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Abstract: This study tracks the variety of nations dealing with the issue of energy transition. Through
process tracing and a cross-national case study, a comparison of energy policies, research hotspots,
and technical aspects of three sustainable energy systems (solar cells, recharge batteries, and hydrogen
production) was conducted. We provide an overview of the climate-change political process and
identify three broad patterns in energy-related politics in the United States, China, and Europe (energy
neo-liberalism, authoritarian environmentalism, and integrated-multinational negotiation). The core
processes and optimization strategies to improve the efficiency of sustainable energy usage are analyzed.
This study provides both empirical and theoretical contributions to research on energy transitions.
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1. Introduction

In response to new concerns about climate change, the issues of energy transition
have received much attention in the research area around the world. The adoption and
innovation of sustainable energy are necessary, especially in light of the rapid consumption
of fossil fuels [1–3]. To support the development and application of new energy, an
examination of the political dynamics of energy transitions and tracing technical innovation
in industrialized countries is necessary. There is a dearth of comprehensive literature
on the politics that influence, constrain, and shape renewable energy policy. We need
in-depth case studies to comprehend the political dynamics of energy transitions. Based
on a longitudinal case study, this study traces the evolution of national energy-related
policies and technological innovation in sustainable energy. This study focuses on the
variations in the policy decisions taken by governments in response to climate change. We
aim to categorize the energy transition policies that governments choose to implement.
Through a systematic analysis of the national energy policies of the United States, China,
and European countries, this article identifies three policy models that help explain political
trends among authoritarian states and democracies. The study’s findings contribute to the
theoretical interpretation of institutionalized environmental governance systems.

Meanwhile, a tremendous research effort in nanomaterial science has been invested
to develop clean energy conversion and storage technologies, which has resulted in great
progress and the commercialization of solar cells, secondary batteries, and the hydrogen
production [4–6]. The application of nanomaterials is mainly concentrated in these three
fields, which represent the frontier application and development trends of sustainable
energy. As we all know, the formulation of policies promotes the progress of technology,
and, likewise, the achievements in technology will also boost the refinement and perfection
of policies. However, technological progress and application in related fields face a series of
critical constraints, such as excessive dependence on resources, environmental damage, low
efficiency, or limited-service life. The best way to solve these constraints is to explore new
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materials and design new structures to mitigate the negative effects of previous processes
that promote the development of new energy. Furthermore, this study systematically
introduced the classification and development of relevant materials, discussed the critical
methods for solving the relevant technical bottlenecks through materials engineering, and
enumerated the relevant potential applications. Therefore, the introduction in related
fields helps us to systematically understand the underlying logic of relevant research,
identify technological achievements and industrial application, and then promote the deep
integration of policymaking and technological development of new energy.

Through a cross-disciplinary analysis of national policy and technical innovation, we
aim to explore how political objectives, actors, and institutions have influenced the creation
and development of each energy technology. This study provides a broad evaluation of the
key sustainable energy technologies as well as the underpinned political patterns.

2. Theoretical Framework
2.1. Variation in National Energy Transition Politics

Over the past four decades, several countries have become committed to promoting
sustainable energy. Although the importance of technical and economic aspects of the
energy transition is acknowledged, the political dynamics that drive energy policymaking
are “underdeveloped” [7]. Research on energy transition politics places a strong emphasis
on institutional elements, longstanding social values, and culture [8]. To meet the objectives
of energy transition outlined in laws and plans, each national entity utilizes several policy
instruments or tools (such as taxes, subsidies, licenses, and control rules). On this premise,
the evaluations of energy politics mainly focus on the specifics of certain policy instruments,
whereas the instrument chosen will be likely rooted in a certain political structure. There
is substantial heterogeneity within each political system. When attempting to identify a
specific political pattern, making simplistic generalizations is not enough. It is necessary
to pinpoint prevailing mechanisms that change over time, are integrated into larger social
systems, and are routinely used to tackle certain environmental issues. This study shed new
light on the national political patterns. Referring to the energy transition, these patterns
have a strong foundation in the institutions of legislation and politics as well as in the
cultures and shared experiences of different civilizations. The question is, what explains
the variation of energy policies implemented by different countries? Our case study aims
to explore institutional factors which steadily affect the policies that are being implemented
to advance the energy transition.

2.2. Technological Innovation of Sustainable Energy

Solar cells are a clean, safe, and sustainable energy generation mode, through which
solar energy, converted into electricity, can be used directly, transmitted through the
grid connection, or stored in other forms [9,10]. Needless to say, solar cells have many
advantages, but the key to their further development is to improve the photoelectric
conversion efficiency, increase usage life, and reduce production costs [11]. Currently, solar
cells can be divided into three generations, and the third generation includes organic solar
cells, dye-sensitized solar cells, quantum dot solar cells, and perovskite solar cells. Due
to their low cost, excellent optical properties, and simple preparation process, perovskite
solar cells (PSCs) have become a hot topic in the field of photonics in recent years [12,13].
Therefore, this study focuses on the latest research trends of perovskite solar cells, analyzes
the key factors restricting its development, and provides examples of its latest industrial
applications. Furthermore, developing low-cost secondary batteries and combining them
with solar cells is an effective way to efficiently utilize solar energy by storing surplus solar
power generation for use in off-peak times.

Specifically, the electric transformation from other energy forms is often stored in robust,
reliable, and cost-effective energy storage devices such as lithium-ion, lithium-sulfur batteries,
and sodium-ion batteries [14–17]. At present, the lithium-ion battery is the most widely
used; however, due to the scarcity of the lithium element, the cost of lithium-ion batteries is
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increasing, which restricts their future development. Sodium-ion batteries, therefore, stand
out because of their low cost and similar working principle to lithium-ion batteries. In
advancing battery technologies, the primary attention is paid to developing and optimizing
electrode materials that are capable of fast reversible ion insertion and extraction [18,19].
Therefore, this article focuses on the working mechanism of sodium ion battery as well as the
selection and optimization strategy of its electrode materials.

Hydrogen is one of the most promising candidates to replace non-sustainable fuel
sources and is used nowadays because it is high in energy density and can react with
oxygen to generate electric energy in fuel cells without producing any pollution [20–22]. At
present, most domestic hydrogen is produced from coal, natural gas, petroleum, and other
fossil fuels, which undoubtedly has a certain impact on the environment [23]. Hydrogen
production through the electrolysis of water with a high-performance catalyst electrode
is expected to avoid the above problems. In this study, the principle of electrocatalytic
hydrogen production and the classification of catalytic electrode materials are discussed,
the core processes and methods to improve the efficiency of electrolysis are analyzed, and
the latest applications are introduced. Meanwhile, as depicted in Figure 1, hydrogen can be
produced electrocatalytically using electricity translated from clean energy sources such
as solar cells, wind energy, and tidal energy, and is then stored and transported through
special equipment to the hydrogenation station for ammonia production, oil refining,
coke/iron production, and residential usage [24–26]. These technologies are mutually
promoting, with close contact in the development of the mainstream new energy field,
representing the efficiency of energy production, storage, and transportation that need to
be systematically and comprehensively introduced based on promotion policies, theoretical
analysis of technological innovation, and advanced applications.
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3. Research Method
3.1. Process Tracing and Case Study

This study conducts a cross-national analysis to trace the enactment and evolution
of energy transition policy, the time span of which is over 20 years. To analyze energy-
related policies implemented cross-nationally, we focused on the USA, China, and European
countries. The sampling is based on the international impact of the energy transition initiative
undertaken by a particular country. Europe was the first region to advocate energy transition.
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European countries have reached a broad consensus on tackling climate change, setting
legally binding climate and energy policies and increasing their decarbonization targets
for 2030 to 2050. As main carbon emission countries, both China and the United States
have important influences in the process of the energy transition. Energy has long been an
important carrier of global politics and economy. Energy innovation is a determinant of
power hierarchies among countries. Based on a comparative study of policy tools, political
situations, technological innovation, and applications among these countries, this study aims
to explore and predict the possible evolution of the worldwide energy structure.

We adopt process tracing as the research method to identify the political dynamics of
policymaking. In the research area of political science, process tracing is used to explain
causal mechanisms [27], that help examine the institutional factors’ effect on a certain
pattern of energy politics. In a comparative study of the energy political context of the
USA, China, and EU countries, we clarify the sequence of events based on an analysis of
the historical records. Then, this study identifies the critical juncture and timing of the
event; thus, within-case inferences help examine the causal processes in which the political
outcome occurred. This study applies both the inductive and deductive approaches to
identify the political patterns beyond the specific national cases, which can be empirically
tested in future studies.

To track the application of new energy technology in each country, this study focused
on the three fastest-growing sustainable energy cases to discuss the recent research hotspots
and applications in the fields of perovskite solar cells, sodium-ion batteries, and water
electrocatalysts for hydrogen production. These energies are closely related to the latest
experimental results involved in materials science. Based on the literature analysis and
technological investigation, this study systematically explores the classification and de-
velopment of relevant advanced materials. We discussed the critical methods for solving
technical problems through materials engineering. Thus, this study evaluated the design
methods and performance of new composite structures of each technology type.

3.2. Data Source

This study focuses on the politically driving dynamics that affect the energy transition
in the USA, China, and European Countries. The data sources for each case study include
laws and regulations, official policy files, news databases, and research articles. To identify
the institutional attributes of the energy transition, we focus on variation in the national
policies, including taxes, regulation, and subsidies. The analysis and discussion of the
technical aspects in this study are derived from important relevant books, recent review
papers, high-impact research articles, and technical reports.

4. National Policies
4.1. The United States: From Energy Neo-Realism to Conservative Neo-Liberalism

Energy politics of the United States is shaped by domestic party politics and displays
cyclical changes and discontinuity. The energy-related policy is influenced by public
demand, industrial interest groups, political actors, and the government’s institutional
capacities [8]. The evolution of energy politics in the past decade is reflected in variations
of energy policies advocated by the three generations of presidents.

In 2013, Obama promoted the Presidential Climate Action Project, which aimed to
show his leadership in climate and energy governance. The national “Clean Power Plan”
was released in August 2015. However, when Republican Donald Trump took office in
2017, he set out to dismantle the Obama-era policies; for example, he put forward the first
“America Energy Plan”. This plan was designed such that US energy policy would reduce
energy. Trump’s energy policy focused on how to make American energy independent and
ease environmental supervision. The specific policy implementation focused on promoting
energy utilization, such as the relaxed regulation around fossil fuels’ extraction and delivery.
On 4 November 2020, the United States withdrew from the “Paris Agreement”, which
aimed to control greenhouse gas emissions. The Trump administration overthrew the
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long-standing “energy neo-liberalism” of the 1970s. The Trump administration emphasized
the national economic interests and formed “energy neo-realism”. The concept of “energy
neo-realism” has two dimensions. One is “energy independence,” which maximizes US
energy resources and reduces dependence on foreign oil; the second places emphasis on the
achievement of energy saving through technological innovation. The Trump administration
attempted to resurrect the fossil fuel economy and make the traditional fossil fuel industry
the engine of economic growth.

Since 2021, Biden has continued to make the climate and energy revolution a core
policy, focusing on multilateralism and trying to restore US leadership by promoting
global carbon reduction. However, because fossil fuel capitalism has not changed, Biden
has not “completely banned” fossil energy. Biden’s climate policy has a pragmatic and
economic-oriented trend, which is regarded as a “conservative energy neo-liberalism”
approach characterized by trade protection and the supremacy of national interests [28].
The “conservative energy neo-liberalism” which was advocated by the Biden administration
aims to enhance the competitiveness of clean energy and promote the leadership of the
United States in international climate governance. This type of “Clean Energy politics” is
characterized as a kind of “political signal”, which is committed to enhancing the US’s
global leadership in the promotion of sustainable energy. However, this “Clean Energy
politics” also prompted the restructuring of domestic interests; therefore, its implementation
may face resistance from Congress and state governments.

When tracking the historical record of US energy policy, the state engages in the
utilization of sustainable energy. The United States was the first nation to propose a
plan for promoting the energy economy of hydrogen, for example. The United States
has a complete liquid hydrogen industry chain base, and it is the largest producer and
consumer of liquid hydrogen in the world. In 1990, the Clinton administration carried
out the Act to strengthen academic research on hydrogen and promote the “Hydrogen
Research, Development, and Demonstration Act of 1990” [29]. He also carried out the
“Hydrogen Future Act of 1996 “[30]. These political measures focused on the research
and development of sustainable energy technology; however, there was not much market
integration of hydrogen energy. The Bush administration has incorporated hydrogen
energy into the national energy strategy system since the 21st century, and the policy of the
“National Vision of America’s Transition to a Hydrogen Economy-to 2030 and Beyond” [31]
was drafted in 2002. In the same year as the publication of the “National Hydrogen
Energy Roadmap” [32], a number of large-scale hydrogen energy research projects were
initiated. In 2003, the United States had a leading role in the creation of an international
partnership for hydrogen energy and fuel cells. At the same time, a global “Hydrogen
Safety Committee” was formed to create a platform for sharing knowledge about hydrogen
safety. This committee works on guiding the growth of the multifaceted global hydrogen
industry. In the same year, the official “President’s Hydrogen Fuel Initiative” [33] was
launched. This initiative aimed for the investment amount allocated to the development
of hydrogen production to total USD 1.2 billion within five years, which is used for the
storage and transportation of hydrogen technology. These laws have strengthened the role
of hydrogen energy in the national legislation of energy policy.

In 2009, the American Hydrogen Energy Association, the US Fuel Cell Association (US-
FCC), and other organizations collaborated to obtain national funding of 174 million dollars
from the United States Congress. In 2012, President Barack Obama took several measures
to promote the utilization of sustainable resources such as hydrogen energy and fuel cells
with the funding of 60 billion dollars. In 2014, the US released the “Comprehensive Energy
Strategy” [34], which laid out the developing trend of a national “low-carbon” energy
structure. Congress established numerous policies in 2019, which are essential for the
industrialization of hydrogen and fuel cells. The house and senate have passed legislation
that reinstates and extends tax incentives for the usage of fuel cells in transportation and
stationary applications. In 2021, the US Department of Energy invested USD 52.5 million
to fund 31 projects to advance the second generation of clean hydrogen technologies and
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support the announced “Hydrogen Energy Earth shot” [35] program, which aims to reduce
costs and accelerate breakthroughs in clean hydrogen fields.

The photovoltaic sector policies mainly focus on financial subsidies, tax relief, oper-
ational limits, and other items. In line with the “American Energy Tax Act of 1978” [36],
25 percent of the total investments in the development of solar, wind, geothermal, and tidal
power technologies is deductible from that annual Federal income tax. In 1992, the United
States passed the “Energy Policy Act of 1992” [37], which provided the corresponding
benefits, such as tax credits and subsidies for the utilization of renewable energy. The state
provided qualified power companies with a 1.5-cent-per-kilowatt-hour tax credit. In 2004,
the tax incentives of the United States increased by 0.3 cents per kilowatt-hour of electricity.

The “Energy Policy Act of 2005” [38] was enacted in 2005 to increase war-ready
petroleum storage, safeguard the environment, and to strengthen energy security by diver-
sifying energy sources and enhancing energy efficiency. The “Energy Independence and
Security Act” [39] was enacted in 2007 to encourage a reduction in energy dependence and
the attainment of supply security in the United States.

In 2008, the US Senate struck a consensus on a tax reduction package that prolonged
the PV industries’ (ITC) tax reduction policies for two to six years. The Energy Committee
of the US Senate passed the “Ten Million Solar Energy Roof Proposal” in 2010, which aim
to invest special funds (250 million dollars in the sustainable energy industry in 2012, and
at least 250 million dollars per year from 2013 to 2020) to subsidize the installation of solar
systems on buildings, thereby driving the expansion of the American photovoltaic market
over the next decade. The federal government established “Investment Tax Credit Policies”
in 2015 to support the development of renewable energy. The firms and individuals who
invested in solar power were subsequently eligible for federal tax credits equal to 30% of
their investment. However, this policy expired on 31 December 2016, and was extended
for five years. In US politics surrounding the energy transition, governmental bodies,
particularly the courts, are crucial. “Law-centered practices” are a component of dominant
American environmental governance systems, which include judicial rulings, regulations,
and legislation [40]. Energy politics in the United States include law-centered procedures
such as the approval of the legislation, the issue of regulations, and court judgments on
disputes surrounding the application of these measures in specific situations, as well as
federalism and multi-level governance, which include initiatives and innovations at both
the national and subnational levels of government and the transmission of policy.

4.2. China: Authoritarian Environmentalism

China’s political responses to energy transition are supported by a model of authoritar-
ian environmentalism. This is a political style characterized by the concentration of power
within executive agencies governed by competent and moral elites seeking to improve
environmental outcomes [41]. According to the initial articulation of the latent concept of
the authoritative exercise of power [42], the “authoritarian environmentalism” was recently
stated as having two dimensions [43]. One is a reduction in individual liberty, which
limits people from engaging in unsustainable conduct and encourages them to follow
more sustainable policies. The second one is a policymaking process that is restricted by
relatively independent central state rules.

China is the world’s largest producer of hydrogen, with the potential to provide
hydrogen that is clean and low in carbon emissions. In 2006, China published the “Outline
of the National Medium and Long-Term Science and Technology Development Plan” (from
2006 to 2020) [44], proposing the goal of becoming the top-ranking, most innovative country
by the year 2020. This plan focuses on the low-cost as well as the large-scale development
and usage of renewable energy.

The National Council issued the “Energy Conservation and New Energy Vehicle In-
dustry Development Plan” (from 2012 to 2020) [45], outlining specific measures for the
development of new energy vehicles in China before 2020. In 2016, the National Devel-
opment and Reform Commission and the National Energy Administration released the
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“Energy Technology Revolution Innovation Action Plan” (from 2016 to 2030) [46]. This
plan pinpoints the technological innovation of hydrogen energy and fuel cells. During the
two sessions of 2019, the report on the work of the national government firstly highlights
the necessity to encourage the building of charging, hydrogenation, and other facilities. In
April 2020, the rule regarding hydrogen energy was included in the “Energy Law of the
People’s Republic of China (Draft for Comment)” [47]. Hydrogen energy was identified
as a potential future industry in the 14th “Five-Year Plan” for the national economic and
social development, and also in the Chinese “Outline of Long-Term Goals for 2035” [48].
China is a major producer and marketer of solar cells, has the world’s largest solar power
industrial chain, and is the world’s largest exporter of commodities, which is supported
by the government. China has specifically addressed the installation of solar photovoltaic
power, beginning with the “Eleventh Five-Year Plan” (from 2006 to 2010). During the
period from the “Twelfth Five-Year Plan” to the “Thirteenth Five-Year Plan” (from 2011 to
2020), the solar industry was included on the list of growing strategic industries, with a
focus on planning and helping to improve and optimize the energy system. During the
“Fourteenth Five-Year Plan” period (from 2021 to 2025), the “Fourteenth Five-Year Plan”
and the “Long-Term Goals for 2035” put the building of a modern energy system and the
aggressive expansion of photovoltaic power generation at the top of the list of priorities.
In March 2009, The People’s Republic of China’s Ministry of Finance and the Ministry of
Housing and Urban–Rural Development issued the “Official Notice on Accelerating the
Implementation and Applications of Solar Photovoltaic Buildings” policy [49]. This policy
also aimed to support the applications of photovoltaic building and the implementation
of the national “Solar Roof Plan”. The National Development and Reform Commission
and the State Electricity Regulatory Commission published the “Notice on Renewable
Energy Electricity Price Subsidies and Quota Trading Schemes from July to December of
2008” [50] in July to help pay for the prices of renewable electricity. In 2012, the National
Energy Administration published the “Official Notice on Declaring a Demonstration Zone
for the Large-Scale Application of Distributed Photovoltaic Power Generation” [51], indi-
cating that distributed photovoltaic power generation was economically viable and met
the requirements for large-scale applications. In 2013, the State Council issued the “Several
Official Notices on Promoting the Healthy Development of the Photovoltaic Industry” [52],
which presented constructive opinions based on the gradual expansion of the domestic ap-
plication market for photovoltaic power generation and the general operational challenges
faced by photovoltaic enterprises. Based on these opinions, the relevant departments, units,
and regions have since developed a series of comprehensive policy support systems.

In 2014, the National Energy Administration released the “Notice on Further Imple-
menting the Policies Related to Distributed Photovoltaic Power Generation” [53], which
enhanced the application process and development of distributed photovoltaics. “Official
Notice on the Price Policy of Photovoltaic Power Generation Project of 2018” [54] was
issued to minimize the intensity of subsidies. This project investigates the business model
for distributed photovoltaic power generation.

In 2019, the “Official Notice Referring to Actively Promoting the Utilization of Wind
Power and Photovoltaic Power” was issued [55]. China proposed a series of policies to
support the subsidy free grid parity of photovoltaic power, which can promote the high-
quality development of renewable energy and enhance the competitiveness of wind power
in the market. Afterward, the National Development and Reform Commission issued the
“Notice on Problems Related to Improve the Feed-in Tariff Mechanism for Photovoltaic Power
Generation” [56] in April of the same year. China advocated the eligible projects to determine
electricity prices in a form of bidding. These projects are beneficial for achieving efficient
resource utilization, promoting fair competition, and ensuring the survival of the fittest.

The “Notice on Matters Related to the Development and Construction of Wind Power
and Photovoltaic Power Generation of 2021” [57] was issued to mandate the implemen-
tation of carbon peaking and carbon neutrality targets. These policies can ensure that
non-fossil energy consumption will account for approximately 20% of primary energy
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consumption until 2025. To reinvent the new energy development and utilization model,
the “Implementation Plan on Promoting the High-quality Development of New Energy in
the New Era” [58] was issued in 2022. This plan contains a national target, namely that the
coverage rate of photovoltaic buildings in public institutions will reach 50 percent by 2025.

Authoritarian environmentalism can affect the choice of policy instruments or resource con-
figuration. China’s energy governance relies on two main tools: laws and plans [40], especially
the “top-down” implemented national “five-year plan” (FYP) that influences the promotion
and use of sustainable energy. Energy governance is largely based on command-and-control
regulation. In the centralized control of energy governance, the Chinese central government is
playing a leading role by creating a “yardstick competition” [59] among local governments and
adopting targeted accountability (TRS) schemes to address the energy transition.

4.3. European Countries: Integrated-Multinational Negotiation

The EU has been an advocate, facilitator, and leader in actively addressing global cli-
mate change. As Europe always advocates the deepening of political, economic, defensive,
and secure integration and cooperation, the energy policy of EU countries is featured in the
policy pattern of integrated-multinational negotiation. The integrated pattern of European
energy transition policies is essentially formed through the continuous promotion of the
judgment and compatibility of national interests. First, it highlights the significance of
domestic politics in intergovernmental cooperation. Then, the national governments nego-
tiate with other nations in order to exert pressure based on their predetermined national
interests. Eventually, a regionally coordinated mechanism is constructed. However, as
a non-EU country, Switzerland has different forms of cooperation in energy policy. Baal
and Finger illustrated that, although Switzerland and the EU are highly interdependent in
terms of energy due to geographical reasons, the level of policy coordination is relatively
low because there is no formal EU–Swiss energy agreement [60]. The contemporary Swiss
energy policy focuses on the 2050 Energy Strategy (ES50) [60]. In 2017, a referendum passed
the bill, which reflects Switzerland’s efforts to become more sustainable by phasing out
nuclear energy, supporting renewable energy, and making energy use more efficient.

Europe is also a leader in the development and deployment of hydrogen energy.
In 1986, the “Energy in Europe” [61] identified renewable energy as the development
direction for strengthening the European Union’s energy structure, laying the framework
for the European Union’s energy strategy. Europe conducted a joint project titled the
2003 “European Research Area” in order to conduct cooperative research in the field of
hydrogen energy utilization in Europe to ensure the diversification and efficiency of the
European energy system. “The 2020 Climate and Energy Package” [62] was suggested by
the European Council in 2007 as a series of legally enforceable rules and regulations to help
the European Union meet its 2020 climate and energy goals. The European Parliament
officially approved this plan in December 2008, and, since then, the European Union has
taken the first steps toward energy transition.

Under the leadership of the German government, the leading European energy compa-
nies such as French Air Liquide Group, French Total Group, German Linde Group, and the
Dutch Shell Group signed the “Memorandum of Cooperation on the H2 Mobility Project”
(2009), which aimed to construct large-scale hydrogen refueling stations in Europe.

In 2011, the European Union released the “Energy Roadmap 2050” [63], in which
renewable energy played a crucial role. The European Union estimates that, by 2050, the
proportion of renewable energy to total energy consumption will increase from the present
10% to more than 55%. The European Union also unveiled the “Roadmap for Transforming
the EU into a Competitive, Low-carbon Economy by 2050” [64], ensuring that the Union
meets its long-term goal of reducing emissions by 80 to 95 percent compared to 1990 levels
by 2050.

“The 2030 Climate and Energy Policy Framework” [65] was adopted by the European
Council in 2014. It drew from relevant documents such as the “2020 Climate and Energy
Framework” and the “2050 Energy Roadmap”, and it reflected the European Union’s 2050
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greenhouse gas emission targets, which were to increase the share of renewable energy in
final energy consumption to 27 percent and improve energy efficiency by 27 percent. New
jobs will be created in an effort to assist the development of a low-carbon economy in the
European Union, improve the competitiveness of the energy system, enhance the security
of the energy supply, and reduce dependency on energy imports.

In 2015 and 2016, the European Hydrogen Vehicle Program (Hydrogen Mobility
Europe H2ME 1 and H2ME 2) was launched with a total expenditure of EUR 170 million
to build 49 hydrogen filling stations. The European Joint Institution for Fuel Cells and
Hydrogen (FCH-JU) released the “European Hydrogen Roadmap: A Sustainable Pathway
for The European Energy Transition Resolution” [66] in February of 2019. Hydrogen energy
became an essential tool for Europe to achieve carbon neutrality by the year 2050.

In December 2019, the European Commission unveiled the “European Green Deal” [67]
(“Green New Deal”), which boosted the EU 2030 emission reduction objective from 40% less
than in the year 1990 to at least 50% less and achieved a 55% reduction as a result. By 2050, it
is anticipated that “recyclable” and “carbon neutral” products would be widespread across
all industries, enabling the European Union to achieve net-zero greenhouse gas emissions.

As the central entity, the EU aims to create an internal energy market without technical
and regulatory barriers. The dominant processes of energy governance in the EU involves
constructing a general political system to target the free market circulation of sustainable
energy among the Member States, improving the energy structure, and ensuring a steadily
developed market structure, regulations, and infrastructure. As such, the Member States,
considering their respective regional conditions, have the right and duty to implement
these policies which contribute to the achievement of common energy transition goals.

5. Recent Research Hotspots
5.1. Solar Cells

Regarding solar cells, also known as photocells, when light shines on semiconductors,
it provides energy for valence electrons in semiconductors and makes them free from
binding, so as to make electrons move. In short, they use light energy and convert it into
electrical energy for power generation [68,69]. Generally speaking, solar cells are divided
into three generations based on the technological maturity and active layer difference.
Among them, the third-generation solar cells are distinguished by their high energy conver-
sion efficiency, high stability, cheap cost of production, and environmental friendliness. [70].
At present, it typically involves dye-sensitized solar cells, quantum dot solar cells, organic
solar cells, and perovskite solar cells. Perov-skite solar cells (PSCs) have gained significant
attention in the field of photonics because of their low cost, good optical qualities, and
simple manufacturing procedure [12,13].

At first, PSC composites with organic–inorganic hybrid perovskite material did not
attract much attention due to their being less advantageous in stability and energy con-
version efficiency (3.8%) [71]. Until 2012, N.G. Park et al. reported that PSCs achieved an
energy conversion efficiency of more than 9% with 500 h of stability, at least in air, and then
the relevant research work began to increase gradually [72]. In 2013, H.J. Snaith et al. made
the PSCs by using a vacuum deposition method based on CH3NH3PbI3−XClX for the first
time, with an energy conversion efficiency that exceeded 15% [73]. After more than ten
years of rapid development, in 2021, the energy conversion efficiency of the PSCs prepared
by J. SEO et al. achieved 25.2% certification efficiency, which is comparable to the energy
conversion efficiency of silicon-based solar cells [74]. The extremely considerable increase
in efficiency from 2012 to 2021 (Figure 2a) was largely driven by the emergence of seminal
reports of all-solid-state PSCs in 2012 [75]. According to S-Q analysis, the theoretical effi-
ciencies depicted in Figure 2b show that the PSCs still have an 18.5% efficiency gap from
the theoretical value [76]. However, in order to achieve the widespread application of high-
performance PSCs, the issues of lead toxicity, material stability, low spectral absorption
ability, and the development of large-area modules (Figure 2c,d) must be solved firstly and
then develop the devices according to the process, as shown in Figure 2e [77].
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Figure 2. (a) The increasing trend of perovskite solar cell efficiency (PCE) from 2011 to 2020, reprinted
with permission from Ref. [75]. Copyright 2020, American Chemical Society; (b) The S-Q limit
line and the highest PCE of various solar cells; (c) the maximum PCEs of copper indium gallium
selenide (CIGS), crystalline silicon (c-Si), gallium arsenide (GaAs), and organic–inorganic lead halide
perovskites (Perovskite), as well as their modules; (d) the correlation between the PCEs of perovskite
solar and active area, the date cited in this figure from the left to the right according to the PCE
fabrication process (Spin coating: e.g., Ren A.+2020, Han G.S.+2019; Slot-die coating: e.g., Du M.+2020,
Li J.+2021; Spray coating: Kim J.+2017, Rolston N.+2020, Heo J.H.+2016, Agresti A.+2019; Blade
coating: Wu W.+2020, Li C.+2019, Deng Y.+2020, Deng Y.+2019; Inkjet printing: e.g., Li Z.+2020,
Eggers H.+2019, Li P.+2018) and see Ref. [76] for details information in the figure, (b–d) reprinted with
permission from Ref. [76]. Copyright 2021, Oxford University Press. (e) Simplified procedural outline
of perovskite solar cell research roadmap, through high-throughput screening potential materials for
further experimental verification and device manufacturing, reprinted with permission from Ref. [77].
Copyright 2021, IOP Publishing Ltd.

The fundamental way to solve lead toxicity in perovskite materials is to develop
novel non-lead perovskite materials. Although efficient packaging equipment and later the
collection of waste devices can effectively control the toxicity of lead, it will also increase the
production and use the cost of solar cells [78,79]. Currently, non-lead perovskite materials
mainly use low-toxic elements to replace lead, such as Sn, Bi, Sb, and Cu. Sn-based halide
perovskite (MASnX3, X = Cl, Br, I) is considered to be the most effective alternative [78–80].
Tetragonal CH3NH3SnI3 perovskite, with a narrow optical band gap of 1.23 eV, has a similar
structure to lead-based perovskite [80]. Moreover, the above non-lead materials face the
problems of low efficiency and poor stability, and there is still a significant gap compared
with lead-based perovskite [81]. Therefore, the partial substitution of lead is an effective
way to weaken the lead pollution, and the incorporation of SCN− into the perovskite
adsorption energy barrier of oxygen molecules can thermodynamically stabilize the crystal
structure of perovskite, as shown in Figure 3 [82]. Although there are still stability problems,
the maximum energy conversion efficiency of lead and Sn mixed perovskite has reached
21.2% [83].
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Figure 3. (a) Schematic diagram of mixed Sn−Pb antioxidation perovskite films; (b) an O2 molecule
was adsorbed on the surface of FASn0.5Pb0.5I3 perovskite; (c) an O2 molecule was adsorbed on the
surface of FASn0.5Pb0.5I3 perovskite doped with SCN−. Reprinted with permission from Ref. [82].
Copyright 2022, American Chemical Society.

The poor stability of PSCs is the bottleneck restricting their large-scale usage. The
stability of perovskite devices largely depends on the interface between components in the
device structure as well as the stability of different components (such as the metal electrode,
charge transfer layer, and absorption layer). The property of being soluble in water and
the decomposition of perovskite material are also critical factors for the stability of the
PSCs [84–86]. Recently, some researchers have made many efforts to optimize the perovskite
material to alleviate the instability problem by adding additives with functional groups
such as amine or carbonyl, which can be covalent with perovskite [86]. When perovskite
films are formed, the hydrophobic part of the additives coordinates with perovskite, and
its functional groups are at the grain boundary or surface that can protect perovskite from
water damage. Not only water molecules have an effect on the stability of PSCs materials,
high temperature also influence the stability of devices that are prone to structural changes
of perovskite materials [87]. For instance, MAPbI3 perovskite will undergo a reversible
phase change from the tetragonal phase to the cubic phase at a heating temperature of
about 57 ◦C [88]. At present, the best choice is to improve the stability of materials by
adding mixed cations. Park et al. revealed for the first time that incorporating organic–
inorganic hybrid cations into perovskite light absorbers might improve stability. When
Cs+ is partially substituted for formamidine, the photostability of perovskite films was
significantly improved [79].

Altering the band gap of perovskite materials by component modulation is another
method that might be used to boost the performance of PSCs [89]. In order to broaden
the spectral absorption range of PSCs, researchers used the adjustable energy band of
perovskite materials to construct the solar cell structure, such as laminated PSCs and
gradient band gap PSCs [89]. Furthermore, optimizing the preparation process of PSCs
is the basis and premise used to enhance the electron transmission rate and decrease
the energy loss of extracted charges that improve the conversion efficiency of PSCs [90].
Meanwhile, PSCs have a multilayer structure, and there are a large number of interface
defects between perovskite the absorption layer and each functional layer that cause
significant carrier recombination, which eventually affects the device charge transfer, open-
circuit voltage, hysteresis effect, and so on [91,92].
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To enhance the performance of the PSCs, it is thus required to passivate the interface’s
defects, as shown in Figure 4 [92]. The device’s performance and service life may also
be increased by effectively purifying the interface between the perovskite absorption
layer and the hole transport layer. Therefore, by designing and exploring new materials
and processes, optimizing device structure, and combining theory with experiment, the
all-around performance of PSCs can be gradually improved, and large-scale practical
applications can be realized.
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Figure 4. Carrier transport process and interface structure optimization (a) with defects on the surface
of TiO2 and (b) with perfect TiO2; (c) transport process of interface carrier. Reprinted with permission
from Ref. [92]. Copyright 2021, Elsevier.

5.2. Rechargeable Batteries

A lithium-ion battery is a kind of high-specific energy secondary battery that is impor-
tant and widely used in current commercial applications. However, due to the limitation of
lithium resources, the cost of lithium-ion batteries has dramatically increased, which will be-
come a severe constraint for its more expansive and massive applications in the future [93].
Therefore, sodium-ion batteries (SIBs) offer several benefits, such as rich resources, low-cost,
high-energy conversion efficiency, high half-cell potential (0.3 V higher than lithium-ion
battery), no over discharge characteristics, and compatibility with aluminum foil that af-
fords them great application potential in new energy fields [94]. Research on sodium-ion
batteries began as early as the 1970s and, with the development of material science, it has
witnessed a spurt of growth in the recent year [95,96]. The operating concept of SIBs is
similar to that of lithium-ion batteries, which was proposed by Armand et al. in 1980 as a
“rocking chair battery” model [97]. According to the structure and electrolyte of sodium-ion
battery, this kind of battery can be divided into sodium sulfur battery, organic sodium-ion
battery, aqueous sodium-ion battery, and solid sodium-ion battery. The conventional SIBs
consist of a sandwich structure of anode and cathode and polymer separator with a liquid
electrolyte surrounding [98]. Normally, both anode and cathode electrodes are a composite
of active material powders, adhesives, and conductive additives in proportion, and are
separated using a porous separator that is usually made of glass fibers or porous polymers
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that allow ions to pass through but prevents electrons that achieve short circuit prevention
(Figure 5) [97].
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Sodium ions are extracted from the anode material and combined with the cathode
material for energy storage during the charging process; meanwhile, electric energy is
transformed into chemical energy through an electrochemical redox reaction on the elec-
trode materials’ surfaces. However, compared with lithium-ion, sodium-ion has stronger
solvation with a size of 1.02 Å, which is larger than that of lithium-ion (0.76 Å), and the elec-
trochemical potential of sodium-ion (−2.71 V, Na+/Na) is smaller than that of lithium-ion
(−3.04 V, Li+/Li). Therefore, the electrode material of a sodium-ion battery will produce
more volume fluctuations throughout the charge and discharge process, resulting in more
severe problems such as electrode collapse and crushing. At the same time, from the per-
spective of dynamics, the insertion and extraction speed of larger sodium ions in electrode
materials is slower than that of lithium ions, which present SIBs with more significant
challenges in their cycle life and rate performance [99–101]. Moreover, the energy den-
sity of the sodium-ion battery is primarily determined by the capacity of the anode and
cathode materials, and the capacity of the anode is often much higher than that of the
cathode, therefore the cathode material primarily limits the performance of the battery
(Figure 6) [97].

In the research phase, four typical cathode materials for SIBs have been identified:
transition metal compounds, organic compounds, Prussian blue derivatives, and polyan-
ionic compounds, therefore it is urgent to explore high-performance cathode materials
based on those materials for SIBs. Table 1 depicted the characteristics of the four kinds
of electrode cathode materials [12,102–104]. Among those materials, organic materials
have the disadvantages of poor electronic conductivity, a low-voltage platform, and a
general electrochemical charging and discharging capacity, which limits its development
direction as the mainstream cathode material of high-capacity and high-voltage SIBs [105].
Polyanionic compounds mainly include the following four kinds: phosphate, fluorophos-
phate, fast sodium-ion conductor phosphate, and pyrophosphate. These materials have
substantial drawbacks, such as limited specific capacity, poor rate characteristics, and low
discharge platform potential, thus further optimization is needed [106]. Therefore, Prussian
blue derivatives and transition metal compounds can meet the commercial requirements of
sodium-ion batteries and have more excellent commercial value in this stage.
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There are also several fundamental problems that should be solved in the development
of SIBs. Firstly, although the development of SIBs can learn from and transplant lithium-ion
battery research methodologies and procedures, novel positive materials with high energy
density and power density, as well as negative materials with minimal volume changes in
the process of circulation, are required [107,108]. Furthermore, enhancing the cycle stability
of the electrode materials is an important method for improving the performance of SIBs
and a vital step toward commercializing SIBs on a large scale [109,110]. In addition, the
synthesis methods of electrode materials for SIBs are relatively simple. The traditional solid-
phase and gel-sol methods are the primary preparation methods, therefore new synthesis
strategies and theory methods should be developed for better capacity and a large voltage
window [111]. With the progress of the above technologies, sodium-ion batteries can first
replace lead-acid batteries with high pollution and low energy density and then play a
more significant role in more aspects.
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Table 1. Characteristics of the four kinds of electrode cathode materials: transition metal compounds
(Reprinted with permission from Ref. [12]. Copyright 2019, Elsevier); organic compounds (Reprinted
with permission from Ref. [102]. Copyright 2019, Royal Society of Chemistry); Prussian blue
derivatives (Reprinted with permission from Ref. [103]. Copyright 2019, Wiley-VCH) and polyanionic
compounds (Reprinted with permission from Ref. [104]. Copyright 2019, American Chemical Society).

Transition Metal
Compounds Organic Compounds Prussian Blue Derivatives Polyanionic

Compounds

Structure
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There are also several fundamental problems that should be solved in the develop-
ment of SIBs. Firstly, although the development of SIBs can learn from and transplant 
lithium-ion battery research methodologies and procedures, novel positive materials with 
high energy density and power density, as well as negative materials with minimal vol-
ume changes in the process of circulation, are required [107,108]. Furthermore, enhancing 
the cycle stability of the electrode materials is an important method for improving the 
performance of SIBs and a vital step toward commercializing SIBs on a large scale 
[109,110]. In addition, the synthesis methods of electrode materials for SIBs are relatively 
simple. The traditional solid-phase and gel-sol methods are the primary preparation 
methods, therefore new synthesis strategies and theory methods should be developed for 
better capacity and a large voltage window [111]. With the progress of the above technol-
ogies, sodium-ion batteries can first replace lead-acid batteries with high pollution and 
low energy density and then play a more significant role in more aspects. 

5.3. Hydrogen Production 
China has already a specific foundation in the hydrogen energy industry, with a na-

tional hydrogen production capacity of more than 20 million tons. Currently, nearly 70% 
of domestic hydrogen is produced from coal, natural gas, petroleum, and other fossil 
fuels, about 30% is produced from industrial by-product gas, and less than 1% is produced 
from electrolytic water [112]. 

Hydrogen production via the conversion of natural gas (including naphtha, heavy 
oil, refinery gas and coke oven gas) is a traditional technology that has been commonly 
used in large-scale hydrogen supply occasions (more than 5000 Nm3/h) [113]. In areas rich 
in natural gas, hydrogen production from natural gas is the best choice with low invest-
ment and consumption, which is very suitable for small- and medium-sized occasions, 
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5.3. Hydrogen Production

China has already a specific foundation in the hydrogen energy industry, with a
national hydrogen production capacity of more than 20 million tons. Currently, nearly 70%
of domestic hydrogen is produced from coal, natural gas, petroleum, and other fossil fuels,
about 30% is produced from industrial by-product gas, and less than 1% is produced from
electrolytic water [112].

Hydrogen production via the conversion of natural gas (including naphtha, heavy oil,
refinery gas and coke oven gas) is a traditional technology that has been commonly used
in large-scale hydrogen supply occasions (more than 5000 Nm3/h) [113]. In areas rich in
natural gas, hydrogen production from natural gas is the best choice with low investment
and consumption, which is very suitable for small- and medium-sized occasions, such as for
the conversion of coal (including coke and petroleum coke) to hydrogen. This technology
with a complex process and low cost is usually suitable for medium production units
(greater than 1000 Nm3/h) and areas without natural gas resources and large-scale units.
Hydrogen production by methanol or ammonia cracking: this cracking process is relatively
simple, easy to operate, and has strong competitiveness in areas with sufficient methanol
supply with small hydrogen demand (below 200 Nm3/h).

Those three technologies presented above are currently mainstream hydrogen pro-
duction methods; however, all of them are based on traditional fossil energy. As a result,
extensive research is being performed to harvest energy from water by converting water
into H2 [114,115], and electrocatalysis-driven water splitting is one of the most promising
carbon-free methods with minimum environmental effect. Real-time energy storage and effi-
cient transportation can also be achieved by integrating solar cell, wind, or water-generated
electric power with the technology of electrolysis water. The hydrogen production by water
electrocatalysts has a high purity and is very suitable for fuel cell and hydrogen storage.
However, H2 synthesis via electrolysis is still not economical because of the absence of
adequate electrocatalysts [116,117]. At present, metal oxides and alloys made of precious
metals such as Pt, Ru, and the Rh group are regarded as the most active catalysts in the
hydrogen evolution reaction (HER); however, they are scarce and expensive. Therefore,
the key to creating electrolytic water technology is the effective utilization of modified
noble metals or the invention of active, long-lasting, and earth-abundant electrocatalysts
for water-splitting [118,119].



Sustainability 2022, 14, 10014 16 of 30

5.3.1. Noble Metal-Based Electrocatalysts

Modifying noble metal is one of the most straightforward and efficient approaches
for designing high-efficiency water-splitting electrocatalysts [120,121]. Various techniques
have been developed to enhance atomic utilization efficiency, stability, and loading quantity
(such as alloying with nonprecious metals [121,122], single atomization [123,124], and
doping heteroatoms into noble metals [125]). Feng et al. [126] fabricated a highly efficient
alloy type RuCo electrocatalyst based on carbon dots (RuCo@CD) for overall water-splitting
with outstanding durability in a broad pH range. In order to manufacture the composite
electrode, bulk and surface electronic structures of Ru were rationally changed, resulting in
improved HER and OER electrocatalytic activity. As shown in Figure 7, a low overpotential
of 11 mV in 0.5 M H2SO4, 51 mV in 1.0 M KOH, and 67 mV in neutral 1.0 M PBS solutions
at 10 mA cm−2 is required for HER activity in the RuCo@CD catalyst.
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Figure 7. (a) Schematic diagram of the fabrication of the RuCo@CD catalyst; (b) the HER electrocat-
alyst performance of RuCo@CDs compared with recently related reports. Data were taken from the
literature [126]. Reprinted with permission from Ref. [126]. Copyright 2020, Royal Society of Chemistry.

An alkaline overall water-splitting electrode using cation exchange approach was
developed by Xu et al. [127] using single-atom site catalysts (SACs) of Rh on CuO nanowire
(CuO NAs) arrays. The poor electrochemical performance of CuO NAs has been greatly
improved by adding a single atom of Rh. This is due to the large specific surface area of the
electrode and the high efficiency of noble metal. As depicted in Figure 8, at 10 mA cm−2 in
1 M KOH, the lowest overpotential of Rh SAC-CuO NAs/CF is only 197 mV for OER and
44 mV for HER (similar to the HER performance of Pt/C/CF of 42 mV at 10 mA cm−2).

5.3.2. Transition Metal Electrocatalysts

Similar to noble metals, transition metals (Ni, Fe, Mo, Co, etc.) have an electron
distribution in the d orbital that is under-filled, making them the perfect materials to replace
noble metal catalysts [128]. Transition metal catalysts mainly include transition metal
sulfides, nitrides, phosphates, selenides, borides, oxides, carbides, tellurides, and transition
metal alloys [128,129]. At present, transition metal catalysts are mainly modified through
electronic environment regulation, nanostructure optimization, and multi-component
synergy to improve the catalytic performance [130,131]. Compared with transition metal-
based materials such as Co, Fe, and Mo, the HER performance of nickel-based catalysts
showed stable Gibbs free energy and lower overpotential at the same current density
(Figure 9) [132]. Electrolytic water in an alkaline media has demonstrated exceptional
stability and catalytic activity for Cu-based catalysts because of their rich content, low
toxicity, and high intrinsic activity [133]. Meanwhile, transition metal carbides have good
stability, phosphide is cheap and stable, and chalcogenide can improve the electronic
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structure of catalysts, which are the focus of current research. Based on these transition
metal catalysts, doping other elements to regulate the electronic structure and synergy
with other elements, such as Pt/Ni(OH)2 heterostructure, is also an efficient method for
enhancing the activity and stability of nickel-based catalysts [134]. Moreover, changing the
structure of the catalysts and increasing catalytic activity by exposing more active sites,
such as the development of nanosheets, nanowires, and nanoarrays, is also an area of
research interest in the field of electrocatalysis.
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between free energy and the reaction coordinate of HER calculated from simulated models of Ni,
Ni(OH)2 and Ni/Ni(OH)2; (c) the HER performances of Ni, Ni(OH)2, Ni/Ni(OH)2 nanosheets and
Pt/C. Reprinted with permission from Ref. [132]. Copyright 2020, Wiley-VCH.
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5.3.3. Nonmetallic Electrocatalysts

Nonmetallic catalysts mainly refer to carbon materials, which have the advantages of
a wide source of raw materials, low cost, adjustable electronic environment, and stable per-
formance. However, the intrinsic activity of carbon materials in HER and OER cannot meet
the needs of industrial applications. Nonmetals such as B, N, P, S or other functional groups
are mainly doped into carbon materials through a multivariate approach to improve the
catalytic activity of carbon materials. As shown in Figure 10a–c, the defect manufacturing
and doping of carbon materials through material engineering for OER and HER electrode
and Figure 10d–f reflect the electrocatalytic property of defective graphene, all of which
indicate that the modification and doping of carbon material can effectively improve the
electrochemical performance of the electrode [135,136].
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6. Applications of the above Technologies
6.1. Solar Cells

The upscaling of PSCs has become the next stage as a result of recent advancements in
the efficiency and stability of PSCs. Roll-to-roll (R2R) procedures for the uniform creation
of a precursor wet film and full conversion to perovskite phase have been specifically
developed to achieve this goal, which would be a breakthrough in accomplishing the
commercialization of PSCs [137]. As shown in Figure 11, Kim et al. successfully demon-
strated the R2R production of all of the layers (with the exception of the electrodes) using
a complete pilot scale in the PSCs process. Through tBuOH: EA bathing, the uniform,
highly crystalline formamidinium (FA)-based perovskite was produced, achieving power
conversion efficiencies (PCEs) of 19.1% for gravure-printed flexible PSCs and 23.5% for
glass-based, spin-coated PSCs, respectively [137].
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Recently, large-area PSC modules have been fabricated by several PV companies. A
rigid perovskite mini module was realized by Microquanta Semiconductor (Hangzhou,
China), which obtained an active area of 17.8 cm2 with a PCE of 17.4% (Figure 12a) [6]. The
perovskite modules with an area of 169 cm2 and a GFF of 90% that exhibited an active area
efficiency of 11.1% (total efficiency of 10%) were fabricated by Solliance (the Netherlands),
using laser ablation to define the cells [138]. Those processing steps are compatible with the
roll-to-roll process with flexible substrates and were realized at temperatures below 120 ◦C
(Figure 12b) [6]. Figure 12c depicted perovskite solar modules with flexible substrates that
were fabricated through inkjet printing by Saule Technologies (Poland), allowing free-form
design patterns [6]. Recently, Oxford PV announced a perovskite–Si tandem solar cell with
an area of 1 cm2 that achieved a record certified PCE of 27.3% [6]. Huazhong University of
Science and Technology (HUST) in China developed a printed triple mesoscopic PSC with a
surface area of 100 cm2, and the PSCs achieved an efficiency of more than 10% (Figure 12d).
Based on those PSCs, the solar panel was assembled with an area of 7.0 m2 in early
2015 [139]. Recently, Wonder Solar has released a 110 m2 perovskite PV system by stacking
screen-printed triple mesoscopic PSC modules with an area of 3600 cm2 (Figure 12e) [6].

6.2. Batteries

Prussian blue analogues (PBAs) have sparked widespread interest for their poten-
tial use in energy storage and conversion owing to their ease of synthesis, low cost, and
remarkable electrochemical performance [122]. Peng et al. scaled up the synthesis of
the Fe-PBAs by employing a 100 L reactor and a 500 L reactor (Figure 13a–g) and in-
creased the specific capacity of Fe-PBA-based sodium-ion from 80 mAh g−1 to more than
100 mAh g−1 by improving fabrication techniques [140]. The second generation of SIBs
based on Na1.56Fe[Fe(CN)6]3.1H2O were able to achieve a specific capacity of 116 mAh
g−1 at 10 mA g−1 with a capacity retention of 83% at the current density of 500 mA g−1, as
shown in Figure 13h [140,141].
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Figure 13. Different preparation quantity of (a) 10 g, (b) 10 kg, and (c) 100 kg of PBAs;
(d–g) production line of sodium-ion pouch cell; (h) electrochemical performance of pouch cell.
Reprinted with permission from Ref. [140]. Copyright 2020, Wiley-VCH.

A facile heat treatment was carried out by Wang et al. to remove water from PBAs
cathode based on Na2−xFeFe(CN)6 improved the performance of the fabricated sodium-ion
soft package [142]. It is necessary to prevent rehydration due to contact with air during
the battery manufacturing process and within the set charge cut-off voltage, the cycling
performance of a well packaged sodium-ion battery can achieve more than 2000 times.
Figure 14a demonstrates that a 100 L reactor was used to produce Na2−xFeFe(CN)6 cathode
on a large scale for practical application in SIBs with a yield about 4 kg. Figure 14b,c
presented the powder of Na2−xFeFe(CN)6 before and after heat treatment, respectively.
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Figure 14d exhibits the sodium-ion cell based on Na2−xFeFe(CN)6 as the cathode material
and hard carbon as anode material connected with a lamp. Figure 14e shows that the
sodium-ion cell also has good charge-discharge and cycling performance.
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To explore the performance of sodium-ion full batteries based on transition metal,
Na3V(PO4)3 (NVP) was fabricated as the cathode and the MoS2/carbon materials (SMSC-
1-Mo-2) as the anode, as shown in Figure 15a [143]. The constructed SIB-full cell (SMSC-
1-Mo-2/NVP) is recycled three times to avoid a side reaction between the electrode and
electrolyte [143]. All of the CV and charge–discharge tests for the voltage window of SMSC-
1-Mo-2//NVP are settled from 0.5 V to 3.2 V. From the CV curve of SMSC-1-Mo-2//NVP
in Figure 15b, the cathodic sweep in CV showed two broad peaks at 1.58 and 2.52 V, and
the anodic sweep showed two peaks in 1.32 and 1.81 V. The sodium-ion battery obtained
a discharge capacity of 600 mAh g−1 and a charge specific capacity of 630 mAh g−1 at
a current density of 0.05 A g−1, with a CE of 95.2% based on SMSC-1-Mo-2 mass and
performance, as displayed in Figure 15c. Figure 15d depicted that, even under large current
densities from 0.1 to 4.0 A g−1, the SMSC-1-Mo-2//NVP showed a discharge capacity
of 394, 365, 337, 296, 251, and 201 mAh g−1 after five cycles, respectively. The cycling
performance of the battery shown in Figure 15e indicates that the specific capacity of the
full battery maintains 330 mAh g−1 after 100 cycles at 1.0 A g−1. In Figure 15f, an LED bulb
was efficiently powered by SMSC-1-Mo-2//NVP sodium-ion battery.

6.3. Hydrogen Production

In the short term, hydrogen production from coal is still the main source of hydrogen in
China; in the medium term, hydrogen production from industrial by-products is expected
to become the main process of hydrogen supply; however, the existing problems also make
it unable to be used for a long time. In the long run, with a decline in renewable energy price,
clean and efficient “green hydrogen” will become the mainstream process of hydrogen
production. In the future, “green hydrogen” can be produced in large quantities by water
splitting through electricity that is converted by solar, geothermal, or tidal energies, or by
wind. The overall market for hydrogen consumption in 2021 is estimated to be about 115
billion, with a quick increase to 155 billion by 2022, indicating that hydrogen is becoming
increasingly popular as an energy carrier [26].
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Lin et al. described a phosphate bimetallic of 2D NiFeP-based metal organic frame-
work (MOF) nanosheet compounds with super-low Ru doping as the electrocatalyst on
nickel foam (Ru-NiFeP/NF) for overall water-splitting electrodes [144]. MOFs with the
unique characteristic of a large surface area have a 3D extension of space supported by
organic ligands and are connected with metal ions point which have the potential to chal-
lenge the dominance of carbon-based materials [145]. By comparing the theoretical and
actual amounts of gas created by the water-splitting device, the Faradaic efficiency of
Ru-NiFeP/NF electrocatalysts as both an anode and cathode, for the entire water-splitting
device in 1 M KOH, was achieved. The anode and cathode were kept apart by a piece
of Nafion membrane, and the quantity of H2 and O2 created in the experiment was de-
termined using the water drainage technique under the H-type electrolytic cell, as seen
in Figure 16a [144]. The amount of O2 and H2 produced by the water-splitting device at
20 mA cm−2 was calculated theoretically and experimentally, and it was monitored and
recorded every ten minutes. Figure 16b depicted that the gas quantified in the experiment
is completely consistent with the theoretical value, indicating that the Faraday efficiency of
OER and HER is close to 100%. By reading the displacement of the measuring cylinder,
Figure 16c,d reflected the images of the volume of O2 to H2 at the various time periods of
10, 20, 30, 40, 50, and 60 min, and the volume ratio of oxygen and hydrogen is very close to
1:2 [144]. This study demonstrates that the Ru-NiFeP/NF electrocatalysis electrode with a
nano porous structure prepared through the combination of morphologically controllable
transition metals and precious metals with high electrochemical activity has a relatively
low price and good application prospects.
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7. Discussion and Limitation

The photoelectric conversion efficiency of PSCs has now surpassed 26%; moreover, if
its drawbacks are of unsatisfactory stability under real usage scenario and difficulties in
making large aperture area are solved, it will have a large influence on energy generation
and consumption [146]. To acquire an enhanced light absorption ability and excellent
electrical characteristics with good stability, the new PSCs’ working mechanisms and
innovative material preparation processes should be explored to construct novel device
architectures [147]. For recharge batteries, although lithium-ion batteries have received
unprecedented policy support in recent years, the development of bottleneck of lithium-ion
batteries due to a resource shortage of Li element is obvious [148]. Other battery systems,
such as sodium-ion, lithium-sulfur, potassium ion, zinc ion, or aluminum ion batteries
should receive more attention, as they may have the opportunity to partially replace
lithium-ion batteries [149]. In this study, sodium-ion batteries are used as an example.
The energy density and cycle stability of SIBs should be enhanced by introducing novel
materials with excellent structures to increase the capacity of sodium ions and decrease
the volume expansion of active materials during sodium storage, thereby expanding
their range of practical applications [150]. Furthermore, a large number of rechargeable
batteries have been produced, and the substances in them have a certain impact on the
environment [151]. Policymaking processes should also encourage the recycling of batteries
and create a closed-loop system for using resources in the battery industry, which is
conducive to the benign development of the energy storage industry [152]. For electrolytic
water hydrogen production, this study focused on the mainstream research direction
of electrocatalytic materials for hydrogen production and introduced and analyzed the
manufacturing methods, working principles, and applications of these electrocatalytic
electrodes according to their material systems. Further study in this field should concentrate
on fundamental research using system theoretical calculations and should promote the
creation of low-cost, efficient, stable, and long-term electrode materials [153].

It is advantageous for all nations to improve the pattern of energy utilization through
the extensive presentation of policies of various nations and regions that realize mutual
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learning, understanding, and promotion. This research also encourages us to make full use
of solar energy and turn it into hydrogen or electricity before sending it to each power-using
device such as batteries. This would inspire us to use energy in ways that are low-carbon
and good for the environment. In-depth theoretical analysis and research on new materials
and device architectures based on an understanding of how different devices work is the
key to achieving the widespread use of these technologies, and this, in turn, promotes
policy optimization and formulation.

The limitation of this study is that it contributes to the theoretical comparative analysis
of national energy policy. The three political patterns summarized by this study could
be further extended and improved to facilitate the paradigm of future empirical research.
Whether there is a causal relationship between technological innovation and the policy
mechanism underpinning it should be further studied through a long-term tracking investi-
gation. Meanwhile, more details and applications of the above techniques should be further
analyzed, and other kinds of new energy technologies are also the basis for formulating the
relevant policies.

8. Conclusions

Currently, traditional energy sources such as coal, natural gas, and oil still occupy a
dominant position in energy usage. The government implements energy transition policies
for energy-related climate change. We examined three types of policymaking models to
explain regulatory instruments in different countries. Variations in political institutions can
affect technical innovation and application, wherein the enactment of regulations, subsidies,
and supportive policies is essential for the energy transition. As sustainable technologies
have scaled up over time, policies needed to be extended and expanded to stimulate the
development and application of relevant technologies in a benign direction.

The USA, China, and European countries may encounter a series of problems in the
process of the energy transition. When tracing the evolution of energy-related policies, we
find that the well-developed institutional capacity affects the choice of policy instrument.
The variation of national energy transition politics is deeply rooted in the national culture
and in historical contexts. The policymakers need to negotiate and balance the various
interests of different stakeholders when producing policy innovation. To ensure the security
of sustainable energy supply and consumption, some problems should be addressed
now, such as how to integrate the energy market, how to solve the problems related to
the insufficient construction of emerging energy infrastructure, and how to balance the
cost of improving energy efficiency and the loss of fossil energy enterprises. In terms
of technology, the energy transition faces the demand of continuous research and the
long-term development of various energy technologies. We conclude that, to complete the
transition to renewable energy, persistent political backing for these technologies through
long-term advocacy alliances is required.
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