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Abstract: Key message: Overexpression of OsiSAP8 driven by Port Ubi2.3 from Porteresia coarctata
imparts drought and salinity stress tolerance in transgenic rice. Stress associated proteins (SAPs)
possess the zinc-finger domains that are wildly evolving functional and conserved regions/factors
in plants to combat abiotic stresses. In this study, the promoter region of OsiSAP8, an intron-less,
multiple stress inducible gene, was compared in silico with a strong constitutive promoter, Port Ubi2.3.
This resulted in developing rice, resistant to drought and salinity expressing OsiSAP8 promoted by
Port Ubi2.3. (Porteresia coarctata), through Agrobacterium-mediated transformation in the popular rice
varieties, IR36 and IR64. Southern blot hybridization confirmed the integration of OsiSAP8, and the
T0 transgenic lines of IR36 and IR64 were evaluated for their drought and salinity tolerance. The
IR36-T1 progenies showed an enhanced tolerance to water withhold stress compared to wild type
and IR64-T1 progenies. Physiological parameters, such as the panicle weight, number of panicles, leaf
wilting, and TBARS assay, showed the transgenic IR36 to be superior. The transgenic lines performed
better with higher 80–95% relative leaf water content when subjected to drought for 14 days. Gene
expression analysis of OsiSAP8 in IR36 T1 showed a 1.5-fold upregulation under mannitol stress.
However, IR64 T1 showed a two-fold upregulation in NaCl stress. An enhanced drought and salinity
stress tolerance in the transgenic IR36 cultivar through overexpression of OsiSAP8 was observed as
it had a native copy of OsiSAP8. This is perhaps the first study using a novel ubiquitin promoter
(Port Ubi2.3) to generate drought and salinity stress-tolerant transgenic rice. Thus, we report the
overexpression of a rice gene (OsiSAP8) by a rice promoter (Port Ubi2.3) in rice (IR36) to resist drought
and salinity.

Keywords: abiotic stress; IR36; OsiSAP8; Port Ubi2.3; promoter; zinc-finger protein

1. Introduction

Rice (Oryza sativa L.), being the most popular and domesticated kharif crop, is the
staple source of carbohydrate to nearly half of the world’s population [1–4]. The sessile and
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acquiescent nature of higher plants makes them prone to various biotic and abiotic cues.
Such environmental stresses constrain their growth, resulting in a reduced yield and quality.
Drought and salinity are the major stresses that affect almost 50% of the crop production
worldwide [5,6]. Since the 1960s, the rice trait/breed perfection has been performed by the
incorporation of different candid genes. With the advent of the green revolution and the
development of the semi-dwarf rice IR8 using the sd-1 gene, there was a substantial increase
in the rice grain yield leading to new horizons in rice research [7,8]. During the second
segment of the green revolution, elite rice varieties, such as IR36 and IR64, were developed.
IR36, the most cultivated rice variety (11 million hectares/year), is a semi dwarf type
containing the defective semi-dwarfing allele (sd-1) [9] with a faulty gibberellin 20-oxidase
gene which might be due to gene introgression [10] and led to the drought susceptibility [11].
Certain key elements, such as DRE/CRT-binding transcription factors (TF) (DREBs/CBFs),
mitogen-activated protein kinases (MAPKs), and heat shock factor/proteins (HSF/HSPs),
are highly conserved in plants with respect to abiotic stresses [12–14]. Many vital proteins
are produced that are regulated by key TF that contemplate stress tolerance [15]. Such
proteins have been reported to act on other systems, e.g., bacteria and animals, and play a
key role in the immune response [16–18].

Dixit et al. (1990) first reported the A20 zinc-finger domain and multiple cys2/cys2
motifs from human endothelial cells at the C-terminus part of TNFα [19]. The Interna-
tional Rice Genome Project [20] and the genome-wide analysis of these proteins report the
presence of 18 members of the A20/AN1 -type zinc finger domain proteins [20,21]. These
proteins were categorized for their protagonist role in the immune response and hence
associated with multiple abiotic stresses [20,22–24]. OSiSAP1 was classified to be a multiple
stress responsive gene coding Stress Associated Protein (SAP) [25,26]. Transgenic tobacco
plants expressing OSiSAP1 were tolerant against dehydration, salinity, and cold stress.
Jin et al. (2007) [27] reported that a large number of these genes are involved in the abiotic
stress response, thus signifying the importance of the A20/AN1-type zinc-finger proteins
in combating stress. Although the abiotic stress tolerance mechanism is well known, their
induction by multiple stresses is poorly understood [28]. Sharma et al. (2015) studied the
expression of OSiSAP7 on Arabidopsis thaliana with respect to abscisic acid (ABA) stress
and their twin localization was observed in the nucleus and subcellular granules. The
involvement of the E3 ubiquitin ligase activity was observed on YFP-tagged OSiSAP7
overexpression which led to ABA insensitivity on water deficit stress [21]. Kanneganti and
Gupta (2008) reported OsiSAP8 from IR50 to be a single copy intronless gene conferring
tolerance to numerous abiotic stresses such as salinity, heat, cold, dryness, submergence,
wounding, abscisic acid, and some heavy metals, e.g., zinc, copper, cadmium, and lithium.
Salination of soil affects about half of the global crop production [29]. The use of an appro-
priate promoter is a prerequisite for an efficient gene expression [28]. CaMV 35S promoter,
though routinely used for heterologous transformation [30], confers a lower expression in
monocots [31]. Rice Act1 [32,33] and maize Ubi1 [34] are the predominantly used monocot
promoters. Port Ubi2. promoter derived from P. coarctata is a salt secreting halophytic wild
rice that thrives in the coastal-riverine interface [35,36]. Recent reports on overexpressing
DNA helicase (PDH45), co-transformation of DREB (EaDREB2 from Erianthus arundinaceus)
with DNA helicase or expressing heat shock protein (EaHSP70 from E. arundinaceus) driven
by Port Ubi2.3 have been successfully validated in sugarcane, which gave the maximum
tolerance against salt and drought stresses [37–39].

In this study, we report the overexpression of OsiSAP8 gene in IR36 and its superior
variety IR64, driven by a ubiquitin promoter from Porteresia coarctata, a stress-tolerant wild
rice. Port Ubi2.3 was reported to promote strong GUS expression in rice (monocot), nearly
sevenfold higher than the CaMV 35S promoter [40]. We also compared the expression of
OsiSAP8 and correlated the resistance to drought and salinity between wild type (WT) and
transgenic rice (IR36 and IR64), through various physiological and molecular parameters.
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2. Materials and Methods
2.1. Identification of OsiSAP8 Gene and Their Attributes in Rice

OsiSAP8 gene was subjected to Oryazabase to fetch the RAP ID, then RAP ID were
loaded onto RiceNetDB to retrieve the CDS coordinates, nucleotide and amino acid length,
chromosome number, molecular weight, probeset ID, Pfam ID, isoelectric point (pI), subcel-
lular localization, UniProtKB, KEGG, Ensemble, EMBL, Regulatory genes.

2.2. Gene Expression Analysis

OsiSAP gene RAP ID were loaded onto plant developmental and plant hormonal
datasets which are included in RiceXPro database [41] for analyzing the spatio-temporal
and plant hormonal expression patterns throughout growth in the natural field condition.

2.3. Protein-Protein Interaction of OsiSAP8

Molecular cross-talks of OsiSAP8 gene were analyzed by STRING v10.5 and the cross-
talks were used to understand the functional and physical associations of the candid gene
involved [42].

2.4. In Silico Analysis of OsiSAP8 Regulatory Region and Its Comparison with Port
Ubi2.3 Promoter

Phytozome (http://phytozome.jgi.doe.gov/pz/portal.html# accessed on 10 May 2022)
was used to retrieve the putative regulatory region of OsiSAP8 and the cis acting regulatory
elements were predicted by using PLACE database [43]. The transcription start site was
assigned based on the position of the predicted TATA box and the arrangement of cis-
regulatory elements was plotted using Cytoscape V 3.2.1 software [44]. In addition, the cis
regulatory elements pertaining to abiotic stresses and expression enhancement, present in
both OsiSAP8 and Port Ubi2.3 promoters were compared to obtain a better understanding
of their role in gene regulation.

2.5. Explant Source and Tissue Culture Processing

O. sativa L. ssp. Indica seeds of IR64 and IR36 were procured from the Tamil Nadu
Rice Research Station, Aduthurai, Tamil Nadu, India. The mature embryos of IR64 and
IR36 were processed and inoculated in the respective callus induction medium [45,46].
The cultures were incubated in dark (25 ± 2 ◦C) for 4 weeks and subsequently transferred
to a proliferation medium for 3 weeks. Friable, nodular, and embryogenic calli (4–5 mm
diameter) were used for the transformation experiments.

2.6. Vector Construction and Generation of Transgenic Rice

pCAMBIA1305.1 with the Port Ubi2.3 promoter was restricted with SpeI and PmlI to re-
place the GUS gene with the OsiSAP8 gene (Genbank Acc. No. AY345599) flanked with SpeI
and PmlI (5′ and 3′ ends respectively) synthesized in Bio Basic Inc. (Markham, ON, Canada).
The presence of the gene was checked using gene-specific PCR and confirmed by restriction
analysis. The plasmid construct was named as pCAM-Port2.3-OsiSAP8 and transferred to
LBA4404 [47] by triparental mating [48] for Agrobacterium-mediated transformation.

2.7. Generation of Rice Transgenics

The super virulent strain LBA4404 with the binary vector pCAM-Port2.3-OsiSAP8
was infiltrated in the mature seed derived nodular, friable, and embryogenic callus of
IR36 [45] and IR64 [46]; subsequently they were subjected to hygromycin (40 mg L−1)
selection. After two rounds of hygromycin selection, actively proliferating hygromycin
resistant calli were subjected to regeneration. The putative transgenic plantlets were then
transferred to a versatile plant growth chamber (SANYO) in Soilrite (Kel Tech Energies,
Pvt. Ltd. Bengaluru). Six-week-old WT and the transgenic rice (IR36 and IR64) were later
transferred to D-262 H AXIVA-plantation pots (Axiva Sichem Biotech, NSP, Delhi, India)
with garden soil:soilrite:farmyard manure (1:1:1) and established in a greenhouse. The

http://phytozome.jgi.doe.gov/pz/portal.html#
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OsiSAP8 gene integration was confirmed by DNA blot. The pots were watered until seed
setting and maturation. Later, the T1 seeds were harvested and analyzed for the presence
of transgene and subsequently tested for drought and salinity.

2.8. Molecular Analysis of Transgenic Plants and Events Selection

The genomic DNA of WT and the transgenic lines were isolated from the leaves
of the putative transgenics by CTAB [49] method and the integration of T-DNA in the
putatively transformed plantlets were determined by polymerase chain reaction (PCR).
Gene-specific primers for OsiSAP8 and hpt genes (Supplementary Table S1) were used for
PCR amplification in a programmable thermal cycler (Mastercycler gradient, Eppendorf,
Germany) under the following conditions. PCR was performed with a reaction mixture
containing 50 ng of DNA template, 2.5 µL of 10X PCR buffer, 1.5 µL of MgCl2 (1.5 mM), 2 µL
(20 pmol) of each primer, 0.625 µL of dNTPs mix (0.25 mM), 1.0 U of Taq polymerase and
made upto 25 µL with sterile nuclease free water. The PCR products (5 µL) were resolved
on an ethidium-bromide-stained 0.8% agarose gel and were visualized and photographed
using Gel Doc XR + (BIO RAD, Quarry Bay, Hong Kong).

2.9. Southern Blot Hybridization

To check the OsiSAP8 gene integration and the copy number, Southern blot hybridiza-
tion was performed. Twenty micrograms of genomic DNA from PCR-positive transgenic
IR36 and IR64 were digested with PmlI and BamHI respectively, resolved on 1% agarose
gel electrophoresis and blotted on BioBondTM Nylon transfer membrane (Sigma Aldrich,
Bangalore, India). The OsiSAP8 gene was amplified from pCAMBIA1305.1 and used as
probe to check the integration in transformed IR36 and IR64 lines. AlkPhos direct labelling
(AmershamTM, Citiva, New York, NY, USA) was used to label the probe as described by
Sambrook et al. [50] After hybridization for 16 h at 65 ◦C, the membrane was processed
with posthybridization buffers. The membrane was air dried, and the detection reagent
(AmershamTM CDP-StarTM, Citiva) was run over the membrane. The air-dried membrane
was kept for exposure on Amersham HyperfilmTM (Citiva) ECL in Amersham Hyper-
cassette Autoradiography Cassette. The film was developed using KODAK GBX Fixer
and Replenisher.

2.10. Segregation Analysis of T1 Progeny

Hundred seeds from the southern blot-positive T0 transformants from IR36 (T0–1 to
T0–5) and IR64 (T0–1 to T0–6) were germinated on half-strength MS medium incorporated
with 40 mg L−1 of hygromycin for 2 weeks. The data was observed and analyzed for
Mendelian style of inheritance. Further, segregation analyses on the hygromycin resistance
for T1 progeny (100 seeds) were done in accordance with the expected and observed
frequency and χ2 test was performed to confirm the Mendelian Law of segregation (3:1) in
all the five transgenics (T0).

2.11. Analysis of Abiotic Stress Tolerance in WT and T1 Lines

The T1 seeds of confirmed transgenic lines (T0) with a single copy transgene were
used for physiological and qPCR analysis.

2.12. Relative Leaf Water Content (RWLC)

The RLWC was calculated following the protocol described by [51]. Fresh weights of
the fully expanded leaves were noted and immersed in distilled water in petri dishes and
left for 2 h; later the leaves were blot dried and the turgid weight was noted. The samples
were then dried in an oven (70 ◦C) to a constant weight. Subsequently, RLW was calculated
using the following formula:

RLWC% = [(FW − DW)/(TW − DW)] × 100

where FW is the fresh weight; DW is the dry weight; and TW is the turgid weight.
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2.13. Visual Scoring on Stress Resistance

In the first set of experiments, the seeds (WT and T1) were sown in 7 cm (diameter) × 9 cm
(height) transparent plastic cups filled with 125 g of soilrite (pH 6 ± 0.5) with 75% humidity
and an average irradiance of 50 mmol m−2 s−1 was maintained in a versatile plant growth
chamber. It was ensured that the physiological conditions were the same for the experi-
mental set up. After germination and acclimatization for 45 days (d), the plantlets were
subjected to drought stress by withholding water and the day was noted as day 0. Through
a modified approach of [52], the leaves were visually scored for drought stress tolerance
by witnessing leaf wilting on the 7th and 14th days. Leaf wilting was scored with gauge
(1 = no wilting; 2 = marginal wilting; 3 = wilting, shown in leaves during hot hours which
later recovered; and 4 = chronic wilting, where leaves became pale and severe wilting was
observed). The stress assay was stopped, plants were irrigated after 14 days of water being
withheld, and the physiological parameters were observed.

2.14. Leaf Disc Bioassay

The leaf chlorophyll withholding capacity on IR36 and IR64 (WT and T1 lines) were
performed according to [53]. One cm leaf was cut from the second leaf and immersed in
half-strength MS medium supplemented with various concentrations of NaCl (100, 200,
300, 400, and 500 mM) for 7 days and the leaf bleaching was observed [54].

2.15. Effect of Mannitol on Plantlet Growth

Four-days-old, germinated seeds of transformed (T1 lines) IR36 and IR64 were trans-
ferred to half-strength MS medium with a varied concentration of mannitol (100, 200, 300,
400, and 500 µM). Later, the cultures were kept in vitro at 25 ± 2 ◦C in long daylight con-
ditions (16/8 h day/night photoperiod), with an average irradiance of 50 mmol m−2 s−1.
The physiological parameters were observed and recorded.

2.16. Thiobarbituric Acid Reactive Substances (TBARS) Assay

Leaf tissues (100 mg) were homogenized by adding 0.5 mL 0.1% (w/v) TCA and
centrifuged for 10 min (15,000× g, 4 ◦C). The supernatant was collected and 0.5 mL of
the supernatant was mixed with 1.5 mL 0.5% TBA diluted in 20% TCA. The mixture was
incubated in a water bath at 95 ◦C for 25 min and the reaction was stopped by incubating
on ice. The absorbance was measured at 532 nm and the results were expressed as µmol
MDA 100 mg−1 FW [55].

2.17. OsiSAP8 Gene Expression Analysis Using qPCR

The total RNA was extracted from the second leaf (100 mg), of 15 days old drought
and salinity treated transgenic (T1 lines) and non-transgenic (control) rice lines of IR36
and IR64, using TRI Reagent® (SIGMA-ALDRICH) and was treated with DNAse and
subsequently quantified using BioSpec-Nano. The RNA was then reverse transcribed
with 10× RT Buffer, 25× dNTPs Mix (100 mM), 10× oligodT primer and MultiScribeTM

Reverse Transcriptase, RNase inhibitor as per the manufacturer’s instructions by using
High-Capacity cDNA Reverse Transcription Kit (Applied-Biosystems, Waltham, MA, USA).
For qPCR analysis, OsiSAP8 gene-specific primers (Table S1) and housekeeping primer,
25SrRNA were used [56]. The fold difference in the expression (2−∆∆ct) was calculated by
comparative Ct value analysis with 25SrRNA normalization. [57].

2.18. Statistical Analysis

The Relative water content, Lipid peroxidation, Chlorophyll content, Mannitol stress,
and qPCR were done in biological and experimental triplicates, which were subjected to
one way analysis of variance (ANOVA) using IBM SPSS 20.0. Chi-square (χ2) test was done
manually to study the segregation ratio in T1 progeny (Pagano and Gauvreau 2004). Values
at p < 0.05 level of significance were used for mean comparison.
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3. Results
3.1. OsiSAP8 Gene Attributes

OsiSAP8 gene with their corresponding RAP-ID, CDS coordinates, nucleotide and
amino acid length, chromosome number, molecular weight, probeset ID, Pfam ID, pI,
subcellular localization, UniProtKB, KEGG, Ensemble, EMBL, Regulatory genes were
retrieved from Oryzabase and RiceNetDB (Table 1).

Table 1. OsiSAP8 gene and their molecular attributes.

Gene OsSAP8

Gene Synonym OsiSAP8; Osi-SAP8

CGSNL Gene Name Stress Associated Protein 8

MSU ID LOC_Os06g41010.1

RAP ID Os06g0612800

Chromosome Number 06

CDS Coordinates (5’-3’) 24491979–24494238

Nucleotide Length 516

Amino acid Length 172

Molecular Weight 18,402.1

Isoelectric Point 8.0476

Subcellular Localization Nucleus

Probeset ID Os.28384.1.S1_at

Pfam ID PF01754, PF01428

UniprotKB A3BDI8

Ensembl LOC_Os06g41010.1 LOC_Os06g41010.3 LOC_Os06g41010.4

Refseq NP_001058066.1

EMBL AP003626, AP003711, AP008212, CM000143

KEGG Osa: 4341520; dosa:Os06t0612800-01

Regulatory genes

Upstream genes

LOC_Os04g46390; LOC_Os05g38550; LOC_Os01g22010; LOC_Os05g28290;
LOC_Os03g18180; LOC_Os02g06640; LOC_Os05g01970; LOC_Os06g04030;
LOC_Os03g27310; LOC_Os03g01910; LOC_Os04g33830; LOC_Os05g40820;
LOC_Os01g59990; LOC_Os06g01210; LOC_Os06g05550; LOC_Os04g57220;
LOC_Os01g38620; LOC_Os04g46820; LOC_Os04g46810; LOC_Os04g44830;
LOC_Os05g07070.

Downstream genes

LOC_Os07g42300; LOC_Os12g02340; LOC_Os12g02310; LOC_Os11g02424;
LOC_Os11g02369; LOC_Os11g02400; LOC_Os06g46770; LOC_Os09g30438;
LOC_Os09g30418; LOC_Os09g30412; LOC_Os07g47640; LOC_Os12g02330;
LOC_Os10g34180; LOC_Os11g13850; LOC_Os07g33240; LOC_Os11g47760;
LOC_Os12g37650; LOC_Os11g47460; LOC_Os10g41410; LOC_Os09g30340;
LOC_Os07g12200; LOC_Os07g12170; LOC_Os08g44680; LOC_Os12g05430.

3.2. Spatio-Temporal and Plant Hormone Expression Analysis of OsiSAP8

OsiSAP8 and their developmental (Spatio-temporal) tissues specific expression signa-
ture was noted for 48 tissues and/or organs at various growth stages (Figure 1). OsiSAP8
gene revealed higher expression signature in multiple tissues and/or organs such as leaf
blade (reproductive—00:00), leaf sheath (reproductive—12:00; 00:00), Root (reproductive—
12:00; 00:00), stem (reproductive—00:00, ripening—00:00), embryo (14, 28, 42 DAF) and
endosperm (07, 10, 14, 28 and 42 DAF) (Figure 1) as imputed by RiceXPro. In addition,
this gene showed the hormonal signatures in various time intervals such as 1, 3, 6, 12 h
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and 15, 30 min, 1, 3, 6 h on shoot and root, respectively (Figures 2 and 3). Phyto-hormonal
expression signature of OsiSAP8 gene was expressed under field conditions. In shoot,
candidate gene showed an increased level of abscisic acid (ABA) (6 and 12 h) and negligible
levels of expression were observed in jasmonic acid (JA) (6 and 12 h) and auxin (3 and 6 h)
(Figure 2). In root, a negligible level of expression was observed in ABA (30 min), gibberellic
acid (6 h), and auxin (1 h) (Figure 3).
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3.3. Signalome of OsiSAP8 Gene

OsiSAP8 seed proteins were copied from O. sativa ssp. indica for signalome analysis.
Figure 4 revealed that OsiSAP8 gene had complexity and its proving quantitative and
multigenic nature.
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co-occurrence; pink color, experimentally determined. Protein nodes filled with ribbon like structure
indicates the availability of protein 3D structural information is predicted or known.

3.4. Comparative In Silico Analysis between Port Ubi2.3 and OsiSAP8 Regulatory Region

The regulatory elements of OsiSAP8 were grouped as tissue specific, biotic, and abiotic
stress and were plotted using Cytoscape V 3.2.1 (Figure 5). The presumed promoter region
of OsiSAP8 had putative core element TATA box, scattered all along the promoter region
at 7 places under bZIP protein binding site, light and anaerobic specific elements. A large
portion of these elements are involved in root and seed-specific expression. MYCCONSEN-
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SUSAT regions were found profoundly along a wide range in cold, drought, seed, and
osmotic regulatory regions that codes for protein binding factors like CBF1 and CBF3. PRE-
CONSCRHSP70A and heat shock factors (CCAAT box)/SE (heat shock element) regulate
the proteins required for developmental processes. The predicted elements were compared
with Port Ubi2.3 promoter wherein the CAATBOX (CAAT) functions as a quantitative
element. Apart to it presence of ARR1AT (NGATT) for salinity stress at 15 locations and
ACGTATERD (ACGT) for bZIP protein binding site at 4 locations are present along the
positive strand at both sides of TSS. Light regulative genes GT1CONSENSUS (GRWAAW)
elements of OsiSAP8 were predicted at 12 sites that have GT1 regulatory genes. Root-
specific elements, RAV1AAT, were predicted at three regions and these encode a novel
DNA-binding protein specific to the root and shoot system in higher plants. The OsiSAP8
regulatory region is devoid of MART Box and has only five NGATT regions that act as
enhancers as predicted by PLACE. Four drought specific cis-elements WAACCA are present
in the Port Ubi2.3 promoter as compared with only one element present on OsiSAP8 regu-
latory region. IBOX elements that are regulated by light and tissue specific responses are
scattered over four regions along the promoter region. In addition, TTWTWTTWTT (MART
Box) and NGATT that act as enhancers of transgene expression were present in three and
32 numbers respectively [58]. The dehydration stress specific regions MYB (CNGTTR)
and MYC (CANNTG) were predicted to be present at 18 and eight sites respectively thus
making it superior in promoting expression during abiotic stresses [40]. Hence, for the
present study, we used Port Ubi2.3 promoter to drive OsiSAP8 gene. A comparison between
OsiSAP8 and Port Ubi2.3 promoter core putative cis-elements is depicted in Table 2.

Table 2. A comparison of cis-acting elements identified using PLACE program in Port Ubi2.3 and
OsiSAP8 promoters.

Putative cis-Elements/Consensus Function/Response No. of Positions
References

Port Ubi2.3 OSiSAP8
ARR1AT (NGATT)

En
ha

-
nc

er
s Salinity stress 15 5 [59,60]

MARTBOX (GATAA) Scaffold attachment 3 0
ACGTATERD (ACGT)

A
bi

ot
ic

st
re

ss

bZIP protein binding site 4 2 [61]
CAATBOX (CAAT) Quantitative element 4 12 [62]
GATABOX (GATA) Light responsive 8 4 [63]
GT1 (GRWAAW) Light responsive/cell type specific 9 12 [64]
IBOX Light regulated and tissue specific 4 4 [58]
MYB (CNGTTR) Dehydration stress 18 1 [65]
MYC (CANNTG) Dehydration stress 8 53 [66]

DOFCOREZM (AAAG)

Ti
ss

ue
sp

ec
ifi

c

Signal responsive and/or tissue
specific gene expression 4 0 [67]

CACTFTPPCA (YACT) Mesophyll specific 17 10 [68]
WBOX (TGACT) Wound responsive 2 0 [69]
GTGANTG (GTGA) Pollen specific 5 6 [70]
WRKY (TGAC)

Bi
ot

ic
St

re
ss Pathogen responsive 2 9 [71]

EBOX (CANNTG) Plant pathogen interaction 1 43 [72]
Equal Greater Lesser
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3.5. Genetic Transformation with Port Ubi2.3-OsiSAP8 Gene and Molecular Analysis of
Transgenic Plants

The OsiSAP8 gene was sub-cloned in the T-DNA region of pCAMBIA 1305.1 driven by
the Port Ubi promoter (2.3 kb) using SpeI and PmlI devoid of GUS reporter gene (Figure 6).
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The hygromycin resistant calli (Figure 7a,f) were efficiently regenerated on a half-strength
MS [73] medium (Figure 7b,g) and shoots developed efficiently on the shoot induction
medium (Figure 7c,h). The transgenic lines appeared normal with well-acclimatized roots
and shoots (Figure 7d,i). Further, the gene-specific PCR confirmed the presence of the
transgene and hpt. The positive transformants were hardened to get T1 seeds of IR36 and
IR64 (Figures 7e,j and 8a,b).
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Figure 7. Overall workflow: Generation of OsiSAP8 transgenic rice. Gene transfer process in (a–e): IR36
and (f–i): IR64. (a,f) Transformed callus kept for secondary selection in hygromycin medium, (b,g) ef-
ficiently regenerated callus with shoot primordia, (c,h) shoot development in half MS medium,
(d,i) well developed plantlet with acclimatized roots and shoots, (e,j) harvested seeds from hardened
transgenic rice (T0) established in shade house.
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Figure 8. Transgenic rice. 145-days-old transgenic and WT rice. (a) IR36. (b) IR64. The transformed
plantlets were transferred to the plantation pots.

3.6. Southern Blot Hybridization and Segregation Analysis of T1 Progeny Plants

The stable integration of the OsiSAP8 genes in randomly selected putatively trans-
formed T0–1 to T0–5 (IR36) and T0–1 to T0–6 (IR64) plants were confirmed by Southern blot
analysis. Molecular evidence and the number of copies of gene integration were shown in
Figure 9a,b. The T1 progenies were used to check the hygromycin resistance to discriminate
the transgene carrier and a non-carrier. The observed Chi-square (χ2) value correlated
with Mendelian segregation (3:1) on the basis of the expected and observed frequencies
(Table 3). The resistant T1 seeds grew normally when compared with the non-transgenic,
which stopped germinating after the coleoptile growth or did not germinate and resulted
in the browning of the embryo. The observed segregation ratio was reliable in three of the
six transgenic lines with a single T-DNA insertion locus in IR64 T1, whereas the other two
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progenies of IR36 T1 showed the expected monogenic segregation ratio of 3:1 (Table 3). The
χ2 values of all that lines which had a two copy of transgene were found non-significant
(p < 0.5), indicating a variation between the observed and the expected frequencies. How-
ever, the IR36 T1 that had more than two transgene loci showed a ratio of 3:1.
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Figure 9. DNA blot analysis: Validating OsiSAP8 gene integration. (a) Lane 1. Plasmid control-
pCAM-Port2.3-OsiSAP8, Lanes 2–6. IR36 T0 lines, Lane 7. WT IR36; (b) Lane 1. WT IR64, Lane 2.
Plasmid control- pCAM-Port2.3-OsiSAP8, Lanes 3–8. IR64 T0 lines.

Table 3. Segregation analysis of T1 progeny plants.

T0 Plants T1
Progeny

No. of
Copies

Hygromycin
Resistant

Hygromycin
Susceptible χ2sum

Likelihood of p
According to χ2 Test

Segregation
Ratio

IR36-T0
Lines

T0–1 2 78 24 0.16 >0.75 3.2:1
T0–2 1 79 21 0.853333333 >0.5 3.8:1
T0–3 2 79 21 0.853333333 >0.5 3.8:1
T0–4 2 83 17 3.413333333 <0.05 4.9:1
T0–5 1 76 24 0.053333333 >0.90 3.2:1

IR64-T0
Lines

T0–1 2 75 25 0 0.99 3.0:1
T0–2 2 80 20 1.333333333 >0.25 4.0:1
T0–3 2 80 20 1.333333333 >0.25 4.0:1
T0–4 2 79 21 0.853333333 >0.5 3.8:1
T0–5 1 77 23 0.213333333 >0.75 3.3:1
T0–6 1 76 24 0.053333333 >0.90 3.2:1

Deviation from monogenic segregation (as shown by χ2 test) was only significant among all the progeny. Deviation
from monogenic segregation (as shown by χ2 test) was only significant among all the progeny. (df = 1, p = 0.05).

3.7. Relative Leaf Water Content

The IR36 T1 lines could maintain 76–92% RLWC on day 7 (Figure 10), which was
superior to IR64 (T1 lines) that had just 40% of events and could maintain a level of 75–85%
RLWC. As the stress increased, a change in the RLWC value was observed. IR64 (T1 lines)
showed a decline in RLWC in 46% of events tested but only 26% of IR36 (T1) showed
reduction in RLWC. Eighty percent of the IR36 T1 events had above 80–95% RLWC, which
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declined up to 60–75% on the 14th day of stress. IR36 (T1 lines) reasonably maintained a
higher RLWC. The factors observed were correlated with leaf wilting (Table 3).
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Figure 10. Relative leaf water content. Relative leaf water content in 15 transgenic events and WT
of IR36 and IR64 after water withholds. Comparison with the untreated wildtype and transgenic.
* indicates significance at the level of p < 0.5.

3.8. Visual Scoring on Stress Resistance

Fifteen plantlets were randomly used for this experiment of which the IR64 WT
(4, 10, and 11) succumbed to death (Table 4). The IR36 T1 lines were stable or slightly wilted
during the second week of water-drought stress. Other features such as the number of tillers,
panicles, and the average total grain weight per tiller were also assessed (Figures 11 and 12).
By the 14th day, 40% of IR36 showed severe wilting and 20% of IR64 succumbed to death;
there was a corresponding variation in the IR36 and IR64 transgenic events. Eighty percent
of the IR36 T1 transgenics showed slight wilting, with a corresponding good tiller setting
in them after 14 days of water withholding and yielded 13 g/tiller as total grain weight.
However, the IR64 lines had only 66% of events that were slightly wilted after which the
tillers were set and thus resulted with only 8 g/tiller.
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Figure 11. Water withhold stress on wildtype and transgenic (T1) plants. The 45-days-old mature
plantlets were analyzed for water deficit for 14 days. (a,b) Transgenic (T1) IR36 and IR64, respectively.
(a5,b1,b2) showing the panicles set for seed filling, (c,d) WT IR36 and IR64 respectively.
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Table 4. Visual scoring of OsiSAP8 transgenic events upon water deficit stress.

Grouping Wilting Phase Distinctive Visual Features

1 Normal (Not Wilted) No signs of wilting or drought stress
2 Slightly Wilted Slight leaf angle changes but no folding, rolling or changes in leaf surface structure
3 Wilted Strong leaf angle change but no cell death

4 Severely Wilted Very strong change of leaf angle or protrusion of veins on the leaf surface with
beginning necrosis

Events

IR36 IR64

Wild type T0 Wild type T0

7th Day 14th Day 7th Day 14th Day 7th Day 14th Day 7th Day 14th Day

1 1 3 1 2 2 4 1 2
2 1 3 1 2 1 3 1 2
3 1 3 1 2 1 3 1 2
4 2 4 1 2 2 - 1 3
5 2 4 1 2 2 4 1 2
6 2 4 1 2 1 3 1 2
7 1 3 1 1 1 3 1 3
8 1 3 1 2 2 4 1 2
9 2 4 1 1 1 3 1 2

10 1 3 1 2 2 - 1 3
11 1 3 1 2 2 - 1 2
12 2 4 1 2 1 3 1 2
13 2 4 1 1 1 3 1 1
14 1 3 1 2 1 3 1 3
15 1 3 1 2 1 3 1 2
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Figure 12. Assessment of tillers. Graph depicting the number of tillers, no. of panicles and average
number of tiller per plant observed after the water deficit stress. The treated and control represent
plants under water withhold and normal watering respectively. Values represent mean ± Standard
deviation; with significance between control and stress treated at the level of p < 0.05.

3.9. Evaluating Dehydration Stress by Mannitol on Plantlet Growth

The drought response due to mannitol stress was observed on the germinated seeds.
No significant difference was observed on germination by T1 progeny with increase in
mannitol stress. Coleoptile formation was delayed as the mannitol stress peaked. At
100 mM, coleoptile formed by sixth day and was delayed by 5 days at 500 mM in the
IR36 T1 progeny. The superior variety IR64 (T1 progeny) produced coleoptile on the
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13th day when exposed to 500 mM mannitol. The mat root and the seminal root system
were predominantly formed till 200 mM mannitol stress. A better root formation and
biomass was observed in the IR36 T1 progeny (Figures 13 and 14). The transgenic lines
showed resistance at 400 and 500 mM mannitol for 15 days, after which they succumbed
to chlorophyll pigment retardation and eventually to leaf browning. Comparatively, IR64
(T1 progeny) sustained up to 200 mM mannitol stress and later succumbed to drought
when exposed to a 300 mM mannitol stress. The seminal and nodal root length was greater
in IR36 (T1 progeny) compared with IR64 (T1). A greater number of mat roots formed in
IR36 (T1 lines) as the mannitol concentration increased, while IR64 (T1 progeny) showed
increase in the seminal root length (Figure 14b5) with a gradual decline in the shoot height.
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Figure 13. Analysis of physiological parameters during mannitol stress. Effect of mannitol stress
on (a) IR36 T1 and (b) IR64 T1 lines. Values represent mean ± Standard deviation; * indicates the
significance between control and stress treated at the level of p < 0.05.
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Figure 14. Drought assay on transgenic seeds of IR36 and IR64. Drought assay using mannitol in
MS medium with a concentration 100–500 mM corresponding to 1–5, respectively, and C represents
control. (a) IR36 T1 and (b) IR64 T1 seed derived plantlets. White line: Scale bar. 5 cm.

3.10. Leaf Disc Bioassay

A standard assay for the chlorophyll withholding capacity was performed. The
transgenic leaf segments retained the chlorophyll to a maximum of 4 days and thereafter
the retention increased gradually from 400 to 500 mM NaCl stress compared with that of
WT that could withstand only 48 h with retention from a 200–500 mM concentration. The
wound triggered by stress was significantly simulated in the level of whitening in the leaf
tissue after 72 h. It was noted that the salinity-induced loss of chlorophyll was lower in the
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T1 progeny (IR36), compared with IR64 (Figure 15 and Table S2). The study revealed that
the transgenic rice overexpressing OsiSAP8 has a healthier ability to resist salinity stress
than WT.
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3.11. Thiobarbituric Acid Reactive Substances (TBARS) Assay

There was no significant difference in the level of lipid peroxidation between the
WT and 100 mM treated T1 (IR36 and IR64) progeny that had 0.35 ± 0.001 nmol/g F.Wt.
of malondialdehyde (MDA). The MDA content showed a gradual increase from 0.4 to
0.6 ± 0.003 (Table 5) as the concentration of NaCl was increased, but the T1 lines maintained
their MDA value (0.36 to 0.41 ± 0.001). Correspondingly the observations correlated with
the leaf disc assay, wherein bleaching of leaves occurred from an NaCl concentration
300 mM (Figure 15). IR64 (T1 lines) showed a stable increase in the MDA content with
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maximum wilting at 600–700 mM as the stress level was raised, while the WT showed leaf
wilting and retention in chlorophyll withholding (Figure 15). IR36 (T1 lines) were recessive
till 500 mM stress while IR64 could withstand a stress of about 300 mM.

Table 5. TBARS assay.

NaCl Concentration (mM)
TBARS (nmol/g F.Wt.)

Wild Type (WT) IR36 Transgenic IR36 (T0) Wild Type (WT) IR64 Transgenic IR64 (T0)

Control 0.4 ± 0.0 0.35 ± 0.001 0.5 ± 0.002 0.034 ± 0.016
100 0.4 ± 0.001 0.36 ± 0.001 8.9 ± 1.455 0.035 ± 0.016
200 0.4 ± 0.00 * 0.37 ± 0.001 0.7 ± 0.002 0.035 ± 0.016
300 0.5 ± 0.001 * 0.38 ± 0.0 7.7 ± 1.227 0.035 ± 0.016
400 0.5 ± 0.002 * 0.39 ± 0.001 * 0.6 ± 0.004 0.036 ± 0.016
500 0.5 ± 0.002 * 0.42 ± 0.002 8.2 ± 0.003 0.036 ± 0.016
600 0.6 ± 0.005 0.41 ± 0.001 * 0.7 ± 0.002 0.036 ± 0.017
700 0.6 ± 0.004 0.41 ± 0.0 * 6.7 ± 1.044 0.037 ± 0.017
800 0.6 ± 0.003 * 0.41 ± 0.001 * 0.8 ± 0.002 0.040 ± 0.018

Values represent mean ± Standard deviation; * indicates significance between control and stress treated column
wise at the level of p < 0.05.

3.12. OsiSAP8 Gene Expression Analysis

At a lower concentration of mannitol (100–200 mM) stress down regulation of OsiSAP8
was observed by onefold in both IR64 T1 and IR36 T1 progenies. The transcript level
was upregulated to 1.5-fold (IR36 T1) at 300 mM and it peaked to 2 folds when treated at
400 mM mannitol dearth. IR64 T1 progeny showed a fluctuating fold change at higher
concentrations. At a higher concentration (500 mM) of mannitol, the transcript level
downregulated by twofold (Figure 16a). A significant increase in the OsiSAP8 transcript
level of IR64 T1 progeny was observed from one-fold to 2.5-fold when exposed to NaCl
(100–300 mM). Down regulation (0.5-fold) of OsiSAP8 transcript was observed in the IR36
T1 progeny at 100 mM which gradually peaked by threefold at 300 mM salinity stress
(Figure 16b). Both transgenic progenies (IR64 and IR36) showed a dearth (two-fold) in their
OsiSAP8 transcript level at 500 mM NaCl stress.
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4. Discussion

In silico prediction of OsiSAP8 upstream regulatory region revealed superiority of
Port Ubi2.3 promoter as an abiotic stress regulator. In this study, a constitutive ubiquitin
promoter (Port Ubi2.3) was used to drive the OsiSAP8 gene. So as to have a comparative
knowledge on the regulatory cis-elements, the SAP promoter was analyzed. In silico
analysis of the 2.0 kb 5’ regulatory region revealed multiple cis-acting elements involved
in the regulation of the OsiSAP8 gene. The transcription start site (TSS) was predicted
using PLACE and was assigned +1 site based on the TATA box position. Putative cis-
elements like ARR1AT [59,74,75], which are most common for salinity stress regulation,
were observed at 15 sites (in Port Ubi2.3) when compared to five sites in the OsiSAP8 regu-
latory region. The MARTBOX elements were most predominant in Port Ubi2.3 regulating
scaffold attachment [60] and plays a major role as an enhancer and OsiSAP8 is devoid of
it. The OsiSAP8 promoter has WRKY71OS and GT1CONSENSUS elements that encode
for WRKY, which are the largest families of TFs in higher plants, and WRKY genes are
crucial protagonists in plant growth and react to environmental stresses [76–78]. These are
DNA binding proteins that are present in a scattered style all over the OsiSAP8 promoter
regulatory region (Figure 1). Numerous annotated rice genome projects paved the way for
the identification of members of diverse gene families that code different proteins and have
been linked with the Rice Genome Annotation Project (RGAP) [2]. Pathogenesis-related
cis-regulatory elements, SEBFCONSSTPR10A is present at the 524th region from the TSS
encoding for pathogenesis-related gene, PR-10a. In plants overexpressing OsWRKY IIa,
the PR10a gene is upregulated [79], which enhances the basal defense against Xanthomonas
oryzae pv. Oryzae (Xoo). ROOTMOTIFTAPOX1 (ATATT) and RAV1AAT (CAACA) were
prominent among the root specific cis-acting elements, reported to be an important factor
in the root specific expression of PZmCBF3 [80], an AP2/ERF transcription factor family.
The MYCCONSENSUSAT element is present in a wide range that combats multiple abiotic
stresses and code for CBF/DREB1, originally identified in Arabidopsis, which plays a
significant role in combating drought and salinity stress. The stress elements also have
homologs, e.g., MYB and MYC, to combat abiotic stresses [81]. Heat shock factors (CCAAT
box)/SE (Heat shock element) play a vital role in the regulation of proteins responsible for
developmental processes [18,62] like flowering and is proximal to PRECONSCRHSP70A
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that induces HSP70A gene. Heat induces the heat shock factors to respond and the heat
shock elements do not have any organ specificity [82]. Conversely, the bZIP protein binding
site has DPBFCOREDCDC3, a unique class of TF with DPBF-1 and 2 (Dc3 promoter-binding
factor-1 and 2) binding core sequence expression that are normally embryo specific and
can also be induced by ABA. The Port Ubi2.3 promoter has four bZIP protein binding sites
under abiotic stress [61]. In addition to these regulatory elements, a large number of regu-
lons are involved in pathogen-related stresses, such as WBOXATNPR1 (TTGAC) as DNA
binding proteins and WRKY71OS, which are TGAC-containing W box elements within
the pathogenesis-related class10 (PR-10) genes and regulate the gibberellin signaling path-
way. GT1CONSENSUS (GRWAAW) regulons are reported to be found in Pisum sativum,
Avena sativa, O. sativa, Nicotiana tabacum, Arabidopsis thaliana, and Spinacia oleraceaare puta-
tive cis-acting elements that control the GT-1 binding site in many light-regulated genes.
GT1CONSENSUS and WRKY have been studied [78,83,84] to combat stress by binding of
GT-1-like factors to the PR-1a promoter, influencing the level of salicylic acid (SA)-inducible
gene expression. The OsiSAP8 promoter has more light regulated and tissue specific
cis-elements as compared with Port Ubi2.3 with GT1 (GRWAAW) and GATABOX [63,64].
Similarly, tissue specific cis-elements DOFCOREZM (AAAG), CACTFTPPCA (YACT), and
WBOX (TGACT) were recorded at numerous positions and they are responsible for signal
responsive and/or tissue specific gene expression [67–69]. A total of 52 biotic stress (Plant
pathogen responsive/interaction) cis-elements were predicted on OsiSAP8 regulatory re-
gion with WRKY (TGAC) and EBOX (CANNTG) [71,72]. On the other side, Port Ubi2.3
promoter 16 cis-elements (CANNTG) specific to seed/stress, 10 water stress cis-elements
(CNGTTR), and 12 TGAC elements act as good defense regulators [65,66,72]. Added to
this, the presence of a whooping 32 NGATT enhancer elements makes it a better and more
unique promoter then the others being used for monocot specific expression research.
Ubiquitin promoters are known to enhance the transgene expression upon exposure to
stresses [85–87]. Augustine et al. (2015a) reported that use of the Port Ubi2.3 promoter
could enhance the tolerance levels of transgenic sugarcane on drought and salinity stresses
to a greater extent. This may be attributed to the high number of stress responsive cis-acting
regulatory elements present throughout the sequence [40]. In addition, they also reported
an enhanced GUS expression upon drought stress when Port Ubi2.3 promoter was used [40].

OsiSAP8 is a member of the SAP gene family, characterized by the presence of the
A20/AN1 domains and a class of the zinc-finger protein [28,88]. The inherent OsiSAP8
in IR36 outwits IR64. It is a single-copy gene in WT IR36 which was overexpressed to
resist abiotic stresses, drought, and salinity, thus validating the report by Kanneganti
and Gupta (2008) [29]. OsiSAP8 was absent in WT IR64, whereas the T1 lines had one or
two homologous copies. The hygromycin sensitivity assay of the T1 lines reiterates the
Mendelian segregation. The T1 seeds (IR36 and IR64) were tested with hygromycin; those
carrying a functional copy of hpt remained green, while those lacking the transgene or
a functional form became bleached. The lines with more than one copy number of the
OsiSAP8 gene showed a slightly higher ratio (3 > :1) but were up to the expected χ2 value.

Sharma et al. (2015) studied rice OSiSAP7 in A. thaliana and inferred downregulation
during abscisic acid stress and also sensitivity to water dearth [21]. In this study, OsiSAP8
overexpression is observed to be resistant to water deficit and a saline environment. A 2.5-
fold upregulation was shown by the transgenic IR36, which possesses the native OsiSAP8
and also the transgene. Hence, comparatively, it had greater tolerance than the transgenic
IR64. Earlier reports on the transcript level were performed on eight-day-old seedlings [28]
within 2 h of salt and drought stress. To face the extreme saline environment, plants
maintain ionic and osmotic balance, which could inhibit the normal metabolism of a plant
and its productivity [89]. Our studies on the physiological parameters in 40-day-old rice
plants correlated with that of Jongdee et al. (2002) [90]. Drought was imposed on both
four-day old germinated seeds and 45-day-old acclimatized plants and the tolerance level
was measured based on the visual scoring of leaf damage [51,52,91,92]. Visual scoring
revealed that 40% of both IR36 and IR64 WT showed immediate leaf wilting symptoms.
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Transpiration and the leaf surface texture play a candid role in the metabolism of a plant.
The IR64 T1 lines could withstand water deficit for two weeks and tillers were set on all the
plants. IR36 WT could resist for up to a week upon drought after which leaf rolling and
wilting appeared. The wildtype and T1 transgenic lines showed a similar number of tillers
and panicles, but the treated T1 lines showed significant tiller setting, producing more
panicles compared with WT. The stressed T1 lines of IR36 had a greater average weight of
the tiller per panicle. The lower the RLWC, the higher the transpiration and susceptibility to
stress. The RLWC content in 80% of IR36 transgenic showed a tolerance to withhold stress
up to the 7th day after water withhold; later 86% of the events had an average of 60–75%
RLWC content, which were comparatively more that IR64 transgenic events. This validates
the present data on the water withhold stress. The water deficit significantly reduced the
leaf biomass in transgenic events, which was lower than WT [93,94]. A superior recovering
ability was observed with plants having a larger leaf length at the end of the drought
stress [93,94]. Moreover, biomass under stress correlates with the yield [95] and was used
as an index for drought tolerance. The water withholding capacity and the total grain per
tiller (13 g) indicates significantly higher stress tolerated by the IR36 T1 lines. Thus, T1
progenies showed enhanced stress tolerance compared with WT These results show that
OsiSAP8 overexpression in transgenic rice have a profound increase in the abiotic stress
tolerance compared with WT rice.

Thiobarbituric acid reactive substances are naturally existent in organic specimens
and include lipid hydroperoxides and aldehydes, which increase in concentration as a
response to oxidative stress [96]. Once lipid peroxidation is enhanced during salinity stress,
the inhibition of plant growth is initiated. TBARS assay values are usually reported in
malonaldehyde (MDA) equivalents, a compound that results from the decomposition of
polyunsaturated fatty acid lipid peroxides [97]. A comparison of the lipid peroxidation
levels during NaCl stress revealed that with increasing concentrations of NaCl, the MDA
content increased. However, the IR64 (WT) showed a fluctuating MDA value and suc-
cumbed to leaf wilting. The salt stress tolerance of transgenic plants of T1 generation
in comparison with the WT plants was manifested by an increase in the shoot height,
biomass production (data not shown), higher chlorophyll retention and a lower rate of
lipid peroxidation on exposure to salinity.

Gene expression analysis is the next mandatory step to know the expression pattern
under varied stresses which revealed that transgenic IR36 was better than IR64 during
drought and salinity conditions [98]. Both the cultivars withstood a maximum of 400 mM
(mannitol or NaCl) but the yield and the panicles count were comparatively more in IR36.
Transcription factors (TFs) are dynamic elements to transduce any signal in a living body.
Apart from the recognized zinc fingers, several new types of Zn fingers that are governed
by key TFs [99,100] and are expressed differentially during reproductive, development
and abiotic stresses were identified. Three housekeeping genes were used in this study.
To our surprise, the elongation factor (eEF-1α), which is normally used as an internal
housekeeping gene [56,101,102], varied during the gene expression analysis (data not
shown) in the overexpressed IR36 but was absent in transgenic IR64 and wildtype. Wu et al.
(2005) [103] reported that the subtraction library obtained from drought/cold stress-treated
upland rice yielded a number of regulatory proteins [104]. eEF-1α was reported to provide
significant catalytic activity in plants during abiotic stress [104]. In plants, the eEF-1α
is induced by salinity, wounding, and low temperature [105–107], wherein α subunit of
eEF-1α, plays a candidate role in the polypeptide chain elongation to deter abiotic stress.
Many transcripts homologous with ribosomal proteins were upregulated in rice (IR29
and Pokkali) upon salt treatment for just 1 h [108]. Salinity tolerant [109] IR36, was more
resistant and productive than IR64, which is salinity and drought sensitive [110]. Pokkali
being resistant to salinity stress had a time precise synthesis of transcripts, whereas the
salinity liable IR29 did not show any tolerance and it was inferred that the production of
ribosomal proteins, and eEF-1α could have a role in reorganizing the protein synthesis
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mechanism [111,112]. Despite being a house keeping gene, it also is reported to express
constitutively during abiotic stresses like drought and salinity [29].

Crop plants unceasingly feel and react to their surrounding environment so as to
protect themselves from abiotic and biotic abnormalities. Their stress response signaling
involves numerous key promoters that are highly conserved and have evolved as promising
targets to combat abiotic stress in a variety of crop plants [12–14]. During dehydration
assays, the transgenic IR36 and IR64 had molecular changes but physiological changes
such as leaf wilting were observed at a later stage compared with that of the wildtype
correspondingly the eEF-1α varied in, gene expression. Drought induces dehydration,
which instigates pathways related to desiccation. Griffiths et al. (2014) [113] reported a high
level of eEF-1α expression in Sporobolus stapfianus leaves that were fully hydrated [114].
Rapid growth of the coleoptile is a prerequisite for successful establishment in a plant to
access oxygen. The WT IR36 and IR64 formed coleoptile within 4 to 5 days after germination
(Figure 4) when compared with the stress-exposed transgenic seeds on mannitol deprived
of sucrose source. There was a significant difference between the transgenic IR36 and IR64.
IR36, which has a native gene (OsiSAP8), was comparatively fastidious in developing a
coleoptile and the same was validated by gene expression analysis. The coleoptile length
and the gene expression have been correlated with stress tolerance.

To study the multiple stress-inducing characters of SAPs, transgenic plants that resist
stress and yield more could be studied for the drought yield index (DYI) so as to screen the
highly tolerant events. The DYI and mean yield index (MYI) has been studied from a group
of 129 advanced rice yield lines, and 39 genomes (including IR64 and IR36) were tested [114].
This could lead to the selection of the superior cultivar and edify the signaling mechanism
of abiotic stress resistance by the A20/AN1 zinc-finger domains of SAP proteins.

5. Conclusions

In order to achieve crop improvement, genetic transformation plays a pivotal role in
the development of genetically engineered crops with desirable traits. Despite considerable
efforts, the genetic transformation of rice remains a demanding process due to the variation
in its reproducibility. Moreover, rice is highly susceptible to drought and salinity stress.
In the present study, rice (var. IR36 and IR64) was transformed with the OsiSAP8 gene
driven by Port Ubi2.3 promoter. Overexpression of OsiSAP8 in IR36 delayed leaf wilting by
maintaining RLWC during drought stress over its superior variety, IR64. The transgenic
rice overexpressing zinc-finger protein driven by Port Ubi2.3 showed reliable resistance
and tiller setting than the WT. This study reiterates that OsiSAP8 acts as key abiotic stress
regulator in plants. Our investigation also provides a platform to unravel the OsiSAP8
regulatory region, which will manifest an altered relationship between stress tolerance and
its multiple stress inducible nature.
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