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Abstract: The concept of carbon efficiency is closely related to energy efficiency but embraces a
broader range of carbon emission sources. Many studies have covered carbon efficiency, investigating
the climate crisis, economic growth, and a sustainable future; however, it is hard to agree that there
is a consensus on the definition of carbon efficiency. To fill this gap, we reviewed the literature on
carbon efficiency, especially the empirical studies that quantitatively measured carbon efficiency. As a
result, we have categorized the articles into three groups based on defined criteria of carbon efficiency.
We have also classified the methodology to measure carbon efficiency and to discuss misleading
definitions in the empirical studies. Lastly, we suggest a desirable direction to define and measure
carbon efficiency along with discussion points. Carbon efficiency is different from energy efficiency
and our review will help build the carbon efficiency concept in a proper direction.

Keywords: carbon efficiency; carbon emission; carbon intensity; energy efficiency; sustainable devel-
opment

1. Introduction

In response to the climate crisis, many national and international activities have been
explored and global commitments and actions are also increasing; however, even through
these efforts, massive greenhouse gas emissions still exacerbate climate deterioration [1].
According to the IPCC [2], global warming will exceed 1.5 ◦C and 2 ◦C in the 21st century
unless there are significant reductions in greenhouse gas emissions. According to the
report, it is necessary to restrain the cumulative carbon emissions to at least net zero by
implementing substantial, rapid, and sustained reductions in greenhouse gas emissions [3].

However, for sustainable development, we must consider both environmental and
economic aspects together. Carbon emissions reduction with economic growth, also known
as “green growth,” is one of the main concerns in this context. Along with these circum-
stances, the interest in carbon emissions efficiency is also growing. Unlike energy efficiency,
carbon efficiency is a field that has received relatively less attention or is sometimes mixed
with energy efficiency. It is, however, evident that energy efficiency cannot encompass
carbon efficiency, although energy consumption is the primary source of carbon emissions.

As interest in whether activities for energy transition, such as the development of green
technology, are substantially efficient in carbon emission increases, the importance of carbon
efficiency as an indicator is highlighted [4–6]. There are cases of energy efficiency and
carbon efficiency that may exhibit opposite aspects [7]. Without the proper distinction of
carbon efficiency, it could become the culprit of climate crisis exacerbation and a misguided
policy and this means it is necessary for studies to focus on carbon efficiency.

Recent carbon efficiency studies have become very diverse not only in regard to
region boundaries but also in the types of industry. Carbon-related issues are dealt with
at the national level along with political methods such as the national basic plan. In other
words, carbon efficiency research can be utilized as the basis for establishing policies. The
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studies are conducted at a national level [8,9] and in particular fields such as trade [10]
or technology [11]. At the same time, it also provides information on whether the current
policy is working effectively, and whether the direction should be to improve it [12,13]. In
addition, carbon efficiency is the ecological efficiency that can directly determine overall
carbon emissions; therefore, because it is related to the carbon reduction potential, it can
also be one of the reasons for carbon efficiency study development.

Although various studies have been conducted on carbon efficiency, there is still no
consensus on the definition of carbon efficiency [14]. Existing papers mainly focus on
methodological points such as new models or applications and are less concerned with
the fundamental meaning. Additionally, the definition of carbon efficiency is varied in the
studies and because there are many variables related to carbon efficiency, the proposed
definition of carbon efficiency becomes confusing due to additional modifications coming
from such variables. Despite many developments in the carbon efficiency field, therefore,
the considerations of the foundational issue of the definition are insufficient.

The basis of carbon efficiency is significant both academically and empirically. As
mentioned above, policymakers can consider the research in this field as a basis for estab-
lishing a political direction. In this process, it is also necessary to compare the results of
various studies. For example, if the results estimated using different methods are used in a
comparison, it cannot be a correct comparison. When comparing the results of a study, a
common definition should be used, and understanding the differences is essential even
in unavoidable cases due to data limitations; thus, the importance of an apple-to-apple
comparison ultimately results in a review of the establishment of the definition of carbon
efficiency and a consideration of the fundamental meaning of carbon efficiency.

To fill this research gap, we reviewed the existing studies related to carbon efficiency
focusing on how they define and measure carbon efficiency. According to our investigation,
we can divide the literature into three groups. Within each group, there are also variations
in the concept of a definition. At the same time, there are misused points when modifying
an indicator or analyzing by using an indicator. We summarized all these studies along
with the methodology that they used. Since there are many calculation methods depending
on the combination of various approaches, we only summarized well-developed and
representative methodologies measuring carbon efficiency. We also propose discussion
points that must be considered in carbon efficiency research.

The implication of this article is threefold. First, we review the carbon efficiency
research and organize the literature by definition and methodology. Even though they have
been discussed it together, the carbon efficiency field receives less attention than the energy
efficiency field does. The existing review paper on carbon efficiency also focused on the
specific calculation methodology [14]. This paper can fill such a gap, focusing on carbon
efficiency. Second, we suggest the criteria for a carbon efficiency definition. Research
using a proxy indicator, such as carbon intensity, must confirm the conditions necessary
for becoming a carbon efficiency study. Through this, we have corrected the misused
terminology and prevent the confusing use of carbon efficiency terms. Finally, we present
the direction to define and measure carbon efficiency by identifying the validity of each
definition. We also provide a challenging point to expand the scope of carbon efficiency
research. For the development of further carbon efficiency study, a future study has to take
into account the fundamental definition that we have composed. This also serves as the
basis for policymakers to evaluate the current policies and design future policies.

The paper is organized as follows. Section 2 provides a review of the literature focusing
on the definition of carbon emission. Section 3 explains the model and methodology used
for measuring carbon efficiency. Section 4 provides considerations for future studies in the
carbon efficiency field, and this section is followed by the conclusion.

2. Definitions of Carbon Efficiency

As an increasing number of studies measuring carbon efficiency, the definitions of car-
bon efficiency presented in each study have also diversified, but still, there is no consensus
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about the meaning of carbon efficiency and several representative approaches exist. In this
section, we examine the criteria of carbon efficiency used in the existing studies and the
scope of the definition of carbon efficiency is separated into three groups. First, several
studies estimate carbon efficiency using an indicator such as carbon intensity. The second
group measures direct efficiency using an empirical approach on a theoretical basis, while
the last group calculates direct and indirect emissions together.

2.1. Single-Factor Indicators

With increasing concern about the global climate crisis, the interest in carbon emissions
also has increased. Toward a low-carbon economy, the study about energy-related carbon
emissions draws the attention of many researchers and stakeholders. In the early stage,
the direction of studies was focused on the form and mechanism of carbon emissions
by production activities in-country or in industry; therefore, the perspective of carbon
efficiency studies focused only on specific activities related to an emissions reduction or
an absolute emission amount. For example, what level of carbon emissions come from
production activities [15] or by much carbon emissions can be reduced under the given
changes in technology and economic structures [16]. Thus, carbon efficiency has been
interpreted in the context of the performance of carbon emissions.

Carbon intensity is one of the indicators that reflect carbon emissions performance [17–19].
In the early stage of the carbon efficiency research field, it was often referred to alongside
energy efficiency; thus, like energy intensity, the carbon intensity, measured as CO2 emis-
sions per unit of output, was also treated as an indicator of carbon efficiency. In a study
that dealt with carbon efficiency as a proxy to confirm the energy efficiency or emissions
compared to production activities, the use of an index indicating the carbon emissions
per unit of output, such as carbon intensity, was appropriate for the research purpose. In
addition, studies using carbon efficiency from a similar perspective sometimes have used
terms such as “carbon performance” [15] and “carbon productivity” [20] instead of carbon
efficiency.

The indicators which measured carbon efficiency via carbon intensity or carbon pro-
ductivity calculated by carbon emissions to the GDP (gross domestic product) are called
single-factor indicators. Many pieces of research have been conducted with single-factor
indicators amid defined indicators according to their research purpose. Greening et al. [17]
used aggregate carbon intensity from the freight industry to analyze the development of
freight energy consumption in OECD countries. For comparing freight transport modes
and different modal energy intensities, they used total freight tonne-kilometers hauled in a
specific year as the denominator [21,22]. In other words, the meaning of carbon intensity
here was the carbon emissions from the freight sector when producing one unit of a freight
tonne-kilometer.

Sun [23] set the carbon dioxide intensity of primary energy, termed the carbonization
index, and calculated it by dividing the carbon emission by energy consumption. The unit
of carbon emission intensity was kg of carbon per USD at 1995 prices. Fan et al. [18] also
defined carbon intensity using the GDP as the denominator, but they defined two types
of carbon intensity, namely, the primary energy-related carbon intensity and the material
production sectors’ final energy-related carbon intensity. Both used the real GDP of 1990
constant CNY as the denominator, but the contained energy and their emissions data were
different.

Zhu et al. [19] investigated the carbon intensity of 89 countries to analyze the potential
of their difference. Their definition of carbon intensity was the carbon dioxide emissions
per unit of GDP in 1980, but the GDP converted to the value of USD constant of 2005. Wang
et al. [24] used carbon intensity as obtained by the carbon emissions per unit of GDP and
the unit of carbon intensity was a ton of emissions per CNY 10,000. Dong et al. [25] defined
the carbon emissions per unit of GDP as the carbon emission intensity and utilized this to
measure the regional carbon performance. According to the research purpose, the GDP
and data for the indicator were expressed at the year 2000 constant prices. Su and Ang [26]
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also used the same definition with the ratio of carbon emissions to GDP as an aggregate
carbon intensity, but they used an additional concept, namely, an “embodied” emission.
We will cover this concept in detail later in this section.

On the other hand, when the purpose of the study is more concentrated on the carbon
dioxide emitted regardless of the type of production, sometimes an absolute emission value
is also used as a carbon performance indicator [27–30]. Tian and Zhou [31] adopted both
an absolute carbon emissions value and carbon intensity as the carbon emissions efficiency
indicators. They adopted four indicators: carbon emissions per capita, carbon emission
intensity, residential carbon emissions per capita, and industrial carbon emissions per unit
area. The last indicator is defined as the industrial carbon emissions divided by land area,
which can denote both the emission density and intensity at the same time.

However, because they used the absolute carbon emissions as the indicators, the
analysis was more focused on the static value, such as the actual emission amount rather
than the efficiency that has variable characteristics. Considering that even carbon intensity
only takes into account the carbon emissions and output, it is a leap-forward approach
that views the absolute carbon emissions value as one of the general standards of carbon
efficiency.

The use of single-factor indicators in efficiency studies has several advantages. First,
because of the ease with calculating and understanding, single-factor indicators are applied
widely [23,25]. Additionally, the number of data used for calculations are small. When
measuring indicators, if they require a large amount of data, difficulties may be experienced
in the analysis due to data limitations, apart from the difficulties of the calculation itself.
Moreover, if large amounts of data are used, the sources may vary, which adversely affects
the reliability of the analysis; however, the International Energy Agency has incorporated
carbon intensity into its statistics to assess carbon emissions and sustainability targets.
Through this data, reliability is not only secured, but also a unity for analyzing multiple
countries.

However, there is an opinion that views it as unreasonable to regard a single-factor
indicator as an indicator of carbon efficiency because it does not take into account either
the contribution of other production factors or their related substitutions [13]. As we
know through the defined form of carbon intensity, they only focus on a carbon emissions
reduction and output growth, but other factors are out of consideration, such as capital and
labor and structural changes in production [32,33], or changes in technical efficiency [34].
These deficiencies of single-factor indicators make the calculations of carbon efficiency
under a total factor framework more convincing [35].

2.2. Total-Factor Indicators

In economics, we define the most efficient use of limited resources to satisfy peo-
ple’s needs under a given technology as efficiency [36]. Theoretically, efficiency is an
economic state of reallocation to make one individual better off from a resource that cannot
be achieved without making at least one individual worse off. Because this theoretical
efficiency is unknown, we then use the relative efficiency based on empirically available
data instead. In a broad sense, it can be said that the single-factor indicators identified
above belong to this relative efficiency; however, it is also true that single-factor indicators
have deficiencies.

The total-factor indicators refer to a method of calculating carbon efficiency by consid-
ering the various inputs and outputs that may affect it. Because it can fully take into account
the influence of input factors and the interaction between factors on the carbon emissions
efficiency, total-factor indicators have more advantages than by comparing single-factor
indicators [37,38]. Additionally, total-factor indicators are used because they can better
capture the contribution and estimate the technical efficiency of carbon inputs, as well
as the interaction between different input factors [13]. Especially, total-factor indicators
are more useful to capture the technical efficiency of carbon inputs which is, nowadays, a
trajectory for low carbon development.
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As aforementioned, the definition of efficiency in total-factor indicators is related to
the economic theory. Based on the Pareto efficiency theory, Farrell extended the relative
efficiency concept to apply an efficiency measurement using fewer assumptions [39]. It is
known as the Farrell efficiency, which can estimate the amount of input that can be saved
or output that can be increased without worsening other inputs or outputs. The empirical
study using this efficiency was restricted to the case of a single output and is not feasible
for applying efficiencies related to both inputs and outputs.

Charnes et al. (1978) developed a dual pair of linear programming models for data
envelopment analysis (DEA) to identify the best-practice frontier and to estimate relative
efficiency [40]. Their method can measure the technical efficiency of the minimum effi-
ciency value under each input and output and because this method can reflect the overall
performance of each decision-making unit, it is usually used to measure environmental
or ecological efficiency such as carbon efficiency. We will explain this in detail in the
methodology section.

Ramanathan [41] was the first to propose the concept of using this DEA to measure the
number of carbon emissions that can be reduced, but he did not measure carbon efficiency.
The studies used total-factor indicators called carbon emissions efficiency as the total-factor
carbon emissions efficiency (TFCE). The TFCE is the ratio of theoretic carbon emissions to
actual emissions and can be defined as the ratio of actual carbon emissions to target carbon
emissions. Even though there are some newly proposed indicators such as the carbon
performance index [42,43], measured as the ratio of the target carbon intensity to actual
carbon intensity, the most dominant measurement indicator is the former.

On the other hand, because the definition of carbon efficiency is the ratio of actual
carbon emissions to target carbon emissions, another measurement method is also used in
many studies in addition to DEA. The stochastic frontier analysis (SFA) method has been
extensively used as a methodology to estimate the TFCE, and we will also introduce this
method in detail in the methodology section.

Research on carbon efficiency has been conducted for various purposes. The purpose
of a study performed at the most aggregated level is to estimate the carbon efficiency of one
country and compare it with other countries [4,7,44]; however, they treat the entire industry
the same in country-level studies. This means that they are less focused on the intrinsic
features that differ in the sector. Thus, to consider the heterogeneity stemming from the
difference between each industry, the carbon efficiency of a specific industry [45] or city [46]
is also analyzed. To a more detailed extent, some studies estimate carbon efficiency at
the individual firm level for comparison [15,47]. On the other hand, a study focusing on
efficiency itself have also been undertaken to analyze what factors would affect the carbon
efficiency [13,48].

Herrala and Goel [44] examined carbon efficiency in 170 countries between 1997 and
2007. They tried to link environmental efficiency with policy by defining the TFCE as
the distance from the policy objective emissions to the realized emissions. They used
carbon emissions, GDP, population, and land area data as their variables. Jin and Kim [7]
examined energy efficiency in the views of both economic and ecological aspects during
1995–2016 for 21 emerging countries. The entities were selected from Morgan Stanley
Capital International. This study used the energy consumption, economic complexity index,
and other factors of production based on the Cobb–Douglas production function. Dong
et al. [4] explored the impact of green technology innovation on carbon emission efficiency
to provide a policy basis for developed countries to mitigate carbon emissions and achieve
carbon neutrality goals. They also used labor, capital stock, and energy consumption as the
input variables and regional GDP and carbon emissions as the desirable and undesirable
outputs, respectively.

Zhou et al. [45] measured the total-factor carbon emissions efficiency of the construc-
tion industry from 2003 to 2016 to explore the interior and exterior dynamic transmission
mechanism of the carbon emission efficiency of the construction industry. They used three
inputs, labor, capital, and energy consumption, and two outputs, the industrial economic
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output and carbon emissions. Zhang et al. [46] used the same variables to analyze the TFCE
of 64 prefecture-level cities in four major urban agglomerations in China including the Pearl
River Delta, Beijing–Tianjin–Hebei, the Yangtze River Delta, and Chengdu–Chongqing.

Trinks et al. [47] measured the carbon efficiency to evaluate firms’ carbon emissions
levels relative to those of their more efficient peers. They used capital, labor, and energy
variables and treated carbon emissions as “bad output.” According to the results, they
could analyze the potential carbon reduction amount of each firm relative to the most
efficient firm. Wang et al. [15] also analyzed the carbon efficiency of Chinese firms, but
their purpose was to study the relationship between carbon efficiency and the financial
performance of Chinese firms. Their input variables were their employees, net fixed assets,
and total energy consumption. The output variables were the desirable output measured by
the firm’s operating income and the undesirable outputs measured by the firm’s absolute
carbon emissions.

Sun and Huang [48] evaluated carbon emissions efficiency to analyze the impact of
urbanization on that emissions efficiency. They used the input variables including capital,
labor, and carbon dioxide emissions, and the GDP was the output variable. Meanwhile, Tan
et al. [13] estimated the total factor of carbon efficiency to investigate the impact of China’s
carbon regulatory policy and their input variables were the carbon emissions, capital stock,
and labor and the output variable was the sectoral value-added output.

In addition to the above indicators, there are other indicators for measuring the
carbon emissions efficiency. Zhou et al. [37] proposed a total-factor carbon emissions
performance index to measure the relative carbon emissions performance. The carbon
emissions performance index is measured by the ratio of target carbon intensity to the
actual carbon intensity. They proposed a new index basis on the Shephard input distance
function presented by Tyteca [49] and the Malmquist productivity index developed by
Caves et al. [50], as a ratio of two distance functions for the measurement of productivity;
however, they expressed this new indicator as the carbon emissions performance and not
the carbon emissions efficiency. The other studies using indicators based on the Malmquist
index also mentioned that indicators as the total-factor carbon emissions performance
have even used different methodologies [51–53]. Usually, they also used capital, labor,
and energy consumption as the input variables and the GDP and carbon emissions as the
output variables.

Meanwhile, there is an indicator that coordinates the concepts of carbon intensity and
TFCE. Zhou et al. [43] redefined the TFCE as the ratio of the carbon intensity target to the
actual carbon intensity and they applied it to evaluate the carbon emissions performance
of 126 countries in their electricity generation. When they first presented this concept, it
was named the carbon performance index; however, the subsequent studies which used
the same indicator defined that concept as the total-factor carbon emissions efficiency
even though they used the same abbreviation [42,54]. The research using the additional
indicators used the carbon efficiency and carbon emissions performance without distinction
as usual.

2.3. Extended Concept of Carbon Efficiency

Most carbon efficiency studies refer to two types of carbon efficiency measurement
indicators [13,14,48,54]. Some studies have stated that carbon efficiency studies consider
only direct emissions as a limitation, but with the solutions to the climate crisis, such as the
European carbon border adjustment mechanism and the corresponding frameworks such
as consumption-based accounts, the concept of an “embodied” carbon emission has been
presented in recent studies [26,55].

The embodied emission implies the emissions indirectly generated within the entire
economic system in addition to the direct emissions. It is also treated as the indirect
emissions because of this concept and because the products of one industry are used not
only for final consumption but also as intermediates in the manufacturing processes of
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other sectors, it is necessary to examine the carbon emissions from intermediate production
and consumption [56,57].

The environmental analysis uses an embodied framework proposed by Isard et al. [58]
and Leontief [59]. Several studies under this framework have addressed analyzing the
embodied energy or emission flows [60–62], while Su and Ang [63] especially, proposed
the carbon intensity concept to consider embodied emissions. Additionally, the application
of the embodied framework in the efficiency field was undertaken by Gao et al. [55]. That
study argued that indirect emissions should be considered under the same total-factor
efficiency framework and they estimated the direct carbon efficiency and the indirect carbon
emissions efficiency of 28 industry sectors under the condition of trade openness.

Embodied carbon efficiency research is a concept recently proposed, and there are
relatively few related studies. Since the embodied framework was first presented, 34
studies have referred to it according to Google Scholar. There are only four studies on
carbon emissions efficiency among them [4,64–66], and even those studies used other
definitions for an actual measurement; thus, we can know that the embodied framework
is less developed than the single-factor indicator and total-factor indicator methods, and
therefore, it requires careful consideration to address it for carbon efficiency research.

3. Methodologies to Measure Carbon Efficiency

There are several methodologies used for the measurement of carbon efficiency in
the carbon efficiency field. In this section, we summarize the several calculation methods
used in the previous studies discussed. We have only organized the methodology used for
carbon efficiency measurement in practice. The composition of this section is based on the
methodology type, because there are various methods of calculating carbon efficiency even
though it is the same indicator.

3.1. Calculation with Given Data

This method does not require a specific theoretical background because it involves
simple calculations using given data. It is the most common methodology used in the case
of single-factor indicators such as carbon intensity. In this case, the only thing to consider is
the reliability of the data. Usually, the data used for this comes from a credible institution
such as the World Bank or International Energy Agency; therefore, the reliability also does
not matter in most cases. As the calculation of carbon efficiency is simple, this type of study
often conducts additional analysis.

The literature using this simple calculation often focuses on the additional analysis
and we can classify the studies into three categories by the method or the purpose of
measuring the carbon efficiency. The first type is the study to analyze the sources or
structures of carbon emissions from the perspective of an industrial structure or demand
structure [25]. The second category employs decomposition analysis to investigate the
impacts of industrial or technological change and carbon intensity change in different
departments [17,18]. The third category uses econometric analysis for a similar purpose
to the other category, which is to reveal the effect of the changes in influencing factors on
carbon efficiency [15,24].

For example, Dong et al. [25] tried to measure the carbon emission intensity to reveal
the effect of influencing factors on the carbon emissions intensity. They decomposed the car-
bon emissions intensity using an input–output structural decomposition analysis because
their purpose was to find the driving force. Since the driving force is not our current interest,
the details of the methodology used in that study are not covered here. Additionally, the
focus of Greening et al. [17] was to confirm the attribution factors contained in the aggregate
carbon intensity. They used the adaptive weighting Divisia index method, but we do not
cover this for the previous reason. Wang et al. [24] also examined carbon intensity using
stochastic impacts by a regression on the population, affluence, and technology model [67].
As mentioned above, detailed descriptions of the additional methodologies beyond the
purpose of our study are omitted.
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3.2. Data Envelopment Analysis

The data envelopment analysis (DEA) is a well-established and the most commonly
used method that was first proposed by Farrell [39]. It is appropriate to evaluate the
relative efficiency of a set of comparable decision-making units (DMUs) with multiple
inputs and outputs [68]. The traditional DEA models are the CCR (Charnes, Cooper,
and Rhode) model [40] and the BCC (Banker, Charnes, and Cooper) model [69]. The
CCR-DEA method measures the ratio of optimal input to actual input, which means an
input-oriented model based on a constant return to scale (CRS). The technology was defined
as T = {(x, q) : q ≤ Qλ, x ≥ Xλ}. Assume that there are I DMUs, and each DMU has N
inputs and M outputs. Then, the efficiency of the ith DMU is the solution to the following
problem:

minθ,λ θ
s.t.− qi + Qλ ≥ 0

θxi − Xλ ≥ 0
λ ≥ 0

(1)

where θ is a scalar, and λ is a I × 1 vector of constant. The xi and qi are the column vectors
of ith DMU’s input and output, respectively. The matrix X is N × 1 input matrix and the
matrix Q is M× 1 output matrix. They represent the data for all I DMUs. The solution
value of θ is the efficiency score for the ith DMU. If the efficiency score is equal to 1, it
means that the DMU is on the frontier, the efficient DMU.

On the other hand, the BCC-DEA method is an output-orientated DEA model pro-
posed to improve the CCR-DEA model. The CCR-DEA model, also known as the CRS-DEA
model, is based on the CRS assumption that is not valid in the case of imperfect com-
petition, government regulation, financial constraints, etc.; therefore, Banker, Charnes,
and Cooper [69] added the convexity constraint to the CRS-DEA model to explain the
variable return to scale (VRS). The BCC-DEA model, also known as the VRS-DEA model, is
expressed as a modified form of the CRS linear programming problem. All other equations
are the same as Equation (1), and the convexity constraint I1′λ = 1 is added.

In the CCR and BCC model, all the inputs reduce or all the outputs expand in the same
proportion to achieve efficient decision-making. Thus, they are called the radial model;
however, when the DMU is inefficient, there is a distance consisting of the sum of the radial
improvement and the slack improvement, but the radial model only considers the radial
improvement. Consequently, it has a slacks problem. Tone [70] proposed the slacks-based
measure integrating the DEA to solve this problem, named the SBM-DEA model. The
SBM-DEA model has advantages in performance comparisons and is also effective for
understanding the economic-environmental index [71].

The SBM model provides an effective solution to the relaxation problem by avoid-
ing the influence and error caused by radial and angle differences. Suppose that there
are n DMUs, with m inputs and s outputs. The production possibility set is defined as
P = {(x, y) : y ≤ Yλ, x ≥ Xλ, λ ≥ 0}. The λ is a n× 1 nonnegative vector such as λ =
(λ1, λ2, · · · , λn), the X is a m× n matrix of input vectors such as X = [x1, x2, · · · , xn],
and the Y = [y1, y2, · · · , yn] is a s× n matrix of output vectors. The efficiency of the ith
DMU is the solution to the following problem:

min ρ =
1− 1

m ∑m
i=1

s−i
xi0

1+ 1
s ∑s

r=1
s+r
yr0

s.t.x0 = Xλ + s−

y0 = Yλ− s+

λ ≥ 0, s+ ≥ 0, s− ≥ 0

(2)

where ρ is the technical efficiency, x0 and y0 are the input vector and output vector of each
DMU, respectively, s−i means the input excess, and s+r means the output shortfall.
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Most studies that adopted DEA to evaluate the TFCE treat the carbon emissions as
undesirable outputs or bad output; thus, the SBM model with an undesirable output
can better reflect the essence of an efficiency evaluation [72]. If there are n DMUs, each
DMUj (j = 1, 2, · · · , n) has m inputs xj =

(
x1j, x2j, · · · , xmj

)′ , s1 desirable outputs yg
j =(

yg
1j, yg

2j, · · · , yg
s1j

)′
, and s2 undesirable outputs yg

j =
(

yg
1j, yg

2j, · · · , yg
s1j

)′
. The produc-

tion possibility set is defined as P =
{(

x, yg, yb
) ∣∣∣ x ≥ Xλ, yg ≤ Ygλ, yb ≤ Ybλ, λ ≥ 0

}
.

The efficiency of this model is the solution to the following problem:

min ρ =
1− 1

m ∑m
i=1

s−i
xi0

1+ 1
s1+s2

(
∑

s1
r=1

s
g
r

y
g
r0
+∑

s2
r=1

sb
r

yb
r0

)
s.t.x0 = Xλ + s−

yg
ro = Ygλ− sg

yb
ro = Ybλ− sb

λ ≥ 0, s− ≥ 0, sg ≥ 0, sb ≥ 0

(3)

where s−, sb, sg are all slacks. The boundary of ρ is 0 < ρ ≤ 1, when ρ = 1 this means the
DMU is on the production frontier. In the carbon efficiency study, it becomes the target
emission.

DEA does not require a specific form of a production function or strict assumptions
and has fewer data constraints; therefore, many applications have developed in addition to
the aforementioned model. We can identify three groups under this approach. First, several
studies have applied the DEA method to make redefined indicators such as the Malmquist
index [37,53]. The second approach is the meta-frontier DEA, developed to consider the
heterogeneity problem, which would lead to biased estimates [51,73,74]. Third, using the
directional distance function (DDF) introduced by Chambers et al. [75], researchers select
the direction in which an inefficient DMU is projected onto the efficient frontier. This
method provides a very flexible tool to evaluate efficiency and is called a super-efficiency
DEA model [47,76]. In addition, some studies estimate by applying multiple approaches
explained at the same time, and the basis of each approach is similar.

3.3. Stochastic Frontier Analysis

The frontier analysis is a common method to measure technical efficiency. DEA is
one of the representative methods to estimate the technical efficiency, and another one is
the stochastic frontier analysis (SFA). While DEA is the non-parametric form, SFA is the
parametric form analysis; thus, in the view of the econometric approach, SFA has more
statistical power than DEA by considering the measurement error and statistical random
walk noise. SFA estimates the production or cost frontier from the data. The core concept
of SFA suggested by Greene [77] is as the following:

yit = αi + xitβ + eit
eit = vit − uit
vit ∼ N

(
0, σ2

v
)

uit ∼ N
(

0, σ2,+
u

) (4)

First, estimate the theoretic frontier, and decompose the error term into two compo-
nents: idiosyncratic (random) error (vit) and technical inefficiency (uit). By doing this, SFA
can avoid ascribing random errors to technical inefficiencies. The model assumes that
the technical inefficiency term follows the half-normal distribution. Second, this technical
efficiency is measured to the ratio of the predicted dependent variable when the technical
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inefficiency is zero, which refers to the frontier (ŷ f
it) and observed dependent variable (yit).

Thus, the efficiency form is as the following:

e f f iciencyit =
ŷ f

it
yit

= exp(−uit) (5)

The equation can have various forms according to the function and production tech-
nology. For example, Sun and Huang [48] used the basic SFA model proposed by Battese
and Coelli [78]. The other study proposed a method using the radial directional distance
function followed by SFA techniques [79]. It also can be applied to estimate a parametric
Malmquist index based on the fixed-effect panel SFA to analyze the dynamics of TFCE [80].
Like DEA, SFA can be varied by an econometric approach or the functional difference, but
the core concept is the two-step approach explained above.

3.4. The Input–Output Method

The environmentally extended input-output model introduced by Miller and Blair [81]
and Gao et al. [55] suggested new approaches to the carbon efficiency measurement.
According to the studies, the direct carbon emissions (DCE) of the industry sector can be
expressed as follows:

Ci = ∑n
k=1 Cik = ∑n

k=1(θik ×∅k) (i, k = 1, 2, · · · , n) (6)

where Ci is the DCE of the ith industry sector, Cik is the total amount of DCE of the ith
industry sector produced using k = n the species of energy, θik is the consumption of kth
energy in the ith industry sector, and ∅k is the carbon emission coefficient of the kth energy.

Assume that the coefficient of DCE is Ei, which means the direct carbon emissions to
obtain the output Xi of the ith industry sector. Then, the coefficient can be calculated by
Equation (7):

Ei = Ci/Xi = ∑n
k=1 Cik/Xi = ∑n

k=1(θik ×∅k)/Xi (7)

The coefficient matrix E is measured by extending the ith industry sector to all sectors.
Then, according to the input–output method, the matrix is obtained as in the following:

C = EX = E(I − A)−1Y
C/Y = E(I − A)−1

F = E(I − A)−1
(8)

The left side of the third one in Equation (8) means the sum of the direct and indirect
carbon emissions coefficients; therefore, if we set the embodied carbon emissions (ECE) as
F, this means the coefficient matrix of all industry sectors.

Meanwhile, Gao et al. [55] used a non-competitive input–output model to distinguish
the differences between a country’s production and imported goods. In this case, the
coefficient matrix of direct consumption is divided into two terms, namely, domestic goods
and imported goods; thus, the domestic direct consumption coefficient matrix can be
expressed as follows:

F = E
(

I − Ad
)−1

Ad = (I −M)A

M =


m11 0

0 m22

· · ·
· · ·

0
0

...
...

. . .
...

0 0 · · · mnn


mij =

IMi
(Xi+IMi−EXi)

,
(
i, j = 1, 2, · · · , n; and i 6= j, mij = 0

)
(9)
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where IMi and EXi are the imports and exports of the ith industry sector. In this

Equation (8),
(

I − Ad
)−1

represents the Leontief inverse matrix excluding imports.
Then, we treat the industry sectors in an input–output table as a DMU, and each DMU

has f inputs and m outputs. Suppose that the input variables are labor input (XL), capital
stock input (XK), and energy input (XE), and the output variables are the industry added
value (YG), and the ECE or DCE (YC). As we have already seen in the DEA model, the set of
production possibilities p can be defined as p = {(xl, xk, xe, yg, yc) | xl ≥ XLλ, xk ≥ XKλ,
xe ≥ XEλ, yg ≤ YGλ, yc ≥ YCλ, λ ≥ 0}. According to the DEA model, the frontier effi-
ciency is differed.

As we can see from the above process, this approach is a mixture of input–output
analysis and the existing frontier approach. The embodied concepts are significant in the
view of intermediate production and consumption; however, the robustness of the mix of
two different methodologies is not studied much yet and further study is needed in this
field to become one of the representative methods to measure carbon efficiency.

4. Discussion

We have investigated the definitions and methodologies of carbon efficiency used
in previous studies. The purpose of our study was to confirm the definition of carbon
efficiency and solve the “no consensus problem” in this field. In this section, we discuss the
carbon efficiency concepts that are misleading in various ways.

4.1. Various Definitions of Carbon Efficiency

In our study, we divided the definition of carbon efficiency used in the existing studies
into three categories; however, we must consider that all the studies we investigated could
not be considered a carbon efficiency study because of the carbon emissions efficiency
concept that they defined within each study. The TFCE is the most common definition
of efficiency from the theoretical background. The actual emissions compared to the best
(frontier) emissions is the most consistent with the definition of carbon efficiency. Although
the incidental problems that arise due to the input and output variables considered in the
calculation of each emission, they fall into different categories as methodological problems,
and not the definition itself; therefore, in research that analyzes the carbon efficiency, the
definition should be considered a top priority rather than a methodology.

This does not mean that the use of other indicators cannot be considered a study of
carbon efficiency. Depending on the purpose of the study, the use of relatively simplified
indicators, such as carbon intensity, as a proxy of carbon efficiency also falls under the
category of carbon efficiency research; however, since many factors must be considered
but not reflected, the researcher must specify that it was used as a proxy. On the other
hand, if the study uses a secondarily derived factor, such as the absolute emission value, or
modifies the formula based on carbon intensity, it is necessary to distinguish it from the
original carbon efficiency study.

One of the most common misuses of carbon efficiency is the use of terms such as
carbon performance or carbon productivity. In most cases, these expressions are used
when the equation of carbon intensity is modified according to the research purposes. For
example, some studies have used the term “carbon intensity”, even though they used a
physical value such as the energy consumption for the denominator instead of a monetary
value such as the GDP. This is not only against the definition of carbon intensity, but it is
also difficult to say that it is a study of carbon efficiency. If researchers modify the indicator
for a research purpose, they should mention it within a study with reasonable evidence.
If necessary, they should use a different keyword instead of carbon efficiency to prevent
confusion.

Meanwhile, when conducting a carbon efficiency study using the concept of embodied
carbon efficiency, it is applied carefully. According to the proposed concept, the definition is
consistent with the original carbon efficiency; however, in this case, it should be considered
that different methodologies are used at the same time. In other words, in the view of the
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defined concept, it should be regarded as an extended type of TFCE; however, along with
the methodological considerations, it is a relatively recently proposed method, and further
research is needed to adopt it as a major calculation method.

The considerations for the definition of carbon efficiency are summarized as follows.
Whether to use a single-factor indicator or a total-factor indicator as a concept of carbon
efficiency corresponds to the question of how to define efficiency. In the cases of using a
single-factor indicator such as intensity, the main purpose of the studies is to confirm the
overall flow and form of carbon emissions in the economic system; however, this should
be specified because it corresponds to the proxy of carbon efficiency rather than efficiency
itself. In addition, it is necessary to prove its validity to use other indicators derived from
the original definition.

In the case of the total-factor indicator, it was widely used to look at efficiency in
consideration of changing technologies, relationships between other input and output
variables, the effect of policy, or the comparison of entities. Because this defined concept is
most appropriate to the meaning of efficiency, a study using this concept is the basis for a
carbon efficiency study. Additionally, for additional transformation, reliable evidence must
be presented. The input and output variables also have to be considered, but this needs to
be addressed in a further study because it is related to methodology.

The extended concept presented is connected to a question related to the boundary
of carbon emissions. Because it is a matter of determining whether to include the indirect
emissions from intermediate goods in the carbon emissions efficiency, this can be a matter
of another dimension; however, this is also a suggested concept, and should not be omitted
for further research.

4.2. Research Directions for a Future Carbon Efficiency Study

In this study, we divided the definition of carbon efficiency into a single factor and a
total factor. A single indicator uses one variable, namely, carbon intensity. The calculation
of a single indicator is simple, and the number of data used for the calculation are small;
therefore, the analysis is concise and intuitive, and easy to understand. In particular,
carbon intensity has an advantage in comparing multiple countries based on reliable data
published by international organizations such as IEA; however, carbon intensity only
considers carbon emissions over economic production. In other words, it is a concept that
does not take into account changes in both capital and labor, technology, or a change in
industrial structure. A single factor indicator, such as the energy intensity, can be the proxy
of carbon efficiency, rather than a comprehensive measurement of carbon efficiency. In
studies that require the aforementioned advantages, if carbon emissions and production
are the main concerns, studies using a single indicator are also meaningful, but in a strict
sense, such studies cannot be considered as carbon efficiency studies.

The TFCE has strength in that it considers various variables simultaneously and
takes into account the interaction between the variables. Because it is based on economic
theory, the TFCF is also more persuasive and logically valid; however, the computation is
complicated, and if the source of each variable is different, the reliability of the research may
be lower. Nevertheless, the approach using the total factor corresponds to the definition
of carbon efficiency. In the case of studying carbon efficiency in terms of policy, multiple
variables are the basis for evaluation and estimation, although the variables used may vary
depending on the purpose of the study; therefore, the researchers using TFCE must fully
understand the complexity of the calculation method and secure the uniformity of the data
sources.

Meanwhile, the methods mainly used in the measurement of carbon efficiency using
the total-factor definition are the DEA and SFA. DEA has the strength that it does not
require a specific production function. Additionally, it does not require the processing
of dimensionless data before model construction [10]. On the other hand, SFA has more
statistical power than DEA since DEA is a non-parametric methodology. Additionally, SFA
has no assumption on the model but just a statistical part, whereas DEA has an assumption
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of the linear projection. SFA can take into account the change along with the time unlike
DEA applied to cross-section data [7]. The researcher can then choose either DEA or SFA
according to the purpose of the study.

The early literature on carbon efficiency focused on the measurement and confirmation
of carbon efficiency itself. Recent carbon efficiency studies are developing in the direction of
applying them to confirm the impact of specific industries, technologies, or environmental
policies. The application method of carbon efficiency can be divided into two approaches.
First, researchers try to make developments within the methodology or model. For example,
in the DEA method, we can modify the constraints to overcome the inherent scale problem
of carbon efficiency [45]. Being a non-parametric approach, a study using DEA can modify
the constraints to adjust the relationship between variables. This means researchers can
consider a method of changing the constraints according to the research purpose.

On the other hand, SFA can utilize the influencing factor existing in the equation. The
relationship between the carbon efficiency and analysis target can be confirmed by putting
variables related to the purpose of the study in the influencing factor. For example, to see
the impact of urbanization on carbon efficiency, you can input the urbanization level as
a variable in the influencing factor [48]. In another example, you can utilize the carbon
regulation indicators variables to observe the effect of the regulation policy [13]. In addition,
while using the existing measurement method, this approach using the forecasted value for
input variables is also possible [6].

The second application method is to estimate the carbon efficiency by constructing a
separate related model after measurement. For example, Zhou et al. [45] used the industry
GVAR (global vector autoregressive) model to confirm the relationship between carbon
efficiency and the construction industry. They used carbon efficiency as a variable for the
industry GVAR model. Additionally, Pan et al. [82] built a dynamic model to judge the
effect of environmental policy on the carbon emissions efficiency. Consequently, even if
it is not necessarily a quantitative model, a model with an index is also possible [83]. In
this way, researchers can develop their own research approach using multiple steps, but it
would be challenging to build a straightforward research question and scope. Researchers
should, then, carefully secure (or verify) a method’s validity when applying a multiple-step
approach.

4.3. Difference between Energy Efficiency and Carbon Efficiency

Even though there is a growing number of studies about carbon efficiency, it is often
confused with energy efficiency and has not received enough research attention in its
own right. According to the keyword clustering study, the result showed that the carbon
emissions efficiency’s cluster #2 was “energy efficiency” and that there was not enough
differentiation between the two terms [4,14]. This confusing problem was investigated
in the case of using single-factor indicators. For example, carbon intensity is the ratio of
carbon emissions to GDP. We can replace the carbon emissions by the multiplication of
the energy and the average carbon emissions. Then, the carbon intensity equation can
be transformed into the multiplying form of the energy intensity and the average carbon
emissions.

When using carbon intensity as a proxy of carbon efficiency, the energy intensity can
represent most of the information in the carbon intensity according to the equation [24];
however, this is a contradiction of “using a proxy.” Because they are connected on a
formula and both intensities are the proxy of efficiencies, sometimes it is considered that
this relationship also exists between the energy efficiency and carbon efficiency. What we
should keep in mind is that this does not indicate the relationship between the efficiencies.

The improvement in energy efficiency may not lead to an increase in carbon efficiency
and several studies prove this empirically using the TFCE indicator measured by the SFA
method [7]. The results showed that the most energy-efficient country has inefficient carbon
emissions, which means that the country could not be classified as being really energy
efficient. Intuitively, energy efficiency has increased due to advances in technology, but the
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amount of carbon emitted in this process may increase or vice versa. That is, the energy
efficiency and the carbon efficiency may increase or decrease in the same direction or may
move in the opposite, and in this case, the efficiency needs to be calculated in its original
equation, not in a proxy.

In addition, energy efficiency and carbon efficiency have different characteristics from
the perspective of sustainable development. Assume the situation that the improvement of
both efficiencies happens. An increasing energy efficiency can produce the same amount
of output in a decreased input; however, this aspect may occur as an adverse effect,
namely, the rebound effect, which means that the amount of energy used is increasing.
Consequently, this effect should also be considered when achieving an energy efficiency
goal for sustainable development.

On the other hand, an improvement in carbon efficiency means the carbon emissions
reduction occurs under the same production. If this improvement occurs under all other
conditions equally, there is no reason for a separate counter-benefit. This means that an
improvement in energy efficiency does not directly lead to sustainable development, but
that carbon efficiency can. Although the definition of efficiency can make it confusing, it is
necessary to analyze each efficiency according to their characteristic. In this context, it is
necessary to develop research focusing on the independent feature of carbon efficiency.

5. Conclusions

With the increasing concern about sustainable development under the climate crisis,
the interest in carbon reduction has also increased. The environment and economics are
two main dimensions that we must consider in achieving sustainable development. In
line with this background, interest in study related to carbon emissions efficiency is also
growing; however, most existing studies have focused on methodological applications
in measuring the carbon emissions efficiency. Because of the lack of concern about the
definition of carbon efficiency, several studies have misused the terminology and those
misleading studies cause confusion in this field. This study was constructed to fill this
research gap by conducting a review of the existing literature and making suggestions
about the defined boundaries of carbon efficiency.

After investigating the previous study, we can divide the definition into three groups.
The first involves single-factor indicators and the most common indicator used in this
group is carbon intensity. The indicator is defined as the ratio of carbon emissions to
GDP. Several studies changed the denominator from a monetary value to a physical value,
but this type of study is difficult to define as a carbon efficiency study. Because the first
group corresponds to a proxy of carbon efficiency on a strict basis, the variation of this
proxy indicator can be the secondary proxy. Additionally, the variation usually focusses on
the change of variables, which means the indicator has a different meaning from carbon
intensity. The second group involves total-factor indicators which are the most commonly
used definition. With the theoretical background, the definition of an indicator, namely, the
ratio of target emissions to actual emissions, falls under the strictest definition. Lastly, the
embodied concept is a relatively new approach. Additionally, it falls under the total-factor
indicators category because the definition of this indicator is also the ratio of the target
emissions to actual emissions. Their focus is on the actual emissions which contain the
carbon emissions from intermediate consumption.

The novelty of this paper is the improvement of existing literature. First, we investigate
the existing studies related to carbon efficiency. Additionally, we organized the literature
using the definition and methodology. Through this process, we found the overall trend of
extensive carbon efficiency studies. Second, we suggested the definition of carbon efficiency
according to the purpose of the study. For example, if the purpose of the study is related
to the derived point from carbon efficiency, we can use the single-factor indicator as a
proxy for carbon efficiency, but if the study focuses on a strict carbon efficiency, such as
a comparison with energy efficiency, then a strict definition of carbon efficiency must be
used. Unless using the original definition of efficiency, the reliability of the analysis is
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debased. Finally, we confirmed each definition and example, and this can give direction
to future studies. We also discussed a field that has research potential, such as embodied
or extended concepts. At the same time, we provided a significant point related to the
definition; therefore, even though the purpose of future research might be an improvement
in the methodology, this study can form the basis.
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