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Abstract: Using shared resources has created better opportunities in the field of sustainable logistics
and procurement. The Multi-Depot Traveling Purchaser Problem under Shared Resources (MDTPPSR)
is a new variant of the Traveling Purchaser Problem (TPP) in sustainable inbound logistics. In this
problem, each depot can purchase its products using the shared resources of other depots, and
vehicles do not have to return to their starting depots. The routing of this problem is a Multi-Trip,
Open Vehicle Routing Problem. A tailored integer programming model is formulated to minimize the
total purchasers’ costs. Considering the complexity of the model, we have presented a decomposition-
based algorithm that breaks down the problem into two phases. In the first phase, tactical decisions
regarding supplier selection and the type of collaboration are made. In the second phase, the sequence
of visiting is determined. To amend the decisions made in these phases, two heuristic algorithms
based on the removing and insertion of operators are also proposed. The experimental results show
that not only can purchasing under shared resources reduce the total cost by up to 29.11%, but it also
decreases the number of dispatched vehicles in most instances.

Keywords: Multi-Depot Traveling Purchaser Problem; shared resources; multi-trip; Open Vehicle
Routing Problem; decomposition algorithm; sustainable logistics

1. Introduction

The stiff competition among different purchasing organizations means that companies
have to look for more efficient ways to handle their procurement expenditure, constitut-
ing significant costs. Although the selection of suppliers and procurement resources is
essential to cutting back a firm’s costs, there are no determining factors in procurement.
Transportation cost is an indispensable component of the procurement cost and needs
to be optimized [1]. The Traveling Purchaser Problem (TPP) is a well-known problem
related to both purchasing and transportation costs [1]. It should be noted that TPP, a
procurement logistics issue, has become a useful tool for corporate information systems
when purchasing and collecting the required raw materials, spare parts, or their required
items from potential suppliers. Meanwhile, TPP has applications in other domains such as
school bus routing, the daily scheduling of surgeries, and so on [1]. That said, in this paper,
we focus on its application in the field of procurements.

The common assumption about the traditional TPP in the literature is that there
is only a central depot where vehicles depart from and arrive after visiting a subset of
potential dispersed suppliers and deciding how much of each product to buy to meet the
minimum demands, after considering traveling and purchasing costs [1]. Suppose that
each purchaser performs its purchasing activities on its own. If the purchaser performs
its purchasing activities independently, they may incur lots of losses due to underutilized
vehicles, extra purchasing, and transportation costs. As mentioned earlier, transportation
cost is a determining factor in procurement. Although there might be some inefficiencies in
transportation, many companies are looking for more effective ways to reduce their costs
based on cooperative pooled transport.
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In the last decade, collaborative transportation has gained much more attention in
both practical and academic domains. Many governments define incentive policies to
promote collaboration among logistics enterprises [2]. For example, the city of Zurich has
developed an online platform for further cooperation between transport units [3]. This
project aimed to reduce the number of vehicles in urban last-mile delivery. NexTrust is
another EU-funded project that focuses on the sustainable and environmental development
of supply chains by reducing emission through using shared distribution resources in the
logistics networks [4]. This study aimed to set up a platform for matching vacant capacities
with delivery to improve delivery time and service level. In addition, by completing 40 pilot
projects, CO2 emissions decreased by up to 20–70% [2].

Most of these collaborative transportation methods between companies have focused
on the delivery process in outbound logistics. However, in the current study, we implement
a cooperative structure for the purchasing and transporting of products between different
purchasers. This structure seems fruitful, especially for those who work as a holding’s sub-
sidiaries. More precisely, some companies such as Toyota Corporation create subsidiaries
with their business model. Our proposed model can assist such holdings companies in
reducing their overall procurement costs.

This paper proposes a Multi-Depot TPP under Shared Resources (MDTPPSR) model,
according to which different purchasers can use the vehicle capacities of other purchasers
to procure their products. In the Multi-Depot TPP (MDTPP), multiple independent depots
(purchasers) purchase their specific required products from different potential suppliers.
Suppose there is no joint structure between the depots. In that case, the MDTPP can be
seen as many independent TPPs that can be solved individually by exact or heuristic
algorithms available in the literature. In our model, different purchasers can collaborate on
purchasing and loading the products of other purchasers. However, it bears noting that
the products purchased by a specific vehicle must be delivered to its corresponding depot.
A simple comparison of individual and collaborative purchasing is shown in Figure 1.
Generally, in a network where different business units purchase their products individually,
loading and delivering products can be far from efficient. Sometimes, huge losses are
incurred due to their vehicles’ underutilization, and asset repositioning. However, via the
demand-pooling of different purchasers in a joint collaborative network, they can benefit
from their collaboration.
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Figure 1. Vehicle loading in individual and collaborative cases ((a) is related to purchasing and
loading products individually; (b) is related to purchasing and loading products collaboratively; (c) is
the legend of Figure 1).

As shown in Figure 1a, neither business unit A nor unit B can effectively use their
vehicle capacities. However, according to Figure 1b, aggregating the product demands, and
collaborating, improves vehicle utilization. The number of required vehicles decreases, too.
Moreover, in contrast to the classical TPP, where the same depot serves as both a particular
vehicle’s point of departure and its point of arrival, in our model, the vehicle does not
necessarily have to finish its journey at the same depot where it departed. Therefore, not
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only can the purchaser’s products be loaded by other purchasers’ vehicles, but depots’
resources are shared among different purchasers to avoid an unnecessary return to the
initial depot. Note that the positions of the vehicles can be easily managed by the global
positioning system and other information systems, and, accordingly, their parking status
and available parking spaces at each depot can be controlled [5]. Given shared depots,
transportation costs can decline thanks to the multiple choices in our route arrangement.

For example, consider a network with two purchasers and one supplier, as shown
in Figure 2. If each purchaser purchases their products from the supplier (supplier X)
individually, not only do they have to dispatch their vehicle to supplier X, but they also
incur extra transportation costs (such as asset repositioning costs).

Sustainability 2022, 14, x FOR PEER REVIEW 3 of 27 
 

As shown in Figure 1a, neither business unit A nor unit B can effectively use their 
vehicle capacities. However, according to Figure 1b, aggregating the product demands, 
and collaborating, improves vehicle utilization. The number of required vehicles de-
creases, too. Moreover, in contrast to the classical TPP, where the same depot serves as 
both a particular vehicle’s point of departure and its point of arrival, in our model, the 
vehicle does not necessarily have to finish its journey at the same depot where it departed. 
Therefore, not only can the purchaser’s products be loaded by other purchasers’ vehicles, 
but depots’ resources are shared among different purchasers to avoid an unnecessary re-
turn to the initial depot. Note that the positions of the vehicles can be easily managed by 
the global positioning system and other information systems, and, accordingly, their park-
ing status and available parking spaces at each depot can be controlled [5]. Given shared 
depots, transportation costs can decline thanks to the multiple choices in our route ar-
rangement. 

For example, consider a network with two purchasers and one supplier, as shown in 
Figure 2. If each purchaser purchases their products from the supplier (supplier X) indi-
vidually, not only do they have to dispatch their vehicle to supplier X, but they also incur 
extra transportation costs (such as asset repositioning costs). 

 
Figure 2. The vehicle routes of each depot in the individual case. 

However, if two purchasers collaborate while increasing efficiency, this helps reduce 
transportation costs. Each vehicle is supposed to deliver each purchased product to its 
corresponding depot. In this case, we propose two routing approaches: 
• First approach—Each dispatched vehicle should return to its depot (its starting node) 

at the end of its route. Indeed, the route of each vehicle is a “closed route” or “circuit”. 
One drawback associated with this approach is that the corresponding depot of the 
vehicle is the last one that receives its purchased products (Figure 3a); 

• Second approach—Each vehicle can stay at the depot of the last purchaser whose 
products are delivered by this vehicle. Contrary to the first approach, the vehicle does 
not have to return to its starting depot (Figure 3b). 

 

Figure 2. The vehicle routes of each depot in the individual case.

However, if two purchasers collaborate while increasing efficiency, this helps reduce
transportation costs. Each vehicle is supposed to deliver each purchased product to its
corresponding depot. In this case, we propose two routing approaches:

• First approach—Each dispatched vehicle should return to its depot (its starting node)
at the end of its route. Indeed, the route of each vehicle is a “closed route” or “circuit”.
One drawback associated with this approach is that the corresponding depot of the
vehicle is the last one that receives its purchased products (Figure 3a);

• Second approach—Each vehicle can stay at the depot of the last purchaser whose
products are delivered by this vehicle. Contrary to the first approach, the vehicle does
not have to return to its starting depot (Figure 3b).
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vehicle). ((a) is related to first approach; (b) is related to second approach).

In the first approach (Figure 3a), with the collaboration of two purchasers, only one
vehicle (the vehicle of depot D2) is dispatched to purchase the products of both depots
from suppliers; transportation costs and deadheading costs have decreased compared to
the individual case in Figure 2. As shown in Figure 3, the distance between supplier X
and depot D2 is less than the distance to depot D1. In the second approach (Figure 3b),
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after the vehicle from depot D2 dispatches and visits supplier X, it first returns to its initial
depot (D2) to deliver its purchased products. Then, to provide the products of depot D1,
it is routed to depot D1 and stays there. Therefore, it does not have to get back to its
starting depot.

The transportation cost (and the deadheading cost) of the second approach is lower
than that of the first one. However, it bears noting that these assumptions are considered for
a single periodic state, and, thus, by purchasing the products from supplier x, the purchase
process is completed. Moreover, in the second approach, depot D2 receives its purchased
products in a shorter time, while in the first approach, the dispatcher depot (D2) is the last
one receiving its products. However, the second approach is more complex than the first
one in terms of modeling and solving.

The two main differences between these approaches are outlined below:

- Since each vehicle might continue its route after returning to its starting depot to
deliver the products of others, each vehicle might make more than one trip (as is also
the case with the Multi-trip Vehicle Routing Problem);

- Suppose the vehicle returns to its initial depot and provides products to it, and then
delivers the products to others. In that case, the routes are a combination of closed
and open routes (similar to Figure 3b). We call the second proposed approach a
“Multi-Trip, Open Vehicle Routing Problem”.

Our proposed framework is centralized, i.e., a central decision-maker tries to satisfy all
purchasers’ demands at the minimum total cost. Therefore, the method of cost allocation is
not the focus of our article. Centralized planning is defined as a stream of collaborative VRP
in the literature, where a central authority makes collaborative decisions by having all the
information. Based on [6], most of the contributions in centralized planning are intended
to either present innovative models or innovative solution approaches, or to assess the
potential gains of centralized collaborative planning versus a non-collaborative structure.
In our paper, addressing the case of Multi-depot TPP, we are more concentrated on the first
one. However, in our experimental analysis, the cost reduction is assessed, as well.

The contributions of this paper are threefold:

• Modeling—In this paper, we design a collaborative structure between multiple pur-
chasers for the sustainable development of procurement and the inbound logistics
network. In this regard, we propose a mathematical model for MDTPPSR. In our
model, we also define a collaborative rate (α) between depots, which ranges from 0 (a
multi independent TPP) to 1 (full collaboration). In complete cooperation, the vehicle
of a depot can load the products of other depots, even without loading one product
from its depot. We perform some logical analysis to estimate the minimum number of
required vehicles in partial collaboration (0 < α < 1);

• Introducing a new variant of the vehicle routing problem—As mentioned earlier, the
collaboration structure between members is not just about using the shared vehicle
capacities. Rather, it is also about the shared parking spaces of other depots. Regarding
the second dimension of the collaboration framework (using the shared parking
spaces), we introduce a new type of vehicle routing problem, “Multi-Trip, Open
Vehicle Routing Problem”, which, to the best of the authors’ knowledge, has not been
adequately addressed so far in the relevant literature. In this new type of routing
problem, the vehicle of a particular depot is allowed to end at another depot’s parking
space after delivering its products and those of other depots;

• Algorithm—Since our problem is an outgrowth of the classical TPP, it is NP-hard [1].
However, this problem is more complex because of its collaborative nature. We propose
a decomposition-based algorithm that breaks down the problem, based on its specific
structure, into two manageable pieces to tackle this complexity. Generally, tactical
decisions are made at the first stage of the algorithm, regarding supplier selection
and the type of collaboration. In the subsequent step, operational decisions about the
route vehicle are made, and departing vehicles are assigned to available depot parking
spaces. Moreover, to rectify the decisions made in phase 1, two types of heuristic
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algorithms based on the removal and insertion of an operator are developed to amend
the selection of suppliers and redesign the collaboration structure in phase 1.

The rest of this paper is organized as follows. In Section 2, the main contributions
in the literature to collaborative vehicle routing problems are reviewed. In Section 3, a
new network of purchasers, with a specific routing structure, is defined. A mathematical
formulation is presented in Section 4. Section 5 is devoted to the description of an efficient
solution algorithm based on a decomposition structure. To show the efficiency of our
proposed algorithm, a set of numerical instances with different configurations is tested
in Section 6. In Section 7, a sensitivity analysis is performed to offer some managerial
insights. Moreover, in this section, some theoretical formulations are presented to calculate
the minimum number of required vehicles in the case of partial collaboration. Finally, some
conclusions are drawn, and some suggestions are made for future research.

2. Literature Review

The Traveling Purchaser Problem is a well-known problem in logistics and procure-
ment, which has been widely studied in the past decades. Most recently, various types
of TPPs have been proposed. For example, ref. [7] presented a new variant of the MTPP
that prioritizes purchasing, wherein each product should be purchased according to its
predefined priority. This proposed problem is suitable for cases wherein some products
have fragile and delicate structures. Therefore, these products should be bought in the last
purchasing phase. This is also true for perishable products, which should be the last things
to be purchased. The TPP, and its different variants, have been extensively studied in the
literature; for a comprehensive review, interested readers can read [1].

It seems no survey study has ever been published on the multi-depot version of the
TPP. However, there is a mention of the Multi-Depot Vehicle Routing Problem (MDVRP)
in the literature. A state-of-the-art survey on the Vehicle Routing Problem with multiple
depots has been reported in [8]. The first paper in the MDVRP with shared resources was
published by [9]. In this paper, the depot where a vehicle ends its journey is not necessarily
the same as where it departs. Similarly, ref. [10] proposed the multi-depot open Vehicle
Routing Problem. In their paper, vehicles start from several depots, and do not have to
return to their initial depot after visiting their last customers.

Ref. [11] presented a Multi-depot Vehicle Routing Problem with pickup and delivery
requests, in which the depots create a business alliance to pool their transportation resources.
Their proposed structure is practical for small and medium-sized enterprises (SMEs),
who may not have sufficient funds to buy their transportation resources. If we compare
our proposed MDTPPSR with a VPR problem with pickup and delivery, the suppliers
correspond with pick-up points that offer various products with different prices, and depots
(purchasers) are akin to delivery points that receive their purchased products by using the
shared resources of other depots. The main differences between our proposed problem
and that in [11] are that not only are the pickup points not predetermined and do not form
a Hamiltonian tour, but also, each depot has a vehicle, and each depot corresponds to a
delivery point where it is not known which vehicle will visit. In fact, the delivery points are
not known in advance, do not form a Hamiltonian tour, and depend on the collaboration
structure between the depots. In addition, in our proposed structure, each depot demands
several types of products that are offered at different pickup points at different prices.

From a cooperative point of view, the problem stated in [9] is limited to the joint
use of the parking spaces of the depots. Since multiple depots or warehouses are under
the coordination of a central entity, allocating customers to the depots should be done
so that the total cost is minimized. However, in many real-world cases, independent
distribution firms, with each one consisting of a single depot, receive and handle the
requests of their customers; they collaborate to increase the efficiency of their operations.
In this collaborative network configuration, customers who used to be served by their
corresponding distribution companies are allocated to joint vehicle routes, resulting in less
transportation costs, and a higher fill rate [12]. In this regard, ref. [13] studied the horizontal
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collaborative structure of two business units of Fritom Holding, a Dutch logistics service
provider. The authors showed that the combination of individual network configurations
cannot fit into the current vehicle routing problem. They proposed a new problem called
the Generalized Pickup and Delivery Problem. In this problem, the main constraints for
transporting the load from its origin to its destination in a single planning period and using
one vehicle are relaxed. Then, a load can be transported through either a single route or
multiple routes. In the latter case, the number of depots, and the specific depots to which
the load is redirected, should be decided.

Based on our knowledge, since no study has been undertaken in the field of collabora-
tive TPP, we survey the most relevant papers in the area of collaborative VRP. So, in Table 1,
a summary of the papers in both fields of collaborative VRP and TPP, and the contribution
of this study, are shown.

Table 1. Summarized literature review.
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[14] X cost X Empirical
analysis [15] single X

Bi-objective
(travel

distance and
purchasing cost)

X X

[16] X cost X Heuristic
algorithm [17] single X Total cost X X

[18] X
minimizing

empty vehicle
movements

Heuristic
algorithms [19] single X Total cost X X

[20] X cost Exact algorithm [21] single X Expected total
cost X X

[22] X cost X Heuristic
algorithms [23] single X Total cost X X

[24] X cost Heuristic
algorithms [25] single X Total cost X X

[13] X cost X X Heuristic
algorithms [26] single X Total cost X X

[27] X cost X Heuristic
algorithms [28] single X Total cost X X

[9] X cost
Hybrid

metaheuristic
algorithm

[29] single X Total cost X X

[30] X cost X Heuristic
algorithms [31] single X Total cost X X

[32] X cost Exact algorithm [33] single X Total cost X X

[34] X cost Exact algorithm [35] single X
Bi-objective

(total cost and
CO2 emissions)

X X

[36] X cost X X
Hybrid

metaheuristic
algorithm

[37] single X Total cost X X
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[38] X cost X X
Hybrid

metaheuristic
algorithm

[39] single X

Bi-objective (total
cost and

waiting time
of customers)

X X

[40] X cost
A hybrid

metaheuristic
algorithm

[7] single X Total cost X X

[41] X cost Metaheuristic
algorithm [42] single X

Cost (assigning
cost, traveling

cost and
purchasing cost,

emission
cost, earliness
and tardiness)

X X

[43] X cost X
Hybrid

metaheuristic
algorithm

[44] single X

Total cost with
hard constraint
on maximum
emission level

X X

[45] X

minimizing
total carbon

emission and
operating cost

X Hybrid heuristic
algorithm [46] single X

Minimizing total
cost, Co2

emission and
maximizing total

sustainability
value

X X

[47] X

Minimizing
operational

cost and
service time

X X Hybrid heuristic
algorithm [48] single X

Minimizing total
cost and

maximizing total
sustainability

score

X X

[49] X
minimizing the

total
network costs

X X Multi-phase
hybrid approach [50] single X

Minimizing
cost by

considering the
environmental

impact

X X

This
paper X cost Heuristic

algorithms
This

paper X multiple X Total
collaborative cost X X

Legend for the columns of Collaborative VRP. LTL (less than truckload), FTL (full truckload), Objective (the
main focus or the objective function), Cost allocation (allocating the total cost between the members of collaboration
in a collaborative VRP), Methodology (the type of solution method for solving the proposed model). Legend for
the columns of TPP. Collaboration (a collaboration structure between different purchasers in a Multi-Depot TPP),
Unitary demand (the demand for each required product of the purchaser is only one unit), Non-unitary demand
(the demand for each required product of the purchaser is more than one), Single vehicle (there is only one vehicle
in the depot of the purchaser), Multi vehicle (there are multiple vehicles in the depot of the purchaser).

A detailed survey of the collaborative VRP has been presented in [6]. Meanwhile, re-
cently, a full literature review in VRP using shared resources has been reported by [2], which
surveys novel relevant publications in both centralized and decentralized collaborations.

Almost all studies undertaken in this field are restricted to collaborations in distribu-
tion industries or outbound logistics. Based on our research, there is as yet no thorough
study that considers partnerships in inbound logistics. Inbound logistics is related to the
procurement and receiving of goods. On the other hand, outbound logistics refers to the
movement of goods to the customer. The collaborative structure has different frameworks
in these two contexts. Table 2 shows the collaborative features in terms of inbound and
outbound logistics.
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Table 2. A comparison of collaborative frameworks in terms of inbound and outbound logistics.

Basis Features Collaborative Inbound
Logistics (CIL)

Collaborative Outbound
Logistics (COL)

Collaboration Product’s
Demand Aggregation Order Exchange

Final Delivery Purchaser Customer

Dimension Multi-Products Single Product

Interaction Different Potential Suppliers
and Purchasers

Known Set of Customers
and Distributors

Potential Opportunities Resource Sharing and
Group Purchasing Resource Sharing

As shown in Table 2, collaborative features in inbound and outbound logistics fit
into five dimensions. First, in CIL, the collaboration is based on the product’s demand
aggregation of different purchasers. In COL, the focus is on the order exchange of customers
who belong to various distributors. Second, in CIL, the purchased products (from different
suppliers) are delivered to their corresponding purchaser. In COL, a single product, which
can be reallocated to another distributor, is delivered to the customer. Third, in CIL, multiple
products should be purchased, but typically COL is confined to a single product. Fourth, in
CIL, various potential suppliers offer a subset of products at different prices, while in COL,
each distribution center has a set of orders from known customers. The fifth, and the most
essential difference, between CIL and COL concerns their potential opportunities: in COL,
collaboration is based on using shared resources (the vehicle capacity and parking space
of the depot), while in CIL, in addition to using their resources, purchasers can form a
coalition to gain the benefits of several discounted policies, as offered by potential suppliers.

In this paper, a framework for collaborative purchasing in the context of the multi-
depot TPP is presented. The type of collaboration between different purchasers is de-
scribed, and an optimization model is proposed based on a new routing problem called
the “Multi-Trip, Open Vehicle Routing Problem”. Based on our study, this is a new type
of routing. However, [51] introduced the close–open mixed Vehicle Routing Problem. An-
other study [52] presented a multi-depot variant of the closed–open mixed Vehicle Routing
Problem. This problem is especially applicable to a company with its own vehicles, but
the number of vehicles is limited to satisfy all customers’ demands. So, the corporation
can ask other logistics companies for additional vehicles. Considering that this company
has multiple depots, its vehicles should come back to their initial depots, while the rented
vehicles can end their routes after vising their last customers. Unlike our proposed routing
problem, in these papers, each vehicle takes only one trip that can be either closed or open.
However, in our suggested VRP, a given vehicle can have both closed and open routes on
more than one trip.

3. Problem Definition

A new network is presented to model our problem (MDTPPSR). In this network,
for a problem with |D| number of depots (purchasers), we define |D| virtual depots
corresponding to each depot. These virtual depots have the following specifications:

- The distance of each virtual depot to its corresponding depot is zero, and the distance
to the other nodes of the network (suppliers and other depots) is equal to the distance
of its real depot to those nodes;

- The virtual depot acts as a delivery depot or a staying depot, where a vehicle delivers
the purchased products to the depot, or stays at the end of its route. It should be
noted that the latter is only possible if the vehicle has already delivered the products
of other depots;
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- No vehicles can be dispatched from virtual depots—they can only be dispatched from
real depots (if necessary). In fact, real depots just act as dispatchers, and no vehicle is
allowed to enter them.

Based on Figure 4, if the flow of a virtual depot (input arc–output arc) is zero, it shows
that the vehicle has just delivered the purchased products to this depot, and then gone on to
buy and deliver products to other depots. However, if the flow of a virtual depot is one, the
vehicle stays at that depot at the end of its route (after delivering the purchased products
of other depots). However, due to the limited parking space in each depot, the number
of vehicles that park in a specific depot cannot exceed a certain number. Based on the
reformed network in the Multi-Trip, Open Vehicle Routing Problem, all routes (closed or
open) are transformed to open routes. Thus, if the final virtual depot of a route corresponds
to its initial real depot, the route is closed. Otherwise, it is an open route.
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4. Mathematical Modeling

In this section, we model our variant of the MDTPP, denoted as MDTPPSR, and
propose a tailored mathematical formulation according to the explained reformed network
of MDTPPSR.

The following assumptions are made:

- The demands of all products are unitary;
- Each depot has only one vehicle with a limited capacity, and without a loss of general-

ity, the index of each vehicle is equal to the index of its corresponding depot;
- Each depot has a limited parking space;
- Each product is supplied by at least one supplier.

The sets, parameters, and decision variables of the model are shown in Table 3.
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Table 3. The set, parameters, and decision variables for the MDTPPSR model.

Set

A The set of arcs

D, d The set and index of depots (Each depot corresponds to a certain
purchaser) (|D|: number of depots)

I The set of suppliers (|I|: number of suppliers)
K, k The set and index of purchasers’ vehicles
P, p The set and index of all purchasers’ products
V The set of real network nodes (V = D ∪ I)

V́
The set of all nodes in the network (including suppliers, depots, and virtual
depots,

∣∣V́∣∣=2×|D|+ |I|)
Para-meters

αk The allowed collaboration rate between depots (αk ∈ [0, 1])
cij The traveling cost between two nodes i and j (i, j ∈ V)
fp,d The demand for product P of depot d
PSd The number of parking spaces of depot d
Qk The capacity of vehicle k
wp,i The purchasing cost of product p (p ∈ P) from supplier i (i ∈ I)

Decisionvariables:

hk
i

The number of loadings (unloadings) of vehicle k at the time of visiting
node i (i ∈ V́).

Lk
i The upper limit of the vehicle’s load k when entering node i (i ∈ V́).

sk
d+|D|

1, if vehicle k parks at virtual depot d + |D| corresponding to real depot d,
0 otherwise.

uk
i

An arbitrary variable for subtour elimination in the Miller–Tucker–Zemlin
method (i ∈ V́).

xk
ij 1, if vehicle k goes from node i to node j, 0 otherwise (i, j ∈ V́).

yk
i 1, if supplier i is visited by vehicle k, 0 otherwise (i ∈ I).

zk
p,d,i

1, if product p of depot d is purchased from supplier i by the purchaser’s
vehicle k, 0 otherwise.

The mathematical formulation for the MDTPPSR is given as follows:

min ∑
(i,j)∈A

∑
k∈K

cijxk
ij + ∑

p∈P
∑

d ∈D
∑

i∈Ip

∑
k∈K

wp,izk
p,d,i (1)

Subject to:
∑
j 6=i

j∈ V́

xk
ij = ∑

j 6=i
j∈ V́

xk
ji = yk

i ∀i ∈ I , ∀k ∈ K (2)

∑
k
∈K

∑
i∈Ip

zk
p,d,i = 1 ∀p ∈ P , ∀d ∈ D : fp,d = 1 (3)

zk
p,d,i ≤ yk

i ∀p ∈ P , ∀d ∈ D, ∀i ∈ I , ∀k ∈ K (4)

hk
i = ∑

p∈P
∑

d∈D
zk

p,d,i ∀i ∈ I , ∀k ∈ K (5)

hk
d+|D| = − ∑

p∈P
∑

i∈Ip

zk
p,d,i ∀k ∈ K , ∀d ∈ D (6)

hk
d = 0 ∀k ∈ K , ∀d ∈ D (7)

i f xk
ij = 1→ Lk

i + hk
i ≤ Lk

j ∀i ∈ V́, ∀j ∈ V́, i 6= j, ∀k ∈ K (8)

Lk
j ≤ Qk ∀j ∈ V́, ∀k ∈ K (9)
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∑
i∈V́

xk
id = 0 ∀k ∈ K , ∀d ∈ D (10)

∑
j∈V́

xk
dj = 0 ∀k ∈ K , ∀d ∈ D : d 6= k (11)

xk
d+|D|,d + xk

d,d+|D| = 0 ∀k ∈ K , ∀d ∈ D (12)

i f ∑
p∈P

∑
i∈Ip

zk
p,d,i > 0→ ∑

j∈V́

xk
j,d+|D| > 0 ∀k ∈ K , ∀d ∈ D (13)

∑
j∈V́

xk
dj ≤ 1 ∀k ∈ K , ∀d ∈ D : d = k (14)

∑
p∈P

∑
d 6=k

∑
i∈Ip

zk
p,d,i ≤ αk × ∑

p∈P
∑

d∈D
∑

i∈Ip

zk
p,d,i ∀k ∈ K (15)

uk
i − uk

j +
∣∣V́∣∣× xk

ij ≤
∣∣V́∣∣− 1 ∀i ∈ V́, ∀j ∈ V́, i 6= j, ∀k ∈ K (16)

i f uk
j > uk

d+|D| → zk
p,d,j = 0 ∀j ∈ I , ∀d ∈ D ∀k ∈ K , ∀p ∈ P (17)

∑
j∈V́

xk
j,d+|D| ≥ ∑

i∈V́

xk
d+|D|,i ∀d ∈ D∀k ∈ K (18)

sk
d+|D| = ∑

j∈V́

xk
j,d+|D| − ∑

j∈V́

xk
d+|D|,j ∀d ∈ D, ∀k ∈ K (19)

∑
k

sk
d+|D| ≤ PSd+|D| ∀d ∈ D (20)

xk
ij, yk

i , psk
i , zk

p,d,i ∈ {0, 1},
hk

i and uk
i are urs, Lk

i ≥ 0 and int
∀i, j ∈ V́, ∀d ∈ D, ∀k ∈ K, ∀p ∈ P

(21)

The objective Equation (1) minimizes total costs, including purchasers’ total trans-
portation and purchasing costs. Equation (2) is a degree constraint where, if vehicle k
goes to supplier i, two edges (incoming and outcoming ones) must enter this supplier.
Equation (3) guarantees that the demands for each purchaser’s products are satisfied. con-
straint (4) dictates that it not be possible to purchase a product from an unvisited supplier.
Equation (5) shows the purchased products of supplier i carried by vehicle k. However, if
node i is one of the depot’s nodes, then, based on Equation (6), vehicle k delivers the depot’s
corresponding purchased products to its virtual depot. As mentioned before, each depot’s
products are delivered to its virtual depot. So, based on Equation (7), the load of vehicle k
at the moment of leaving its actual depot (dispatch depot) is equal to zero. Constraint (8) is
called the “lifted Miller Tucker Zemlin constraint” [51], which shows the upper bound of
the vehicle’s load k at the moment of leaving node i, before entering node j. Constraint (9)
shows the vehicle capacity constraint. Constraint (10) shows that a vehicle cannot enter a
real dispatch depot (the products are delivered to virtual depots). Equation (11) shows that
a vehicle can exit a depot only if it belongs to its corresponding depot. It is assumed that
each vehicle has the same index as its depot, so obviously, if the vehicle’s index is different
from the depot’s index, the vehicle cannot start its route from that depot. Equation (12)
indicates that it is not possible to move between the delivery node (the virtual node) and
the dispatching node (real node) of a depot. Constraint (13) ensures that the purchased
products of each depot are delivered to its virtual delivery depot. Constraint (14) shows
that, in the collaborative framework, contrary to the classic TPP, there is no need to dispatch
each vehicle from its depot, and a depot (purchaser) can receive its purchased products
from other purchasers’ vehicles. Constraint (15) indicates the threshold limit for each
purchaser to collaborate with others; in fact, the number of loadings of other purchasers’
products could be, at most, as much as the rate of the total purchasing, shown by αk. It
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should be noted that in the case of partial collaboration (αk < 1), this constraint inexplicitly
imposes a limitation on the number of the purchased products of depot k that are loaded
by its vehicle (vehicle k). In other words, it is impossible for vehicle k to load the products
of other depots without loading any product of its depot. Therefore, underutilization is no
longer an issue with this restriction. While preventing the creation of a subtour for each
vehicle, Constraint (16) specifies the order in which the nodes will be traversed by vehicle k
by defining Constraint (17). Given that each vehicle is allowed to visit each node at most
once, according to constraint (17), if vehicle K enters supplier j while visiting delivery
depot d + |D| earlier (uk

j > uk
d+|D|), it is not allowed to purchase the products of depot d.

Otherwise, it has to revisit depot d + |D| to deliver its products. Constraint (18) indicates
that it is not possible for a virtual delivery depot to have only one outgoing edge, without
any incoming ones. There are only dispatcher depots (real depots) that have one outgoing
edge without incoming ones. Equation (19) refers to the staying at or passing on from a
specific depot (virtual ones). Here, if the right-hand side value of this equation is zero, it
shows that the vehicle has just passed by that depot, and if it is one, the vehicle has stayed
at that depot, and parked there. Constraint (20) shows the parking space limitations of each
depot. Finally, Equation (21) shows the domain of each variable.

The above Constraint (8), (13), and (17) are logical constraints. Equation (8) is converted
to its linear equivalent formulation based on Equation (22).

Lk
i + hk

i + Mxk
ij ≤ M + Lk

j ∀i ∈ V́, ∀j ∈ V́, i 6= j, ∀k ∈ K (22)

Equation (13) is linearized based on Equations (23) and (24).

∑
p∈P

∑
i∈Ip

zk
p,d,i ≤∑

p
wp,d × δk

d ∀k ∈ K , ∀d ∈ D (23)

∑
j∈V́

xk
j,d+|D| − δk

d ≥ 0 ∀k ∈ K , ∀d ∈ D (24)

In the above formulation, δk
d is a binary variable.

Finally, Equation (17) is converted to its linear form based on the following equations:

uk
j − uk

d+|D| − Ḿ×Ok
j,d ≤ 0 ∀j ∈ I , ∀k ∈ K , ∀d ∈ D, ∀p ∈ P : fp,d > 0 (25)

zk
p,d,j ≤ 1−Ok

j,d ∀j ∈ I , ∀k ∈ K , ∀d ∈ D, ∀p ∈ P (26)

Similarly, in the above equation, Ok
j,d is a binary variable that was used for linearization. Ḿ

is an upper bound of uk
j − uk

d+|D|.

5. The Proposed Heuristic Algorithm for the MDTPPSR

The MDTPPSR reduces to the classical TPP. In fact, if the αk in the model is set to
zero, our proposed problem is converted to multiple depots that purchase their products
independently. As the TPP is NP-hard, so is our proposed problem. Undoubtedly, due to
the collaboration structure between different purchasers, this problem is far more complex
than the typical TPP. One specific feature of the MDTPPSR is that the subsets of collab-
orative purchasers are not determined beforehand. In fact, in a network with n depots
(purchasers), the total number of possible collaborations between depots is an order of
O(n2n) (Equation (27)):

[C(n, 1) + C(n, 2) + · · ·+ C(n, n)] = 2n − 1 (27)

In the following, we propose a decomposition-based algorithm that breaks down
the problem based on its specific structure into two manageable pieces, in order to tackle
this complexity.
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5.1. Decomposition Algorithm

Given the complexity of this problem, we develop a decomposition-based structure
with two phases. We state the phases in the context of full collaboration (αk = 1), and then
present some equations related to a case of partial collaboration (αk < 1) in Section 7. In the
full collaboration structure, the vehicle of a specific depot can load the products of other
depots even without loading any products of its depot. The two phases of the proposed
algorithm are given below.

Phase 1—Allocating products to suppliers and vehicles:
In this phase, the supplier of each product, and the product’s carrier, are determined

based on Equation (28).

mini∈I
{

pricep,i + mind∈D(distanced,i)
}

∀p ∈ P (28)

subject to:
∑
p∈P

∑
i∈I

xpid ≤ capacityd ∀d ∈ D (29)

where xpid is a binary variable representing whether product p is purchased from supplier
i and carried by the vehicle of depot d or not. As can be seen, for each product, supplier
selection and carrier assignment are performed concurrently based on the product’s mini-
mum price, and the minimum distance of the corresponding supplier to the depots. The
product’s carrier is the vehicle of the depot that allows the minimum cost in Equation (28).
Based on Equation (29), the total number of products purchased from different suppliers
depends on the capacity of the vehicle to which the products are assigned.

Phase 2—Routing:
In the second phase, a routing problem is solved. In this VRP, in addition to typical

VRP constraints, the capacity constraint and delivery of the products to each corresponding
depot should be considered. Moreover, the related suppliers of each depot should be visited
before this depot. Additionally, depending on whether or not the final depot of a route is
similar to its initial counterpart, the route of a vehicle is a closed routing or a Multi-Trip,
Open Vehicle Routing Problem.

Assuming this problem is a particular extension of the VRP, there are three types of
nodes: starting depot, suppliers, and delivery depots. The first one is the depot whose
vehicle loads the purchased products (obtained from phase 1). The suppliers are equivalent
to customer nodes in the classical VRP with positive demands (the demand of each supplier
node is the sum of products purchased from it (in phase1)). Finally, the delivery depots
correspond to customers with negative demands (the negative demand of each delivery
depot is the sum of products that should be delivered to this depot (with a negative sign)).
If the initial depot is not a delivery depot, the vehicle route is an open route. By assuming
the total number of depots as |D|, the number of allocations (|R|) in phase 1 would be
1 ≤ |R| ≤ |D|. For each allocation, the routing problem is solved as follows.

Since the starting depot may be a delivery depot, we define a virtual starting depot
whose distance from each node is the same as that from the starting depot to others.
Therefore, with this virtual node, all routes are considered as open routes. (The virtual
depot is just a dispatcher depot, and all products are delivered to the delivery depot.)

The sets, parameters, and decision variable of the model in phase 2 are shown in
Table 4.

Table 4. The set, parameters, and decision variable for the routing model.

Set and Parameters

D The set of delivery depots in phase 1
ds The virtual starting depot
I The set of selected suppliers in phase 1
(d, i) Take value 1 if a product of depot d is purchased from supplier i.
Q The vehicle capacity
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Table 4. Cont.

Set and Parameters

Si The demand for node i (i ∈ T) (the demand for the virtual depot is zero)
T The set of network nodes (T = I ∪ D ∪ ds)

Decision variables

ui The sequence of visiting node i on the route
xij 1 if the vehicle goes directly from node i to node j, 0 otherwise

Considering Table 4, the mathematical model of the routing problem is given based
on Equations (30)–(37), as follows:

min ∑
i,j

cijxij (30)

subject to
∑
i 6=j

xij = ∑
i 6=j

xji = 1 ∀j ∈ I (31)

∑
i 6=d

xid = 1 ∀d ∈ D (32)

∑
j 6=d

xdj ≤ 1 ∀d ∈ D (33)

∑
i

Si ∑
j

xij ≤ Q ∀i, j ∈ T (34)

ui − uj + |T| × xij ≤ |T| − 1 ∀i ∈ T, ∀j ∈ T, i 6= j, i >= 2 (35)

ui ≤ minimum(ud : (d, i) > 0) ∀i ∈ I (36)

xij ∈ {0, 1}, ui is urs ∀i, j ∈ T (37)

Objective Equation (30) minimizes the transportation cost. The degree constraint in
Equation (31) ensures that each supplier is visited at phase 1. Equation (32) indicates that
the products of each depot are delivered. Constraint (33) guarantees that each delivery
node can have at most one outgoing arc. Constraint (34) guarantees that the vehicle
capacity constraint is satisfied. Constraint (35) determines the visit sequence of each node.
Constraint (36) ensures that suppliers are visited before their corresponding depots. Finally,
Equation (37) shows the domains of variables.

5.2. Improvement Heuristics

As described in phase 1, the tactical decisions regarding supplier selection and col-
laborative purchasers are based on Equation (28). However, leaving out decision-making
about routing does not guarantee that Equation (28) leads to the best selection. Thus, in this
section, we propose two types of heuristic algorithms to revise and improve the decisions
made in phase 1.

• Heuristic approach for selected suppliers—in this algorithm, we replace the supplier
of each product with another supplier of that product, resulting in maximum saving.
Consider route r in Figure 5.
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Consider tp as a substitution for ip (tp is another supplier of product p). The saving of
this substitution (∆tp) is calculated as follows:

∆tp = distance(i, tp ) + distance(tp , j) + pricetp − distance(i, ip )− distance(ip, j )− priceip (38)

We exchange supplier ip with a supplier with the minimum negative ∆minip .

∆minip = min
{

∆j
∣∣j ∈ Sp and ∆j < 0

}
(39)

where Sp is the set of suppliers of product p. The current supplier of product p (ip) is
replaced by the corresponding supplier of ∆minip .

• Heuristic approach for assigning products to the vehicles of the other depots—as
mentioned earlier, in the case of assigning a product to a depot’s vehicle, a better
assignment (supplier assignment to a depot’s vehicle) might be set. So, this heuristic
algorithm tests the reassigning of the suppliers of products to a route with less trans-
portation costs. It is clear that the purchasing cost is not changed by changing the
position of a particular supplier on another route.

Without a loss of generality, the intended supplier (the supplier that is going to be
relocated to another route), and its corresponding product and depot, are denoted by s∗, p∗,
and d∗, respectively. Moreover, for simplicity, we call the current route of the supplier s∗

C, and consider the optional route (the route where s∗ is going) as route R. There are four
different scenarios for s∗, as determined by the positions of s∗ and d∗ in the current route
(route C), and the possible places for inserting s∗ or d∗ into optional route R, as shown in
Figure 6.

• Scenario 1: supplier s∗ and its corresponding depot d∗ ae present on the optional
route R.
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Figure 6. The schematic view of positions of s∗ and d∗ (a) the current position of s∗ and d∗ in the
route C; (b) the possible places for insertion d* in route R in scenario 2; (c) the possible places for
insertion s* in route R in scenario 3.

In this case, the supplier s∗ on route R is the supplier of other products (except for
product p∗), and some other products of depot d∗ are supplied on the optional route R.
Therefore, there is no need to find the locations of s∗ and d∗ on route R.
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It is clear that, if on the current route C, supplier s∗ supplies the product(s) of depot
d∗, and if other products besides product p∗ are purchased on C, route C undergoes no
change, and, thus, the saving cost is zero.

Generally, considering Figure 6a, the saving in transportation cost is calculated as follows:

∆tp = θs∗ [distance(i1, j1)− distance(i1 , s∗)− distance(s∗, j1)] + θd∗ [distance(id, jd)− distance(id , d∗ )− distance(d∗ , jd)] (40)

where θs∗ and θd∗ are binary parameters; θs∗ takes a value of 1 if only product p∗ is supplied
by the supplier s∗ (no other products are purchased from the supplier s∗ on route C), and,
similarly, θd∗ takes a value of 1 if only product p∗ of depot d∗ is purchased on route C.

• Scenario 2: supplier s∗ exists on the optional route R, but its corresponding depot d∗

does not exist.

Contrary to the first scenario, here, only s∗ is on the optional route R, and the location
of depot d∗ should be determined on route R. As such, a strategy similar to that presented
by [53] for re-optimizing a TSP tour, wherein a node is added to or dropped from an
optimized TSP tour, is applied to find a suitable location for d∗ here. However, it should
be noted that depot d∗ on route R can only be located in places after its corresponding
suppliers (suppliers from which the products of depot d∗ are purchased). Let sd∗ be the last
supplier of depot d∗ on route R. So, based on Figure 6b, the saving cost of inserting depot
d∗ on route R is calculated based on Equation (41).

∆i:the location i is a f ter sd∗ = distance(i, d∗) + distance(d∗, i + 1)−
distance(i, i + 1)−θs∗
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In scenario 4, the cost saving of inserting 𝑠∗ and 𝑑∗ is shown via Equation (45). In 
Equation (46), ∆  is the distance cost of inserting 𝑠∗ into route R. In ∆  (Equation (47)), 𝑖𝑠 and 𝑗𝑠 are pre- and post-nodes of 𝑠∗ on the current route C. Similarly, in ∆  (Equa-
tion (48)), 𝑖𝑑 and 𝑗𝑑 are the pre- and post-nodes of 𝑑∗ on the current route C. As can 
been seen in Equation (49), location 𝑖 is considered as a potential location for the insertion 
of supplier 𝑠∗, and location 𝑗 (which is after location 𝑖) is suitable for the insertion of de-
pot 𝑑∗. The distance cost of inserting 𝑑∗ in route R is shown as ∆  in Equation (49). Fi-
nally, the locations selected for the insertion of 𝑠∗ and 𝑑∗ lead to the maximum reduction 
in transportation cost. 

6. Computational Experiments 
In this section, the computational results of different experimental cases are pre-

sented to evaluate the performance of the proposed solution algorithm. The test problems 
were run on Intel Core i3 with 2.30 GHz and RAM 10.00 GB. 

6.1. Structure of Instances 
There is no specific dataset for our proposed problem (MDTPPSR) in the literature. 

Thus, the benchmark instances presented by [28] have been modified for our proposed 
model. In this benchmark, the suppliers’ and depots’ integer coordinates are randomly 

− θd∗
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distance(id, jd)− distance(id , d∗ )−
distance(d∗ , jd)
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θs∗ and θd∗ in Equation (41) have the same definitions as Equation (40). The location of
depot d∗ on route R is the one that leads to the maximum cost-savings (Equation (42)).

∆mini = min{∆i|node i is a f tersd∗ in route R and ∆i < 0} (42)

• Scenario 3: supplier s∗ is not included on the optional route R, while its depot d∗ is. In
this scenario, the supplier s∗ can be located before depot d∗ (Figure 6c).

∆i:the location i is be f ore d∗ = distance(i, s∗) + distance(s∗, i + 1)−
distance(i, i + 1)−θs∗ [distance(i, j)− distance(i , s∗)− distance(s∗, j)]−

θd∗ [distance(id, jd)− distance(id , d∗ )− distance(d∗ , jd)]
(43)

After calculating the cost-saving for each possible location using Equation (43), the
location with the maximum cost-savings is selected for the insertion of supplier s∗ on route
R (Equation (43)).

∆mini = min{∆i|node i is be f ore d∗ in route R and ∆i < 0} (44)

• Scenario 4: neither supplier s∗ nor depot d∗ exists on route R.

In scenario 4, the locations of both d∗ and s∗ should be determined. However, location
d∗ has to be located after the location of s∗.

∆i,ji = ∆1 − ∆2 − ∆3 + ∆4
in which ∆1, ∆2, ∆3 and ∆4 are as f ollows :

(45)

∆1 = distance(i, s∗) + distance(s∗, i + 1)− distance(i, i + 1) (46)

∆2 = θs∗ [distance(is, js)− distance(is , s∗)− distance(s∗, js)] (47)

∆3 = θd∗ [distance(id, jd)− distance(id , d∗ )− distance(d∗ , jd)] (48)

∆4 = minji :j is a f ter i( distance(ji, d∗) + distance(d∗, ji + 1)− distance(ji, ji + 1)) (49)
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In scenario 4, the cost saving of inserting s∗ and d∗ is shown via Equation (45). In
Equation (46), ∆1 is the distance cost of inserting s∗ into route R. In ∆2 (Equation (47)), is
and js are pre- and post-nodes of s∗ on the current route C. Similarly, in ∆3 (Equation (48)),
id and jd are the pre- and post-nodes of d∗ on the current route C. As can been seen in
Equation (49), location i is considered as a potential location for the insertion of supplier
s∗, and location j (which is after location i) is suitable for the insertion of depot d∗. The
distance cost of inserting d∗ in route R is shown as ∆4 in Equation (49). Finally, the locations
selected for the insertion of s∗ and d∗ lead to the maximum reduction in transportation cost.

6. Computational Experiments

In this section, the computational results of different experimental cases are presented
to evaluate the performance of the proposed solution algorithm. The test problems were
run on Intel Core i3 with 2.30 GHz and RAM 10.00 GB.

6.1. Structure of Instances

There is no specific dataset for our proposed problem (MDTPPSR) in the literature.
Thus, the benchmark instances presented by [28] have been modified for our proposed
model. In this benchmark, the suppliers’ and depots’ integer coordinates are randomly
generated in a [0, 1000]× [0, 1000 ] square according to a uniform distribution. Moreover,
routing costs are computed by Euclidean distances through the EUC_2D function from
TSPLIB [54]. The product’s demand is unitary [28].

After calculating the distance matrix of n city, |D| different points from the |V| points
are randomly selected as the depots. Each product k is randomly associated with |Sk|
selected suppliers, where |Sk| is randomly generated in the interval [1, |S| ]. For each
product k and each supplier i, the prices pik are selected in the interval [1, 200 ] according
to a discrete uniform distribution.

To generate the required products of each depot, without a loss of generality, the
members of the total product set P are numbered consecutively from the products of the
first depot to the products of the last depot. Let |P| be the total number of products (the
products of all depots). In our instance set, we choose (|D| − 1) separators such that the
places of these separators are randomly generated in the interval (2, |P| − 1) according to a
discrete uniform distribution. The products of each subsection (created by the separators)
yield the required products of each |D| depot.

6.2. Computational Results

In this part, the proposed heuristic algorithm for the Multi-Depot TPP under Shared
Resources is compared to the individual case in which each purchaser performs its pur-
chasing on its own. This is primarily done to compare the cost-savings achieved for whole
purchasers by using shared resources. Before this comparison, in order to analyze the
function of our proposed heuristic algorithm, some random problems have been generated,
and the results are compared with the exact Branch and Cut (B&C) technique of the IBM
ILOG CPLEX 12.6 solver [55]. It should be mentioned that CPLEX 12.6 is one of the versions
of IBM ILOG CPLEX Optimization Studio that is a well-known commercial optimization
software package [56].

The results are shown in Table 5. As can be seen, the proposed algorithms achieve
an acceptable performance; in most instances, the gap in the percentage of the CPLEX
between our algorithm and B&C is less than 1%. From the perspective of CPU time, our
proposed algorithm reaches the optimal (near-optimal) solution in considerably less time.
In fact, by increasing the sizes of the problems, the CPU time of B&C technique increases
exponentially. Meanwhile, when increasing the sizes of the problems, the B&C cannot reach
the solution in a reasonable time. However, our algorithm is capable of finding the solution
in an acceptable time. For example, in instance number 7, the time required to reach the
near-optimal solution (with an optimal gap of 0.7%) is less than one minute, while this time
in the exact method is about two hours.
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Table 5. Computational results obtained through the proposed heuristic algorithms and the branch
and cut method in CPLEX.

Row Instance Heuristic
Result

CPU Time of
Heuristic (s)

Exact Result of
CPLEX

CPU Time of
CPLEX (s)

Optimality
Gap (%)

1 V10-d3-s7-p15-park2 4061.43 7.42 4046.94 13.49 0.03

2 V10-d3-s7-p25-park2 5025.65 17.65 4980.83 25.68 0.91

3 V10-d4-s6-p15-park2 3871.5 21.14 3871.99 39.77 0

4 V10-d5-s5-p15-park2 4971.12 47.65 4971.23 421.16 0

5 V10-d5-s5-p25-park2 6189.03 63.08 6105.38 6540.26 1.37

6 V11-d5-s6-p15-park2 4263.71 50.64 4193.26 6103.78 1.68

7 V11-d6-s5-p15-park2 5313.46 57.13 5276.53 6973.13 0.7

8 V12-d5-s7-p15-park2 4463.98 70.34 4376.45 4920.37 2

9 V13-d5-s8-p15-park2 4671.33 53.67 4246.67 5451.74 1.01

10 V15-d5-s10-p15-park2 4346.14 61.73 Out of memory 866 -

As mentioned earlier, when increasing the sizes of the problems (especially the number
of purchasers), the exact method of CPLEX is not capable of finding the optimal solution.
So, in order to compare the results of our proposed collaborative model with the individual
case, the performance of the decomposed heuristic-based algorithm (with and also without
two improving heuristic algorithms) is compared with multi-independent TPPs. Note that
individual cases are solved optimally via CPLEX 12.6.

The computational results are presented in Table 6, where the columns show the
problem’s size and its specifications. For example, in V10-d3-s7-p15-park2, the numbers
of depots and all suppliers are three and seven, respectively. Therefore, the number of all
nodes (depots and suppliers) is 10. p15 refers to the total number of all required products.
Finally, park2 means that the parking spaces of each depot are assumed to number two.
The column “Phases 1 and 2 (without heuristic)” and “Phases 1 and 2 (with heuristic 1
and 2)” denotes the total cost of all purchasers, calculated from the proposed two-phase
decomposition algorithm without and with improving heuristics. As described in Section 5,
the MDTPPSR is first solved through two phases, and then, to improve the quality of the
solutions, two types of heuristic algorithms are applied to it. In Table 6, the two columns
of saving A and saving B refer to the cost-savings of the two phases without and with the
implementation of heuristic algorithms. The cost-saving percentage in columns 5 and 7 is
calculated as follows:

SH1 =
OF_MDTPP−OF_MDTPPSR

OF_MDTPP
(50)

where SH1 is the total of the heuristic one, and OF_MDTPPSR and OF_MDTPP are the
objective values of the MDTPPSR and MDTPP, respectively. Note that these cost savings
are compared with their corresponding individual cases, whose costs are shown in the
last column. Moreover, we calculated the total number of dispatched vehicles in the
collaborative structure. Cleary, in individual cases, all vehicles are sent from their depots.

Based on the results, the average cost-saving achieved by phases 1 and 2 (without
applying heuristic algorithms) is about 11.96%. Meanwhile, in 69% of instances, the
proposed phases 1 and 2 algorithms solely help to reduce the total purchasers’ costs
compared to individual cases. However, in some instances, the two-phase algorithm was
not able to save cost compared to the classical TPP problem (the equivalent individual
forms). However, when applying two types of improvement heuristics, the total cost
decreased, and more cost savings were achieved. On average, applying heuristic type one
(H1) leads to a 13.70% cost saving. This saving increases up to 16.87% when heuristic type
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two (H2) is applied. The maximum savings achieved when applying heuristic type one
(H1) and type two (H2) are, respectively, 26.42% (case 6) and 29.11% (case 13).

Table 6. Computational results.

Row Instance
Phases 1 and 2

(without
Heuristic)

Number of
Dispatched

Vehicles

Saving A
(without

Heuristic)

Phases 1 and 2
(with Heuristic

1 and 2)

Saving B (with
Heuristic 1 and 2)

Independent Case
(Collaboration = 0)

1 V10-d3-s7-p15-
park2 4594.4 2 out of 3 9.03% H1 + = 4061.11

H2 ++ = 4416.40
SH1 * = 19.60%
SH2 ** = 12.56% 5050.5

2 V10-d5-s5-p15-
park2 5170.11 2 out of 5 13.20% H1 = 5075.80

H2 = 4971.11
SH1 = 14.78%
SH2 = 16.53% 5956.08

3 V10-d5-s5-p20-
park2 5719.6 2 out of 5 22.81% H1 = 5713.60

H2 = 5332.69
SH1 = 22.88%
SH2 = 28.02% 7409.36

4 V15-d5-s10-
p15-park2 4909.1 2 out of 5 −5.41% * H1 = 4836.30

H2 = 4346.14
SH1 = −3.85% *

SH2 = 6.68% 4657.09

5 V15-d5-s10-
p25-park2 9329.53 5 out of 5 0.10% H1 = 9280.54

H2 = 7837.82
SH1 = 0.61%

SH2 = 16.07% 9339.13

6 V20-d5-s15-
p15-park2 4264.49 2 out of 5 25.32% H1 = 4201.50

H2 = 4126.16
SH1 = 26.42%
SH2 = 27.73% 5710.15

7 V20-d10-s10-
p25-park2 9302.47 5 out of 10 9.30% H1 = 9266.47

H2 = 8112.27
SH1 = 9.65%

SH2 = 20.90% 10,256.65

8 V25-d10-s15-
p25-park2 7512.26 5 out of 10 9.44% H1 = 7512.26

H2 = 6397.76
SH1 = 9.44%

SH2 = 22.87% 8295.14

9 V25-d10-s15-
p35-park2 8920.15 5 out of 10 1.17% H1 = 8920.10

H2 = 7821.83
SH1 = 1.17%

SH2 = 13.34% 9026.05

10 V25-d5-s20-
p20-park2 4523.68 3 out of 5 −1.98% * H1 = 4235.23

H2 = 4068.62
SH1 = 4.51%
SH2 = 8.27% 4435.67

11 V30-d10-s20-
p25-park2 8873.24 5 out of 10 −9.99% * H1 = 6094.34

H2 = 8691.45
SH1 = 24.45%

SH2 = −7.73% * 8067.68

12 V30-d10-s20-
p40-park2 14,090.22 7 out of 10 −18.48% * H1 = 14,041.01

H2 = 11,619.46
SH1 = −18.06% *

SH2 = 2.30% 11,892.48

13 V35-d10-s25-
p20-park2 5436.02 4 out of 10 21.53% H1 = 5353.12

H2 = 4911.17
SH1 = 22.73%
SH2 = 29.11% 6927.85

14 V35-d5-s30-
p20-park2 4018.29 3 out of 5 14.14% H1 = 3990.69

H2 = 3910.78
SH1 = 14.73%
SH2 = 16.44% 4680.12

15 V30-d15-s15-
p20-park2 9546.97 10 out of 15 5.55% H1 = 9380.82

H2 = 7440.36
SH1 = 7.19%

SH2 = 26.38% 10,107.45

16 V35-d15-s20-
p30-park2 12,556.9 8 out of 15 −22.05% * H1 = 12,443.30

H2 = 9691.02
SH1 = −20.94%

SH2 = 5.81% 10,288.3

The negative sign in column 5 shows there is no saving in total cost. +: Total cost from heuristic one (changing
supplier with another supplier); ++: Total cost from heuristic two (changing the route of a supplier); *: Saving
derived from heuristic one (compared to individual case); **: Saving derived from heuristic two (compared to
individual case).

From the data in Table 5, it can be inferred that applying the heuristic H1 to the
primary algorithm (the two-phase algorithm) improves the cost-saving percentage by up to
1.6%. However, when the second type of heuristic is applied to the primary algorithm, the
improvement is about 8.94%. These results accentuate the importance of choosing suitable
collaborator carriers to total purchasers’ costs. In other words, a supplier that used to be
visited by the vehicle of a specific purchaser is visited by another purchaser’s vehicle, with
the exchange likely affecting the whole structure of collaboration.

Based on the results, it can be concluded that the number of potential collaborators
(and equivalently, the number of purchasers) has a remarkable effect on the total saving
achieved through collaboration. Figure 7 shows a downward trend in saving percentage
with an increase in the number of purchasers. Furthermore, comparing these three solution
methods highlights the superior performance of the last solution algorithm (phases 1 and 2
with heuristic H2) regarding total cost-saving.
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Another positive aspect of using shared resources is the reduction in the number of
dispatched vehicles, which helps to reduce the cost of vehicles (the fixed and operation
costs) on the one hand, and protect the environment by emitting fewer pollutants into the
atmosphere on the other hand. As can be seen, using about half of the available vehicles
is sufficient to enable the purchasing of all the purchasers’ products at a lower total cost
(Figure 8).
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7. Sensitivity Analysis

A sensitivity analysis has been performed in order to study the behavior of the mathe-
matical model. So, in the first part of this section, we show the effect of collaboration rate
on the problem structure, and then in the second part, we present some theoretical analyses
for determining the optimal range of the partial collaboration rate. Moreover, we calculate
the minimum number of required vehicles in the case of partial collaboration.

7.1. Sensitivity Analysis of the Collaboration Rate

In this section, we try to investigate the behavior of our proposed model by changing
the collaboration rate. The problem size is as follows: |V| = 5, |D| = 2, |S| = 3, |P1| = 4 ,
and |P2| = 3. Figure 8 demonstrates how all purchasers’ network costs will change with a
decrease in the rate of allowed collaboration between different purchasers.

As the collaboration rate decreases, the feasible solution space is limited, and the total
cost increases. However, as shown in Figure 9, an optimal range in the collaboration rate
can be considered in the range [0.57, 1]. Thus, if some purchasers resist full collaboration,
the central manager can determine a partial collaboration range with the same optimality as
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the full collaboration. For instance, there might be cases when a certain purchaser is willing
to collaborate with other purchasers but not all purchasers, due to strong competition.
In other words, in the case of full collaboration, a purchaser’s vehicle might have to
carry others’ products, even without carrying one product of its own, likely causing an
increase in the purchaser’s dissatisfaction with the collaboration structure. So, as members’
satisfaction is a fundamental factor contributing to the success of every collaboration
structure, the central decision-maker should implement a collaboration structure that can
satisfy the purchasers; thus, when some purchasers are opposed to full collaboration, the
central decision-maker can analyze the sensitivity of the collaboration rate and offer the
appropriate range of collaboration.
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7.2. The Optimal Range of the Partial Collaboration Rate

As mentioned earlier, clearly, the optimal solution is achieved through full collab-
oration. However, the optimal range of the collaboration rate that leads to the optimal
solution can be achieved by having the optimal answer. For simplicity, the number of
the corresponding products of depot k that are carried by vehicle k is shown by Y, and X
denotes the products of the other depots that are carried by vehicle k. Additionally, α is the
symbol of the collaboration rate of each vehicle. Using Equation (15) in our problem, the
lower bound of y1

1 + y2
2 can be calculated as follows:

(y1
1 + y2

2) ≥ (1− α)(|P1|+ |P2|) (51)

yd
d is the number of products from depot d carried by its vehicle. With some calculation,

we achieve:
1− α

α
(x1

2 + x2
1) ≤

(
y1

1 + y2
2

)
(52)

So, by considering the lower limit of Equation (51), we should derive:

1− α

α
(x1

2 + x2
1) ≥ (1− α)(|P1|+ |P2|) (53)

Since the optimal solution is calculated based on full collaboration, clearly, α > 0.5. By
simplifying the above equation, the lower bound of the collaboration rate can be calculated
as follows:

α ≥
(x1

2 + x2
1)

(|P1|+ |P2|)
(54)

So, in this example, the optimal range of the collaboration rate can be considered to lie
in the range [0.57, 1]. Moreover, when the collaboration rate is above 0.57, only one vehicle
can load the products of both purchasers. Generally, in a problem with n purchasers and an
α collaboration rate, we concluded that the minimum required vehicles can be calculated
based on the following formulation (the proof is presented in Appendix A):



Sustainability 2022, 14, 10190 22 of 26

i f ∃i ∈ D : |Pi| ≥ 1−α
α ∑

j!=i

∣∣Pj
∣∣→ the minimum required vehicles : 1

Else
i f ∃i, j ∈ D, i 6= j : |Pi|+ |Pi| ≥ 1−α

α ∑
k!=i,j
|Pk| → the minimum required vehicles : 2

Else
. . .

i f ∃i1, i2, . . . , iT ∈ D, iu 6= iv ∀u, v :
T
∑

s=1
|Pis | ≥ 1−α

α ∑
k!=(i1,i2,...,iT)

|Pk| → the minimum required vehicles : T

(55)

8. Conclusions and Suggestions for Future Research

In this paper, we present a collaborative structure between different purchasers for
the sustainable development of the procurement network. For this purpose, a new variant
of the Multi-Depot TPP was presented as a Multi-Depot Travelling Purchaser Problem
under Shared Resources (MDTPPSR). In the classical TPP, each purchaser buys its required
products individually. Each purchaser might incur extra costs in this independent structure
thanks to vehicle underutilization, and additional transportation and purchasing costs.
Thus, a new type of TPP wherein multiple purchasers can purchase their products using
others’ vehicles is presented in this paper. In our model, the whole network of purchasers
is more efficient, and the total cost decreases as well. In this collaborative network, a
novel routing problem has been developed as a Multi-Trip, Open Vehicle Routing Problem;
according to this problem, despite using shared vehicles, each depot’s vehicle is allowed to
park in other depots’ parking spaces without returning to its initial depot. Our proposed
model works in the forms of both full and partial collaboration. As the names suggests, in
the former case, every form of collaboration is allowed. However, in the latter, a purchaser’s
vehicle can load other purchasers’ products only if it loads a portion of its products as well.

Given the highly complex nature of the proposed MDTPPSR, a decomposition-based
algorithm has been presented in the case of full collaboration. Then, to improve the
quality of the solutions, two types of insertion heuristic algorithms were suggested that
amend the decisions made in the decomposition algorithm. The results indicate that
applying the decomposition-based algorithm can reduce the total cost by up to 22.81%.
Moreover, applying two types of improving heuristic algorithms (H1 and H2) can lead to
cost-savings of up to 26.42% and 29.11%, respectively. Moreover, by using shared resources,
the number of required vehicles is decreased significantly, which has a great impact on
the sustainability of the network of purchasers. In addition, it can be inferred that the
number of potential collaborators has a notable effect on the total saving achieved through
collaboration; as the number of purchases increases, the total cost saving decreases. It
should be noted that partial collaboration is much more complex than full collaboration,
and some theoretical formulations for calculating the minimum number of required vehicles
have been developed.

As regards future research, various extensions can be suggested. First, since our
proposed topic has been presented in a centralized collaborative framework, it seems
necessary to find a means for cost allocation among different purchasers. A review of cost
allocation methods has been presented in [47], and the interested readers can refer to it.

Another attractive field of research is to consider quantity discount policies offered
by potential suppliers. In this way, different purchasers can aggregate their demands to
benefit from discounted prices. Fair profit-sharing among buyers can be a strong incentive
for buyers to work on collaborative logistics. However, some uncertain changes in the
business environment (such as changes in purchasers’ demands or products’ prices) could
have negative impacts on joint structure. Therefore, future research could provide a
comprehensive model considering the above-mentioned elements.
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Appendix A. The Proof of Minimum Required Vehicles in Partial Collaboration

As mentioned in Equation (15), the collaboration structure is determined by:

∑
p∈P

∑
d 6=k

∑
i∈Ip

zk
p,d,i ≤ αk × ∑

p∈P
∑
d

∑
i∈Ip

zk
p,d,i ∀k ∈ K (A1)

As mentioned earlier, for simplicity, for each vehicle k (depot k), the number of
corresponding products of depot k carried by vehicle k is shown by Y, and the number of
products of other depots carried by vehicle k is denoted by X.

Xk ≤ α
(

Xk + Yk
)
→ Xk ≤ α

1− α
Yk ∀k ∈ K (A2)

Considering xk
m (m 6= k) as the number of products of depot m carried by a vehicle of

depot k, in a network with three depots, we have the following.
Carrier vehicle—vehicle 1 for depot 1

x1
2 + x1

3 ≤
α

1− α
y1

1 (A3)

Carrier vehicle—vehicle 2 for depot 2

x2
1 + x2

3 ≤
α

1− α
y2

2 (A4)

Carrier vehicle—vehicle 3 for depot 3

x3
1 + x3

2 ≤
α

1− α
y3

3 (A5)

By summation of the above equations, we have:

x1
2 + x1

3 + x2
1 + x2

3 + x3
1 + x3

2 ≤
α

1− α
( y1

1 + y2
2 + y3

3) (A6)

Consider the set of P consisting of the products of all depots:

P = {p1, p2, . . . , pd1︸ ︷︷ ︸
|P1|

, pd1+1, . . . , pd2︸ ︷︷ ︸
|P2|

, .., pdn−1+1, . . . , pdn︸ ︷︷ ︸
|Pn |

} (A7)

where |Pi| is the number of products of depot i (di). We know:

x2
1 + x3

1 + y1
1 = |P1| → x2

1 + x3
1 = |P1| − y1

1

x1
2 + x3

2 + y2
2 = |P2| → x1

2 + x3
2 = |P2| − y2

2

x1
3 + x2

3 + y3
3 = |P3| → x1

3 + x2
3 = |P3| − y3

3

(A8)
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By replacing the above formulations in Equation (A6), the equivalent equation is
calculated as follows:(

|P1| − y1
1

)
+
(
|P2| − y2

2

)
+
(
|P3| − y3

3

)
≤ α

1− α
( y1

1 + y2
2 + y3

3) (A9)

or
( y1

1 + y2
2 + y3

3) ≥ (1− α)(|P1|+ |P2|+ |P3|) (A10)

Generally, for a problem with n depots, we can conclude Equation (A11):

( y1
1 + y2

2 + . . . + yn
n) ≥ (1− α)(|P1|+ |P2|+ . . . + |Pn|) (A11)

and we thus know that

y1
1 ≤ |P1|, y2

2 ≤ |P2| . . . , yn
n ≤ |Pn| (A12)

By considering Equations (A11) and (A12), we can calculate the minimum number of
required vehicles based on Equation (A13):



i f ∃i ∈ D : |Pi| ≥ 1−α
α ∑

j!=i

∣∣Pj
∣∣→ the minimum required vehicles : 1

Else
i f ∃i, j ∈ D, i 6= j : |Pi|+ |Pi| ≥ 1−α

α ∑
k!=i,j
|Pk| → the minimum required vehicles : 2

Else
. . .

i f ∃i1, i2, . . . , iT ∈ D, iu 6= iv ∀u, v :
T
∑

s=1
|Pis | ≥ 1−α

α ∑
k!=(i1,i2,...,iT)

|Pk| → the minimum required vehicles : T

(A13)

As mentioned earlier, in the case of partial collaboration, if a depot’s vehicle is dis-
patched, it has to carry some of its own depot’s products (Equation (A11)). However,
by no means does it suggest that all depots’ vehicles have to be dispatched; based on
Equation (A13), in a network with n purchasers intending to collaborate, one vehicle might
be able to carry the products of its own depot and those of others.
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