conclusions
In the study, LULC, NDVI, soil texture, LST, MAR, TWI, SOC, and MRVBF were considered

major contributing factors in the identification of land degradation vulnerability zones through the
GIS- and AHP-based model. The AHP- and GIS-based modeling shows that about 607.95 hectares
of the total study area are in the high and very high categories of LDV, and 530.01 hectares are
in the moderate LDV category. Validation of moderate, high, and very high LDV classes using
high-resolution Google Earth imagery demonstrates that the degree of land degradation features
of Google Earth imagery of the selected study area was in agreement with the AHP–GIS model-
based approach. This study demonstrates the potential of high-resolution satellite data and the
robustness of GIS-based spatial modeling in obtaining accurate, reliable, and cost-effective results
for the assessment of land degradation in semi-arid ecosystems. The prevalence and severity of
LDV were determined using AHP- and GIS-based modeling, which will be extremely useful in
recommending soil conservation and management measures that are suited for each site, particularly
in highly and extremely vulnerable regions, for long-term land resources management. These data
were derived from satellite data that could cause some challenges and gaps in the results. Therefore,
macro- and micro-scale observations are required to account for the high environmental variability
and to distinguish between the influences of anthropogenic actions and climate variability on land
degradation processes.
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