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Abstract: Desertification is defined as land degradation in arid, semiarid, and dry sub-humid regions,
and it is caused primarily by human activities and climate change. The semiarid region of Northeast
(NE) Brazil is a very large, populous region, and thus, it is hard to monitor the dynamics of its
desertified areas; therefore, the present study aimed to develop a minimum set of biophysical
indicators to qualify and monitor desertification in this region. This approach included sampling a
pair of preserved forested areas and nearby degraded, non-forested areas which had no vegetation
growth in the previous years. The study was developed in four stages: (a) pilot site selection;
(b) quantification and analysis of soil and vegetation biophysical indicators; (c) biophysical indicator
selection; and (d) elaboration of the minimum set of biophysical indicators and desertification levels.
Of the analyzed 24 biophysical indicators, 11 were retained and subjected to factor analysis by its
principal components. This yielded the minimum set of indicators used to estimate the desertification
levels of the pilot sites, which consisted of four soil characteristics: Total Organic Carbon (TOC),
cation exchange capacity, clay content, and magnesium content. Regressions were conducted using
the SQI, and these indicators showed that the TOC had the highest coefficient of determination.
In an exploratory analysis, high SQI (low desertification) showed a positive correlation with the
normalized difference vegetation index (R = 0.70) and Aridity Index (R = 0.97). This methodological
approach could form the basis of a dynamic monitoring system that is capable of supplying objective,
quantitative, and easy to obtain information to decision-makers in NE Brazil and other dry ecosystems
around the globe.

Keywords: land degradation; environmental monitoring; soil organic carbon; multiple soil classes;
adaptation

1. Introduction

The United Nations Convention to Combat Desertification (UNCCD) limits deser-
tification to the dryland regions situated between the longitudinal parallel 30◦ N and
30◦ S [1], an area with various degrees of drought that represents approximately 47.2% of
the continental area of the planet [2,3]. An estimated 42% of the world’s population dwells
in this area, and 22% of the world’s food production occurs in these environments [4]; this
shows the potential impact of desertification processes and climate change [5].

In Brazil, this desertification phenomenon is restricted to the Brazilian Semiarid Region
(an area > 1 million km2 and 13% of the territory of Brazil). Knowledge of degradative
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processes and their severity are still lacking, and constant updates are needed [6–10].
The population that resides in the Brazilian semi-arid region—approximately 28 million
inhabitants and a population density of up to 20 people km2—is highly dependent on
native vegetation to survive; therefore, the potential loss of such vegetation could cause
great social, economic, and environmental vulnerability [11,12]. This dependence leads to
an increasing pressure on the region’s natural resources, consequently making it highly
susceptible to desertification processes. Indeed, over the years, it has caused a reduction in
arable area, low crop yields, and the silting of rivers and reservoirs, with severe damage
caused to productivity, environmental integrity, and farmer profitability [7,13,14].

There are important aspects regarding land tenure, land use, and cover changes that
put severe pressure on specific areas. These aspects create a mosaic on the landscape,
as preserved and degraded areas are combined due to the fact that they both continue
to be impacted by climatic variability and other changes [6,8,9,15]. In Brazil, semiarid,
and indeed, anthropic disturbances, are at the core of this degradation process [11,12].
Such processes almost begin with the removal of native vegetation cover, and they favor
erosion processes [7,8,15]. Once soil degradation reaches a certain level, its interaction
with climate variability may contribute to a turning point that causes the ecosystem to
reach the point of no return; this is when vegetation is no longer able to recover, even
during the rainy season [8,16–19]. In these areas, the loss of productivity resulting from the
degraded land may lead to an increase of anthropic pressure in the surrounding areas to
provide subsistence to those local communities [8]. This negative feedback may lead to the
degradation of an ever-increasing area. Although signs of degradation in these areas are
evident, their organization in a system of quantitative indicators, which tracks the progress
of the degradation process, is still incipient, and does not provide results that are consistent
with empirical observations. This problem has led to our interest in investigating Brazilian
semiarid land.

Conceptually, the UNCCD [1] defines desertification as a process concerning the degra-
dation of land in arid, semiarid, and dry sub-humid areas, the causes of which can be
multiple, and the consequences, which are also numerous, are interlinked in a retroactive
way [10]. Given this interpretation, desertification has been understood by different sci-
entific disciplines as a complex phenomenon, capable of encompassing structural factors
such as social inequality, the concentration of land ownership, access to water, the means
of production, biodiversity, and population density [10,20–22]. Furthermore, around the
world, several studies have been developed using remote sensing to monitor and evaluate
desertification processes [14,23–28]; however, as desertification processes involve many cli-
matic and anthropic factors, only the spectral dynamics are provided by sensors, and thus,
the results obtained have not been entirely sufficient to explain this complex phenomenon.
Guo et al. [23,24], suggests that to reveal the spatio-temporal changes of the desertification
process, which result from the interactive relationships between three or more factors in
space–time, 3D or n-D techniques are necessary to fully comprehend the phenomenon of
desertification.

Therefore, the entanglement of these factors in the conceptual scope of the UNCCD [1]
has contributed to the unclear characterization of a desertified area [10,21,22,28–31]. This
hinders the understanding and measurement of the problem, as well as the appropriate
awareness of the different social actors involved in the formulation of public policies and
decision-making.

Generally speaking, the majority of studies on desertification have focused on social
indicators (Human Development Index—HDI, Poverty Index—GINI, education, housing),
economic indicators (income per capita, gross domestic product per capita—GDP, poverty),
and environmental situations (rainfall, aridity index, Normalized Difference Vegetation
Index—NDVI), in order to characterize a merely physical phenomenon (i.e., land degrada-
tion). All these indicators are analyzed as parallel, linear, and causal movements, assuming
that the mere incorporation of these indicators into the analysis would enable a better
qualification of a bio-physical–chemical degradation process of the soil [10,20,22,28–33].
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Indicators of social, economic, and environmental impact, although interrelated, are objects
of distinct kinds, and the extent to which they frequently arise from indirect or outdated
data sources accentuate the possibilities of analytical bias.

Those indicators associated with soil or land degradation have received little attention.
The few existing studies that are strictly focused on soil indicators, have been carried out
in small areas, thus hindering their extrapolation to surfaces of greater regional dimen-
sions [32–36].

The combination of these aspects, as well as other difficulties, have resulted in the
absence of systematic, methodologically robust, and conclusive regional assessments re-
garding the progression of desertification, which is particularly severe in the case of the
Brazilian semiarid region. In this regard, there are still a lack of models, or systems of indi-
cators, that characterize and identify areas that are undergoing the process of desertification
or are effectively desertified [21,23,24,27,31–33,37–39].

Studies that assess soil quality indices (SQI) [38–41] can allow an understanding of, and
can correlate, desertification levels; this is because the decline in soil quality has an inversely
proportional relationship with the advance in soil degradation. Indeed, the reduction of the
soil’s main ecosystem services contribute to the advancement of desertification [42–45]. Soil
quality has been defined as the capacity of a specific kind of soil to function, within natural
or managed ecosystem boundaries; to sustain plant and animal productivity; to maintain
or enhance water and air quality; and to support human health and habitation [46,47].
Indicators of soil quality are those measurable soil properties and processes that have
greatest sensitivity to changes in soil function and its ecosystem services [46,47]. These
processes can be developed through the selection of indicators from the total data set and
minimum data set; then, these indicators can be scored, interpreted, and subsequently
integrated into the processes [39,41–43,45,46]. The latter can be achieved using three types
of approaches: Additive, Weighted Additive, and Nemoro. An additional approach that
can also be used is the Factorial Weighted Additive [45,46].

Therefore, the present study aims to identify the most appropriate methodological ap-
proach in order to propose a minimum set of biophysical indicators for soil and wood; this
will enable the assessment and monitoring of the intensity of the process of desertification
in the Brazilian semiarid region.

2. Materials and Methods
2.1. Contextualization and Characteristics of the Studied Area

The research was carried out in the semiarid region of Brazil, one of the largest
areas that is susceptible to desertification and climate change in the world. The region
is approximately 1,127,953 km2 divided into 1262 municipalities, all of them climatically
characterized by a weak relationship between rainfall and evapotranspiration, which results
in a water shortage for plants, animals, and humans [5]. About 28 million inhabitants live
in this region, of which 10.6 million reside in rural areas and 17.3 million in urban areas [47].
Nevertheless, a significant portion of people who live in urban areas experience a rural
lifestyle, since 90% of the municipalities in the semiarid region are classified as being small
(less than 50,000 inhabitants). Moreover, the region boasts 1.8 million rural properties, and
even though 1.0 million of those properties comprise less than 5.0 hectares of land, they
are responsible for 31% of the region’s agricultural production [5,47]. Most of the Brazilian
semiarid region suffers from low economic growth, a lack of basic infrastructure, and social
indicators below the national and regional average. The GDP per capita (BRL 6520.00) is
67% lower than the Brazilian average, and the illiteracy rate fluctuates between 36% and
46% in approximately 46% of the municipalities. About 60% of these have low HDI (0.5 to
0.59) [47].

It is evident, therefore, that the semiarid region of NE Brazil is a very complex region
that is characterized by extreme environmental and socioeconomic variability [10,17].
The tropical dry forest vegetation that is native to NE Brazil, also known as “Caatinga
vegetation,” still covers approximately half of the semiarid region [48,49]. Most of the
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area that is currently covered by forests is occupied by secondary forest vegetation that
is being regenerated after deforestation for fuelwood extraction, or the cultivation of
crops and pastures [49,50]. As a result, this dynamic land-use shift created landscapes
that are characterized by a mosaic of pastures, agricultural fields, and forest patches
at different levels of succession, ranging from disturbed/open forests to dense forest
fragments [17,50,51]. The environmental variability is also intensified due to the large
diversity of soil types across the region, which respond differently to the natural and
anthropic pressures that may lead to soil degradation and desertification [17].

2.2. Methodological Procedures

The research was carried out in four steps (Figure 1), as follows:
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Figure 1. Steps for measuring and determining the desertification level in the Brazilian semiarid region.

2.2.1. Step 1—Pilot Site Selection

In order to develop and propose a minimum set of biophysical indicators, we chose
areas that were specific to, and representative of, the region. We also ensured that they
were able to be studied as pilot sites in order to enable a better approximation of the
phenomenon, which thus made it possible to approach it at a local level, while equally
ensuring that we could also extrapolate it to the regional level. We selected 44 pilot sites
(Figure 2), with 22 of them considered as well-preserved, and the remaining 22 showing
clear signs of desertification; for instance, they presented no vegetation growth in previous
years, even during the rainy season.

The desertification process reduces the richness of woody species and causes modifi-
cations to the woody structure of the Caatinga biome, thus reducing soil protection against
pluviometric precipitation as well as incidences of sunlight [50]. In this context, desertified
sites (DS) were selected based on the difficulty of restoring its dry forest vegetation cover
(Figure 3) in previous years, and on how often they were subject to erosion processes.
During this selection process, we analyzed the Normalized Difference Vegetation Index
(NDVI) over a period of ≥5 years (1999/2000 to 2015) (Appendix A), which was obtained
from the images of the Landsat 5 and Landsat 8 satellites, with the aid of the Google Earth
Engine tool. The period during which the images were taken matched the period of higher
rainfall and low incidence of clouds, and thus excluded water as a limiting factor for plant
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growth; therefore, the DS corresponded with areas of severely degraded soil that hindered
vegetation growth and development [50].
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The conserved areas (CA) were selected after considering the absence of clear-cutting,
which had not taken place since 1984, according to temporal images from the past 28 years,
using the Landsat Annual Timelapse 1984–2012 (Figure 3). Subsequently, the selected areas
were compared with updated images from Landsat 8 and confirmed in the field. After the
selection of the areas, each pilot site was located using the Google Earth program and GPS
navigation (60CSx Garmin, Garmin International, Inc., Olathe, KS, USA).

2.2.2. Step 2—Biophysical Indicators’ Quantification and Analysis

In each pilot site, we implemented a 100 m2 (10 m × 10 m) plot and evaluated the
following parameters: number of woody species (NSp), woody plant density (PD), average
canopy height (H-A), average circumference at the base (CB-A), average circumference
at breast height (CBH-A); total absolute dominance (AD-T); basal area (BA); and volume
of biomass (VOL). Then, we collected a composite soil sample (from five sub-samples)
from the 0–20 cm layer for chemical and physical analysis, in accordance with the methods
described by Embrapa [52]. The soil samples were previously packed into identified plastic
bags, taken to the laboratory, air dried, sifted through a 2 mm sieve, and the active acidity
(pH in water), potential acidity (H+Al), sodium content (Na+), aluminum content (Al3+),
potassium content (K+), calcium content (Ca2+), magnesium content (Mg2+), total organic
carbon (TOC) content, available P (Mehlich-1), sum of bases (SB), effective cation exchange
capacity (CEC), potential CEC, base saturation (BS), exchangeable sodium percentage (ESP),
particle size, and total porosity (TP) were analyzed. Undisturbed samples (132) were also
collected to analyze the bulk density [52]. The total data set (24 variables of both areas)
was subjected to the Kolmogorov–Smirnov and Bartlett test to check for normality and
homoscedasticity (p > 0.05), respectively.

2.2.3. Step 3—Biophysical Indicator Selection

The selection was performed in three steps. First, we used the paired t-test to iden-
tify statistical differences between the desertified and conserved sites (p ≤ 0.05) for the
biophysical indicators of soil and vegetation cover. In the second step, we used Pearson’s
correlation to analyze the collinearity of indicators in soil and vegetation cover, which
showed significant differences between groups (desertified and conserved). During the
third step, indicators with significant correlation values ≤0.80 were used. During the final
step, we retained and submitted the non-redundant indicators to account for analysis that
was related to principal components analyses (PCA) [46,53]; this was carried out to reduce
the number of independent indicators [11] and to form the minimum data set (MDS).

We selected the principal components (PC) with eigenvalues >1 [54] that explained
more than 5% of the data variance [55]. When more than one variable was retained in a
PCA, the coefficients of the multivariate correlation were analyzed to determine whether
they could be retained when their coefficients were lower than 0.60 [42]; however, if the
indicators were significantly correlated (r > 0.60) in a PCA, the variable with the largest
sum of correlation was selected for the MDS [53].

2.2.4. Step 4—Selection of the Desertification Indicators

First, the indicators that were used for the MDS were normalized by the non-linear
score function [56], as suggested by Nabiollahi et al. [46]; thus, we used the sigmoidal
equation (Equation (1)):

NLS =
a

1 +
(

X
X0

)b (1)

where: NLS = non-linear score of the variable, between 0 and 1; a = maximum score, equal
to 1; X = value of the variable; X0 = average value of the variable; b = slope assumed as
−2.5 for functions of ‘more is better’, and +2.5 for ‘minus is better’ [57].

Subsequently, the standardized indicators for the MDS were integrated and tested
using the four approaches in the determination of soil quality index (SQI):
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First Model: Additive Soil Quality Index (SQIa), adapted from Andrews et al. [42],
(Equation (2)).

SQIa =
∑n

1 Ni
n

(2)

Second Model: Weighted Additive Soil Quality Index (SQIw), adapted from Doran
and Parkin [58], and Liu et al. [59], (Equation (3)).

SQIw = ∑n
1 Wi ∗ Ni (3)

Third Model: Weighted Factorial Additive Soil Quality Index (SQIwf), adapted from
Biswas et al. [45], (Equation (4)).

SQIw f = ∑n
1 Wi ∗ Ni (4)

Fourth Model: Nemoro Soil Quality Index (SQINe), adapted from Qin [51], (Equation (5)).

SQINe =

√
Saver2 + Smin2

2
∗
(

n − 1
n

)
(5)

where: Ni = scores or record of the indicators; Wi = weight of each indicator;
Saver = average of scores; Smin = minimum value of the scores for each indicator in
the MDS; and n = number of indicators.

Two types of weights (Wi) were calculated. For Equation (2) (Weighted Additive), the
weight was calculated from communality [58,59], and for Equation (3) (Weighted Factorial
Additive), the weight was calculated from the factor analysis of principal components [45].

In terms of interpretation, in the present study, the Soil Quality Index (SQI) should be
understood as being inversely proportional to the Desertification Index (ID) (i.e., the higher
the SQI, the less degraded the area, and vice versa, according to Table 1) [46].

Table 1. Scale and classes of soil quality index (SQI) levels, and their correspondence with conserva-
tion levels and degradation.

Class 1 SQI Scale
Conservation

Level DI Scale 2 Degradation
Level

I >0.78 Very high <0.22 Very Low
II 0.62–0.78 High 0.22–0.38 Low
III 0.47–0.62 Moderate 0.38–0.53 Moderate
IV 0.31–0.47 Low 0.53–0.69 High
V <0.31 Very low >0.69 Very High

1 Adapted from Nabiollahi et al. [46]; 2 calculated, ID = 1 − SQI, where 1 is the maximum level for desertification.

Next, we evaluated the performance of each method so that it could be given a place
in the SQI; this was achieved via linear regression analyses between the indicators of the
MDS and their respective SQI. Based on these analyses, we selected the SQI that had the
highest correlation with the indicators of the MDS.

3. Results
3.1. Paired t-Test between Pilot Sites and Biophysical Indicators

Of the 24 biophysical indicators (soil and woody coverage) of the pilot sites, 17 showed
significant differences (p = 0.05): eight chemical indicators (P, Na, Ca, Mg, H+Al, CEC,
TOC, and ESP), three physical indicators (clay, BD, and TP), and six indicators of arboreal
coverage (Nsp, PD, AD-T, H-A, BA, and VOL) (Table 2). There was no significant difference
between the desertified and conserved areas in terms of pH, K, sum of bases, effective CEC,
saturation of bases (SB), or silt and sand fractions.
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Table 2. Biophysical indicators of the soil and woody coverage of the pilot areas in semiarid NE Brazil.

Soil Chemical Indicators Unit
Conditions of Pilot Sites

Conserved (n = 22) Degraded (n = 22)

Soil pH in water logarithmic 6.29 ± 0.14 a 6.21 ± 0.15 a
Available P mg kg−1 13.05 ± 0.24 a 10.62 ± 0.25 b

Exchangeable K+ mg kg−1 140.07 ± 0.21 a 151.82 ± 14.79 a
Exchangeable Na+ cmolc kg−1 0.06 ± 0.00 b 0.16 ± 0.00 a
Exchangeable Ca2+ cmolc kg−1 7.09 ± 0.60 a 4.56 ± 0.31 b
Exchangeable Mg2+ cmolc kg−1 2.26 ± 0.20 b 2.90 ± 0.21 a

Potential acidity (H+Al) cmolc kg−1 3.02 ± 0.34 a 1.84 ± 0.3 b
Sum of bases (SB) cmolc kg−1 9.65 ± 0.85 a 7.94 ± 0.18 a

Effective Cation Exchange
Capacity (CEC) cmolc kg−1 9.67 ± 0.85 a 8.28 ± 0.22 a

Cationic Exchange Capacity
(potential CEC) cmolc kg−1 12.67 ± 0.87 a 10.06 ± 1.14 b

Total Organic Carbon (TOC) g kg−1 28.06 ± 1.83 a 3.13 ± 0.37 b
Base saturation (BS) % 75.32 ± 2.85 a 78.55 ± 3.28 a

Exchangeable Sodium
Percentage ESP) % 0.59 ± 0.02 b 1.81 ± 0.28 a

Soil physical indicators

Total Sand g kg−1 620.29 ± 28.70 a 642.36 ± 26.41 a
Silt g kg−1 221.46 ± 18.95 a 232.85 ± 17.80 a

Clay g kg−1 158.22 ± 13.41 a 124.75 ± 0.20 b
Bulk density (BD) kg m−3 1.14 ± 0.03 b 1.45 ± 0.03 a
Total porosity (TP) % 0.57 ± 0.01 a 0.45 ± 0.01 b

Arboreal coverage indicators

No. species (Nsp) Number 9.82 ± 0.62 a 1.94 ± 0.18 b
Plant density (PD) Ind. ha−1 4818.18 ± 305.62 a 872.51 ± 0.15 b

Total Absolute dominance (AD-T) m2 ha−1 18.18 ± 0.27 a 1.02 ± 0.1 b
Average canopy height (H-A) M 4.09 ± 0.15 a 2.07 ± 0.16 b

Basal area (BA) m2 ha−1 0.10 ± 0.01 a 0.03 ± 0.00 b
Volume of biomass (VOL) (m3 ha−1) 2.00 ± 0.22 a 0.49 ± 0.02 b

Different letters indicate statistical differences between soil indicators in the conserved and degraded areas within
the pilot sites, in accordance with the Student’s t-test at a 5% significance level (p < 0.05).

3.2. Pearson Correlation between the Biophysical Indicators of the Pilot Sites

The TOC was the variable with the highest percentage (+70%) of positive and signifi-
cant correlations between the 17 indicators, whereas Na+ and BD were the indicators with
the highest number of negative correlations (Table 3). Among them, the well-correlated
indicators (r > 0.6) were considered to be redundant, and only one of them was retained
for the PCA [46,60]; therefore, 11 of the 17 indicators were retained, seven were related to
chemical indicators (P, Ca2+, Mg2+, H+Al, CEC, TOC, ESP), two were related to physical
indicators (Clay, BD), and two were related to the woody coverage (BA and VOL). These
indicators were submitted for factor analysis and principal components analysis (PCA),
and thus, they constitute a MDS.
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Table 3. Pearson correlation coefficients of the biophysical indicators of soil and woody coverage in the pilot sites.

P Na+ Ca2+ Mg2+ H+Al CEC TOC ESP Clay BD PT Nsp PD H-A AD-T BA

Na+ −0.73 *** 1
Ca2+ 0.41 ** −0.50 *** 1
MgV −0.21 0.32 * −0.29 1
H+Al 0.29 −0.38 * 0.14 −0.05 1
CEC 0.06 −0.27 0.45 ** 0.08 0.27 1
TOC 0.72 *** −0.90 *** 0.63 *** −0.35 * 0.43 ** 0.37 * 1
ESP −0.30 0.56 *** −0.26 0.06 −0.20 −0.41 ** −0.46 ** 1
Clay 0.19 −0.36 * 0.62 *** −0.19 0.12 0.40 ** 0.53 *** −0.19 1

BD −0.66 *** 0.78 *** −0.34 * 0.41 ** −0.29 −0.17 −0.75
*** 0.42 ** −0.13 1

PT 0.66 *** −0.78 *** 0.34 * −0.41 ** 0.29 0.17 0.75 *** −0.42 ** 0.13 −1 *** 1
Nsp 0.62 *** −0.88 *** 0.45 ** −0.34 * 0.28 0.30 0.76 *** −0.53 *** 0.27 −0.74 *** 0.74 *** 1
PD 0.62 *** −0.89 *** 0.38 * −0.36 * 0.20 0.14 0.74 *** −0.51 *** 0.38 * −0.70 *** 0.70 *** 0.84 *** 1
H-A 0.69 *** −0.82 *** 0.40 ** −0.05 0.30 * 0.32 * 0.75 *** −0.48 ** 0.23 −0.64 *** 0.64 *** 0.78 *** 0.61 *** 1
AD-

T 0.73 *** −0.99 *** 0.49 *** −0.31 * 0.38 * 0.26 0.89 *** −0.56 *** 0.33 * −0.77 *** 0.77 *** 0.87 *** 0.89 *** 0.80 *** 1

BA 0.60 *** −0.67 *** 0.31 * −0.12 0.22 0.18 0.61 *** −0.36 * 0.19 −0.59 *** 0.59 *** 0.55 *** 0.61 *** 0.53 *** 0.68 *** 1
VOL 0.70 *** −0.72 *** 0.32 * −0.21 0.41 ** 0.19 0.64 *** −0.40 ** 0.17 −0.66 *** 0.66 *** 0.57 *** 0.66 *** 0.61 *** 0.72 *** 0.65 ***

P: Phosphorus available content; Na: Exchangeable Sodium content; Ca: Exchangeable Calcium content; Mg: Exchangeable Magnesium content; H+Al: Potential acidity; CEC: Cation
Exchange Capacity; TOC: Total Organic Carbon; ESP: Sodium Percentage; Clay: Clay content; BD: Bulk Density; PT: Porosity; Nsp: No. of Woody Species; PD: Woody Plant Density;
H-A: Average canopy height; AD-T Absolute dominance; BA: Basal area; and VOL: Volume of biomass. ***, ** and * indicate 0.001, 0.01, and 0.05 significance level, respectively.
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3.3. Principal Component Analysis of the Minimum Set of Biophysical Attributes of the Pilot Sites

The principal components analysis (PCA), which occurred after the Varimax rotation,
showed that approximately 68.84% of the variation found in this study was explained by
the biophysical indicators of the soil and arboreal coverage; these were retained in the first
three principal components (eigenvalues > 1 and variance > 5%; Table 4).

Table 4. Principal components analysis of the significant biophysical indicators of soil and woody
coverage in the pilot sites in semiarid NE Brazil.

Biophysical Indicators PC1 PC2 PC3

Eigenvalues 4.7846 1.5756 1.2125
Percentage variance 43.4965 14.3235 11.0232
Cumulative percentage variance 43.4965 57.8200 68.8432

Eigenvectors
Available P 0.7810 −0.3440 −0.0622
Exchangeable Ca2+ 0.6528 0.5117 −0.2913
Exchangeable Mg2+ −0.3635 0.0958 0.7273
Potential acidity (H+Al) 0.4588 −0.0337 0.3909
Total Cation Exchange Capacity 0.4287 0.6450 0.4096
Total Organic Carbon 0.9317 0.0636 −0.0884
Exchangeable Sodium Percentage −0.5636 −0.1077 −0.3927
Clay 0.4829 0.6726 −0.2617
Bulk density −0.8031 0.3353 0.0866
Basal Area 0.7255 −0.2765 0.1273
Volume of biomass 0.7949 −0.3351 0.1418

Underlined values were used to obtain the weight factorial additive of SQIwf (Equation (3)), and values in bold
stood out as the most significant vectors to consider when choosing an indicator.

In the vector projection and two-dimensional ordination (Figure 4), we can see the
distinction between the pilot sites, regarding the level of conservation or degradation,
and the indicators that most influenced this distinction, as well as the greater or lesser
sensitivities of the 11 indicators analyzed. The diagram also makes it clear that the pilot sites
formed four groups, which are distinguishable in a gradient showing either degradation
or conservation.

The indicators TOC, P, H+Al, Ca2+, BA, PD, VOL, clay, and CEC are more closely
associated with areas of high and moderate conservation, whereas, conversely, the indica-
tors BD, Mg2+, and ESP are related to areas of moderate, high, and very high degradation
(low SQI), thus indicating the sensitivity of these indicators to the distinctions between the
studied environments.

Therefore, the PC1 explained 43.5% of the total variation of the studied indicators
and presented the highest correlation coefficients (>0.70); the TOC was the most heavily
weighted indicator on PC1, as it had the highest absolute value (0.93) within the 10% of
indicators that had an increased factor load, and it was positively correlated with the
majority of the indicators (Table 4). PC2 and PC3 explained 14.3% and 11.02% of the total
variation of the indicators studied, respectively. Clay and CEC were retained on PC2, since
both had the same sum of correlations (Table 5). On the other hand, only Mg2+ was retained
on PC3, due to its higher factor loading (Table 4).

Consequently, the biophysical indicators (soil TOC, clay, CEC, and Mg2+) were retained
for the MDS and used to estimate the SQI of the sites. To interpret the scores using the
‘more is better’, ‘less is better’, and ‘great is better’ approaches, the descriptive statistics of
the MDS were observed (Table 6). We saw that the clay and Mg2+ did not reach the optimal
values recommended by the literature, and thus, for the MDS, we adopted the ‘more is
better’ approach, using the sigmoid curve.
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Figure 4. Principal components analysis (PCA) of the biophysical indicators of soil and woody
coverage in the pilot sites undergoing different levels of degradation or conservation. P: avail-
able phosphorus; TOC: Total organic carbon; CEC: cation exchange capacity; H+Al: hydrogen and
exchangeable aluminum; Ca2+: exchangeable calcium; Mg2+: exchangeable magnesium; Na+: ex-
changeable sodium; ESP: exchangeable sodium percentage; Clay: percentage of clay; PD: Plant
density; BA: basal area; and VOL: volume of biomass.

Table 5. Coefficients and sums of correlations of the minimum set of biophysical indicators of the
pilot sites, heavily weighted, in principal components (PC), with multiple high factor loadings.

Indicators of PC2 Cation Exchange Capacity
(CEC) Clay

Cation Exchange Capacity
(CEC) 1.00 0.40

Clay 0.40 1.00
Sum of correlations 1.40 1.40

Table 6. Minimum, maximum, and average values of the minimum set of biophysical indicators
retained on the minimum data set (MDS).

Soil Indicator Unit Minimum Maximum Average SD

Total Organic Carbon (TOC) g kg−1 0.62 39.82 15.60 14.02
Cation Exchange Capacity (CEC) cmolc kg−1 2.89 23.16 11.37 4.88

Clay % 4.00 24.00 14.00 5.00
Mg2+ cmolc kg−1 0.56 5.15 2.58 1.01

The weights of the minimum set of biophysical indicators that determine the SQI of
the pilot sites using the Weighted Additive and Weighted Factorial Additive methods by
Doran and Parkin [58], Liu et al. [59], and Biswas et al. [45], are summarized in Table 7.
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Table 7. Estimates of communality and the weights of the minimum set of biophysical indicators of
the pilot sites.

MSD Indicators COM 1 Weight 2 Factor Weight 3

Exchangeable Mg2+ 0.8693 0.2853 0.6318
Cation Exchange Capacity (CEC) 0.7661 0.2514 0.2081
Total Organic Carbon (TOC) 0.7377 0.2421 0.2081
Clay 0.6744 0.2213 0.1601

1 COM: communality of each soil property [58]; 2 weights calculated as a function of communality [59]. 3 Factorial
weights calculated as a function of the percentage of variation and the percentage of accumulated variation [45].

Based on the results presented in Table 7, we determined the equations for the methods
SQIw and SQIwf (Table 8), which enabled us to understand the respective desertification
indices (DI) for all sites.

Table 8. Final equations for the calculation of the soil quality index, based on the minimum set of
biophysical indicators of the pilot sites.

Model for the
Soil Quality Index (SQI) Equations for the Calculation for the SQI

Weighted Additive
[38,39]

SQIw = ∑(Score of Total Organic Carbon × 0.2421) + (Score
of Cationic Exchange Capacity × 0.2514) + (Score of the
percentage of clay × 0.2213) + (Score of Mg2+ × 0.2853)

Weighted Factorial Additive
[24]

SQIwf = ∑(Score of Total Organic Carbon × 0.6318) + (Score
of Cationic Exchange Capacity × 0.2081) + (Score of the
percentage of clay × 0.2213) + (Score of Mg2+ × 0.1601)

In Figure 5, we can see that the weighted additive method (SQIwf), as proposed by
Biswas et al. [45], was the most appropriate and comprehensive of the methods used for the
calculation of the desertification or conservation indices of the pilot sites. The performances
of the desertification indices, calculated using different methods, emerged in the following
order: SQIwf > SQIw = SQIa > SQINe.
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Using linear regression methods to ascertain the soil quality indices and the minimum
set of biophysical indicators (Table 6), we observed that the Total Organic Carbon had
the best coefficient of determination out of all SQI methods (SQIa, SQIW, SQIWf, and
SQINe) (Table 9).

Table 9. Relationship between biophysical indicators of a minimum data set and the method for the
calculation of the soil quality index (SQI). R2 = coefficient of determination.

Calculation Model of the
Soil Quality Index Regression Equation R2

Additive
[42]

SQIa = 0.0085 × Total Organic Carbon + 0.3155 0.6120
SQIa = 0.0223 × Total cation exchange capacity + 0.1950 0.5071

SQIa = 2.1639 × Percentage of clay + 0.1426 0.4428
SQIa = 0.0184 Mg exchangeable + 0.4012 * 0.0146

Weighted Additive
[58,59]

SQIW = 0.0080 × Total Organic Carbon + 0.3248 0.5622
SQIW = 0.0219 × Total cation exchange capacity + 0.2001 0.5153

SQIW = 2.0013 × Percentage of clay + 0.1660 0.3994
SQIW = 0.0277 Mg exchangeable + 0.3776 * 0.0349

Weighted Factorial
Additive

[45]

SQIWf = 0.0189 × Total Organic Carbon + 0.22236 0.9089
SQIWf = 0.0297 × Total cation exchange capacity + 0.1811 0.2718

SQIWf = 3.5214 × Percentage of clay + 0.0207 0.3436
SQIWf = −0.0490 × Mg exchangeable + 0.6455 0.0313

Nemoro
[51]

SQINe = 0.0059 × Total Organic Carbon + 0.1695 0.5842
SQINe = 0.0136 × Total cation exchange capacity + 0.1071 0.3772

SQINe = 1.4844 × Percentage of clay + 0.0512 0.4204
SQINe = 0.0138 Mg exchangeable + 0.2256 * 0.0165

* Significant, in accordance with linear regression analysis (p < 0.05).

SQwf had a significant correlation, with a coefficient of determination greater than 95%
for the total organic carbon in the soil, whereas for SQIa, SQINe and SQIw, the correlation
coefficients were 0.78, 0.76, and 0.75, respectively (Table 10); therefore, the performance
order was SQIwf > SQIa > SQINe > SQIw, meaning that SQIwf was the best method for the
determination of the desertification index. Hence, the Total Organic Carbon concentration
in the soil was the best indicator for this purpose.

Table 10. Pearson correlation coefficients for the methods used in the soil quality index (SQI), and
the Total Organic Carbon (TOC) concentration in the soil, in the pilot study sites. Models for the soil
quality index: SQIa = Additive; SQIw = Weighted Additive; SQIwf = Weighted Factorial Additive;
SQINe = Nemoro.

TOC SQIa SQIw SQIwf SQINe

TOC 1
SQIa 0.78 *** 1
SQIw 0.75 *** 1 *** 1
SQIwf 0.95 *** 0.92 *** 0.90 *** 1
SQINe 0.76 *** 0.97 *** 0.97 *** 0.91 *** 1

*** Significant, in accordance with the Pearson correlation (p < 0.001).

We can see that the TOC was the attribute that had the best coefficient of determina-
tion with SQIwf (>0.90) when compared with the other indicators that compose the MDS
(Figure 6A). The indicators Mg2+, CEC, and clay had a determination coefficient <0.40,
which is considered to beweak (Figure 6B–D).
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and (D) soil exchangeable Mg+2. * Significant, in accordance with linear regression analysis (p < 0.05).

In this context, we used this indicator to estimate the desertification index (DI) for
the entire Brazilian semiarid region. We did so in an exploratory manner, considering
the limitations of the variability of soils, vegetation, and climates, and this was achieved
using the digital map of organic carbon in the Brazilian semiarid region. Next, we ex-
plored correlations between the NDVI (obtained from the Instituto Nacional do Semiárido
(INSA/WebGIS)) and the aridity index (AI) [61,62], both from the Brazilian semiarid region.
In this exercise, we observed that the soil’s TOC showed a 0.97 positive correlation with the
AI. Moreover, the desertification index, obtained from the soil’s TOC, reached a correla-
tion of 0.70 with the NDVI (Figure 7). In areas with a high DI, losses related to the TOC,
compared with those that had a low DI (conserved areas), were higher than 70%. In areas
with a moderate DI, these losses ranged between 50% and 25%. The Brazilian Ministry
for the Environment has already recognized the most degraded areas (9% of the Brazilian
Semiarid Region) as nuclei of desertification; however, more studies are needed to verify
these results.



Sustainability 2022, 14, 9735 15 of 24Sustainability 2022, 13, x FOR PEER REVIEW 16 of 25 
 

 
Figure 7. Maps of (a) Total Organic Carbon in the soil (TOC); (b) Desertification Index (DI); (c) 
Aridity Index (AI); and (d) Normalized Difference Vegetation Index (NDVI). These maps represent 
the indices for the entire Brazilian semiarid region. 

4. Discussion 
Using the present research, we were able to identify the main biophysical indicators 

for the characterization of desertification in the studied pilot sites, and we were also able 
to determine its level of desertification or conservation. In this sense, we verified that the 
models of regression for the calculated desertification index (DI) and MDS (TOC, CEC, 
Mg2+, and clay) consistently indicated that the TOC was the best indicator (R2 = 0.999) to 
determine the conditions of degradation or conservation of the 44 analyzed areas (Figure 
6).  

We observed that the areas with TOC ≥ 20 g kg−1 had low desertification indices (DI 
or high SQI > 0.6), whereas areas with TOC ≤ 9.5 g k−1 had high desertification indices 
(Figure 7). Similar results have been reported in other studies, demonstrating high soil 
carbon losses in areas where vegetation coverage was removed [17,18,33,34,63–65]. It is 
important to emphasize that the soil carbon concentration alone cannot be used as a single 
variable to identify areas that are susceptible to desertification, as information pertaining 
to the carbon concentration in soil must be combined with information concerning 
vegetation growth in previous rainy seasons [23–25]. Some soil types, when annually 
cultivated by crops, may present soil carbon levels lower than 9.5 g kg−1; however, they 
may also remain productive and support vegetation growth during the rainy season [17]. 
These areas would not be considered desertified, given the criteria concerning previous 
vegetation growth [15,17,65]  

The low levels of TOC in the soil in areas with high DI are associated with low 
vegetation coverage [27,36,50,66]. Areas with high DI showed a low diversity of species 
(1 to 4 species in 100 m2) and a low absolute density (895 individuals ha−1). In contrast, 

Figure 7. Maps of (a) Total Organic Carbon in the soil (TOC); (b) Desertification Index (DI); (c) Aridity
Index (AI); and (d) Normalized Difference Vegetation Index (NDVI). These maps represent the indices
for the entire Brazilian semiarid region.

4. Discussion

Using the present research, we were able to identify the main biophysical indicators
for the characterization of desertification in the studied pilot sites, and we were also able
to determine its level of desertification or conservation. In this sense, we verified that the
models of regression for the calculated desertification index (DI) and MDS (TOC, CEC,
Mg2+, and clay) consistently indicated that the TOC was the best indicator (R2 = 0.999) to
determine the conditions of degradation or conservation of the 44 analyzed areas (Figure 6).

We observed that the areas with TOC ≥ 20 g kg−1 had low desertification indices (DI
or high SQI > 0.6), whereas areas with TOC ≤ 9.5 g k−1 had high desertification indices
(Figure 7). Similar results have been reported in other studies, demonstrating high soil
carbon losses in areas where vegetation coverage was removed [17,18,33,34,63–65]. It is
important to emphasize that the soil carbon concentration alone cannot be used as a single
variable to identify areas that are susceptible to desertification, as information pertaining to
the carbon concentration in soil must be combined with information concerning vegetation
growth in previous rainy seasons [23–25]. Some soil types, when annually cultivated
by crops, may present soil carbon levels lower than 9.5 g kg−1; however, they may also
remain productive and support vegetation growth during the rainy season [17]. These areas
would not be considered desertified, given the criteria concerning previous vegetation
growth [15,17,65]

The low levels of TOC in the soil in areas with high DI are associated with low
vegetation coverage [27,36,50,66]. Areas with high DI showed a low diversity of species
(1 to 4 species in 100 m2) and a low absolute density (895 individuals ha−1). In contrast,
areas with a low DI showed high diversity (from 5 to 17 species) and high absolute density
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(4845 individuals ha−1) [6,8,36,65]. The most degraded areas (high DI) have, in general,
soils with low levels of nutrients, especially P and N, due to low levels of organic carbon
in the soil [17,36]. With the suppression of vegetation and the low capacity for producing
greenery after rainfall, the remnants of organic matter in the uncovered soil are quickly
mineralized. This process intensifies the course of desertification since organic matter is
an essential component for the productivity of these soils [8,15,18,66]. The organic matter
in soil controls a set of critical properties and functions that are particularly associated
with nutrient availability [67,68], such as the retention of cations [69], complexation of
toxic elements and micronutrients [70,71], aggregate stability [72], aeration [73], infiltration,
retention of water, and microbial activity [74,75].

Visually, areas with high desertification (Figure 7) are characterized as large, de-
nuded spots, with or without creeping vegetation cover, and they have clear signs of soil
erosion [8,11]. The desertification process in these areas usually begins with the deforesta-
tion and substitution of native vegetation by crops that are different sizes, and undergo
different life cycles [5,7,17]. As a result, herbaceous grasslands or short cycle crops replace
the predominant shrub and tree vegetation of the Caatinga in the Brazilian semiarid region.
To worsen matters further, a continuous cropping system without nutrients repositions
itself after harvesting, and most of the time, this system is combined with livestock over-
grazing on the herbs and shrubs, which leads to loss of soil fertility and hinders vegetation
growth [8,10,49,76,77].

Furthermore, we can state that a significant part of the Brazilian semiarid region has
its natural resources degraded by the current agricultural and livestock production sys-
tems [8]; thus, the desertification in the Brazilian semiarid region is similar to other regions
on Earth where human actions are the main causes of such desertification [23,24,78,79].
Under these circumstances, until intervention measures are taken, desertification will con-
tinue to increase, in terms of both scale and severity. The integration and concatenation of
environmental, territorial, property, and urban public policies are essential to prevent the
advancement of the desertification process without any dissipation of resources. There is a
current contradictory and counterproductive scenario in which progressive environmental
policies often compete with public incentives to overuse vegetation strata and soils that are
not capable of responding to those productive inputs, resulting in environmental degrada-
tion.

Parallel to this, the monitoring of areas where the environmental quality is undergoing
a severe degradation process should receive particular attention from the government,
since productive territories are being lost for present and future generations. A possible
monitoring strategy could be associated with the development of a remote sensing model-
ing protocol that evaluates the organic carbon levels in soil across the region. The use of
spectrometric techniques [79–81], in association with multiple linear regression algorithms
that concern the organic carbon content of the soil [82–85], could facilitate the monitoring
and systematic quantification of desertification in space–time; this would subsequently
enable the adoption of relevant measures to reverse this phenomenon. Recent studies
have obtained consistent results in the mid-infrared spectral range (MIR, 4000–600 cm−1)
for various soil attributes, such as mineralogy, clay fraction, organic carbon, and base
saturation [86,87]. Such information can be used for the monitoring of desertification pro-
cesses, and it could be used alongside other techniques, such as the optimal desertification
monitoring index based on feature space models on a regional scale [23,24]. It is very likely
that each specific region will present differences regarding the minimum set of biophysi-
cal indicators, depending on the environmental characteristics relating to that area’s soil
and vegetation; however, we believe that the present study points to a potentially useful
methodological approach that will lead to a feasible desertification monitoring system in
NE Brazil, and with the necessary adjustments, in other dry ecosystems around the globe.
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5. Conclusions

The Total Organic Carbon (TOC), Clay content, Cation Exchange Capacity (CEC), and
Magnesium (Mg2+) contents in soil comprised the minimum set of indicators that were
used to estimate the desertification index (DI) of the pilot sites in semiarid NE Brazil. Of
the minimum set of biophysical indicators assessed in this study, the TOC of soil had
the best performance in terms of its ability to ascertain the intensity of the desertification
process; however, this was limited to those sites that presented no vegetation growth during
the previous rainy seasons. Based on these findings, we believe that, in the future, the
combination of modeling, orbital remote sensing information, and a small set of biophysical
indicators may lead to a more effective information system that can monitor desertification.
This suggested approach could supply objective, quantitative data to decision-makers
regarding the need for measures that will reduce or reverse desertification processes in the
dry tropical ecosystem of NE Brazil, and perhaps in other arid regions around the globe.
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