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Abstract: Spatio-temporal changes to the eco-environmental quality index (EQI) and determination
of their spatial differentiation characteristics are important bases for land management and ecological
environment protection. This study evaluates the changes in EQI and its spatial distribution character-
istics with reference to the three dominant functions of land use, namely “production-ecology-living”
(PEL), based on the interpretation of land use remote sensing data in 2000, 2010 and 2018. The spatial
diversity of ecological environment quality and its driving factors were quantitatively analyzed by
gravity center transfer, cold and hot spot analysis, and the GeoDetector model. The results showed
that: (1) The transformation of land in Ningxia from 2000 to 2018 mainly manifested by the increase
in industrial and mining production land (IMPL), urban living land (ULL) and rural living land
(RLL), and the decrease of grassland ecological land (GEL), especially in the north of Ningxia. (2) The
ecological environment quality decreased slightly during the research period, but there was an
improvement trend in the north. High environment quality values were concentrated in the Liupan
Mountain area in the south of Ningxia, while the low values were mainly in the desert areas of
Shapotou County and Zhongning County in the west. (3) The interaction between land use intensity
and topographic factors led to spatial change in EQI in the research area. Effects of land use intensity
are the dominant factor, reflecting the degree of impact of human activities on natural ecosystems.
Our results suggest that topographic factors and human disturbances should be fully taken into
account in future land and spatial development decisions to minimize human-ecological conflicts.

Keywords: “production-ecology-living” land; spatial heterogeneity; driving factors; eco-environmental
quality index; Ningxia province

1. Introduction

Land is the basic element and carrier of human survival [1]. Land use/land cover
change (LULCC) has become an increasingly hot research topic in natural science [2],
land science [3], agricultural science [4] and other related disciplines [5]. Studies not
only pay attention to the space-time patterns and processes [6], the driving force and
driving mechanism of LULCC [7,8], but also to the simulation and sustainable utilization
of LULCC [9–11]. Since the 1990s, China has achieved tremendous results in its economic

Sustainability 2022, 14, 9659. https://doi.org/10.3390/su14159659 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su14159659
https://doi.org/10.3390/su14159659
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-1795-6466
https://orcid.org/0000-0002-3389-2768
https://doi.org/10.3390/su14159659
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su14159659?type=check_update&version=2


Sustainability 2022, 14, 9659 2 of 20

development. However, economic development has led to a profound transformation of
land resources and brought on a series of serious environmental problems. For example, in
the process of rapid urbanization, industrialization and land development, the land use
structure is modified as large-scale land development activities are implemented while
ignoring the value of ecological services. This may lead directly to resource loss and
ecological degradation [12]. In this context, it is very important for regional ecological
security and optimization of land and space to accurately grasp the evolution and spatial
differentiation mechanism of land use transformation. Different land use types have
various functions, but they are mainly controlled by their dominant functions [13]. The
dominant function of land use is the mutual transformation of the three major functions of
land use: production, living and ecology [14]. At the structural level, limited land resources
undergo quantitative and spatial redistribution among various dominant functions. Based
on the production-ecology-living (PEL) classification system of dominant functions of
land use, land use transformations can be connected with regional transformation and
development [15]. Therefore, the ecological environment problems caused by land use
transformation are essentially caused by an imbalance in the PEL land use space [16].

Many evaluation models for ecological environment quality have been established.
Guo [17] comprehensively evaluated the environmental quality changes of the land manage-
ment area in the Chaohu Lake basin by principal component analysis based on indicators
of land use changes. Robati [18] constructed the Sustainable Urban Quality Composite
Index (SUQCI) from climate, land use, natural disasters, and other variables, and quan-
titatively analyzed the sustainability of urban environmental quality in 22 districts of
Tehran. Yang [19] selected nine factors for wetland areas, land use type, elevation, slope,
etc. to establish a comprehensive evaluation index system to evaluate ecological vulner-
ability of wetlands. Although comprehensive evaluation methods have been developed,
the construction of evaluation indexes is greatly hampered by scale, time and regional
variations [20]. Currently, with the development of 3S and other spatial visualization
technologies, progress is being made in measuring the ecological effects of land use. Indi-
cators such as vegetation cover index (NDVI) [21] and ecological capacity (ESC) [22] are
used to monitor the vegetation and reflect changes in the quality of regional ecological
exchange. In addition, LULCC data based on remote sensing interpretation are used to
measure ecological environment quality, such as improved remote sensing ecological index
(MRSEI) [23], ecosystem service value (ESV) [24], etc. The interpretation of remote sensing
image data focuses on a certain ecological perspective, which to some extent reflects the
different ecological characteristics of land use. Previous studies mainly evaluated land use
by primary classification, while ignoring the functional attributes of land use itself [25,26].
In order to better understand the functional changes caused by land use changes and to
evaluate an eco-environmental quality index (EQI), this study attempts to describe the
characteristics of the spatial evolution of the regional ecological environment from the PEL
perspective in terms of the dominant land use functions.

Different studies have shown that human activity is the main driving mechanism
leading to changes in EQI [26–28]. These drivers are primarily determined by correlation
analysis or by qualitative and semi-quantitative methods. Therefore, there is limited re-
search on driving mechanisms behind spatial variable distribution characteristics. The
GeoDetector model can be used not only to spatially analyze the explanatory ability of each
driving factor, but also to detect the interaction of different factors and analyze whether
different factors have significant differences on spatial variable distribution characteris-
tics [29]. Therefore, it is widely used for soil science studies [30], detection/prevention of
landslides [31], environmental science [32], urban expansion [33], and public health [34].

Ningxia is an essential ecological security barrier in Northwest China, but it is ecologi-
cally fragile, is surrounded by arid and rainless sandy areas on three sides, and has limited
resource carrying capacity which leads to unstable improvement of EQI. Monitoring the
changes of EQI in Ningxia, identifying important areas of change, and elucidating the
spatial heterogeneity and driving mechanisms of EQI are significant for understanding
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the regional ecological environment, rationalizing the use of land resources, restoring
and managing the ecological environment as well as providing a scientific basis for the
formulation of territorial spatial planning under ecological security conditions. The key
objectives of the study were as follows: (1) analyze the dynamic change pattern of PEL
in Ningxia from 2000 to 2018; (2) evaluate EQI changes caused by PEL land conversion
and explore its spatial differentiation laws; and (3) quantify the driving factors of EQI
spatial differentiation.

2. Materials and Methods
2.1. Study Area

Ningxia is located in the northwest of China’s Loess Plateau (Figure 1a) in the upper
reaches of the Yellow River Basin (Figure 1d), and has a total area of 66,400 km2. It is located
at latitude 35◦14′–39◦23′ N, longitude 104◦17′–107◦39′ E. The elevation of the whole region
ranges between 956 and 3531 m. The terrain gradually tilts from southwest to northeast.
The terrain is narrow and long from north to south (Figure 1b). It consists of three sub-
regions: the Yellow River Diversion Irrigation Area in the north, an arid zone in the middle,
and a mountainous area in the south [35] (Figure 1c). Ningxia has a dry continental climate
with little rain and snow throughout the year. Most of the precipitation is concentrated in
the summer. The average annual precipitation is about 150–600 mm, and precipitations
gradually decrease from south to north. The annual average temperature is 5–9 ◦C. Ningxia
shows a transition from hydraulic erosion to wind erosion from south to north. Its surface
form is complex and diverse, with high mountains and widely distributed hills, as well as
alluvial plains due to stratigraphic subsidence and alluvial deposits by the Yellow River,
and terraces and sand dunes. Ningxia is located in the fragile ecological environment
area of northern China, with poor ecosystem stability and weak ability to resist natural
disasters and man-made damage. The region is also facing a series of environmental
problems, such as soil erosion in the southern mountainous area, desertification in the
central area and soil salinization in the northern area. Therefore, it is important to maintain
and improve the ecological environment of Ningxia and make it an ecological security
barrier in Northwest China.

2.2. Data Source and Description
2.2.1. Data Source

Given the accessibility and continuity of the data, we selected land use data for 2000,
2010, and 2018 after the implementation of the Grain for Green policy. The data were
obtained from the resource and environmental science data center of the Chinese Academy
of Sciences with an accuracy of more than 85% (Land use data were selected for the years
2000, 2010 and 2018. http://www.resdc.cn accessed on 1 September 2021, resolution
30 m × 30 m).

2.2.2. Classification of PEL Land Based on Land Use Types

This study establishes the PEL land use classification scheme based on the basic
principles of top-down and functional classification, using the existing land classification
system to classify PEL land. The EQI of secondary land classification was assigned by an
expert scoring method [25], and the EQI of PEL land classification was assigned by an area
weighting method (Table 1).

http://www.resdc.cn
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Table 1. Land use classification and its EQI.

PEL Land Classification
Secondary Classification Environment

Quality IndexClass I Class II Code

Production
Agricultural production land (APL) 1 Paddy field, Arid field 0.28

Industrial and mining production land (IMPL) 2 Industrial and construction land 0.10

Ecological

Forest ecological land (FEL) 3 Forestland, Shrub land, Sparse
forestland, Other forestlands 0.75

Grassland ecological land (GEL) 4 High, medium and low
coverage grassland 0.55

Water ecological land (WEL) 5 Rivers, lakes, reservoirs, ponds,
glaciers and snow 0.65

Other ecological land (OEL) 6 Sandy land, Gobi, saline alkali
land, bare land, etc 0.02

Living Urban living land (ULL) 7 Urban land 0.20
Rural living land (RLL) 8 Rural residential land 0.20
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2.2.3. Land Use Transfer Matrix

In ArcGIS 10.2, algebraic superposition of different units of land use was performed,
and two adjacent units were selected to perform algebraic operations to obtain the map
value of land function transformation [36]. The equation is as follows:

T = 100× A + B (1)

where T is the land use unit code for the study period, and A and B are the land use unit
codes at the beginning and end of the period, respectively.

2.3. Regional Eco-Environmental Quality Index

Differences in mapping scale will have a great influence on the results [37]. After
repeated experiments to select the appropriate scale, the research area was sampled at
equal intervals with a square grid of 1500 m × 1500 m, and nearly 30,000 grids were
obtained. Taking into account the ecological environment quality and area of PEL land in
each ecological unit, the environmental quality status of each regional ecological unit was
quantitatively characterized as:

EQIi =
N

∑
i=1

Aki
Ak

Ri (2)

where EQIi is the EQI of the i-th ecological unit, Ri is the EQI of the i-th type of land in the
ecological unit, Aki is the area of the type i in the k-th ecological unit, Ak is the area of the
k-th ecological unit, and N is the number of different land types in the ecological unit.

The EQI of each ecological unit in the study area was calculated, and the EQI in
the study area was spatially interpolated by the Kriging method. The ecological units
were characterized by five levels, namely, lower quality area (EQI < 0.2), low quality area
(0.2 < EQI < 0.35), Medium quality area (0.35 < EQI <0.5), high quality area (0.5 < EQI < 0.65),
and higher quality area (EQI > 0.65).

The change in regional ecological quality due to PEL land use change is expressed in
terms of ecological contribution ratio, as follows:

LEI = (LEt+1 − LEt)LA/TA (3)

where LEI is the ecological contribution rate; LEt+1 and LEt are the EQI of PEL land use
change types at the initial and final stages, respectively; LA is the change area; and TA is
the total area.

2.4. EQI Spatial Heterogeneity and Driving Force Analysis
2.4.1. EQI Center of Gravity Migration Model

The center of gravity is a physical concept, which represents the spatial geograph-
ical equilibrium point of a region. The center of gravity of the EQI changes at different
times, and the migration of the center of gravity can reflect the spatial trajectory of EQI
evolution [38]. The formula is as follows:

Xt =
n

∑
i=1

EQItiXi/
n

∑
i=1

EQIti (4)

Yt =
n

∑
i=1

EQItiYi/
n

∑
i=1

EQIti (5)

where EQIti represents EQI at time t of grid i, Xi and Yi represent the geographical center
coordinates of grid i, n represents the total number of grids, and Xt and Yt are the center of
gravity coordinates of EQI in Ningxia at time t.
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2.4.2. Statistics-Based Hotspots Analysis of EQI

In this study, hot spot analysis was used to identify the hot spots and cold spots of
regional EQI. A hot spot area belonged to an EQI improvement cluster area, while a cold
spot area belongs to an EQI deterioration cluster area.

2.4.3. GeoDetector Model

In this study, we used factor detection in the GeoDetector model to measure the
explanatory power of x (influence factor) on y (EQI in this study); differences in the spatial
distribution of each factor on y attributes were judged using ecological detection; and
interactions between factors were assessed using interaction detection, and its degree
of explanation is expressed as q-value. Specific details can be found in the article by
Wang et al. [34].

The spatial pattern of regional EQI is formed under the comprehensive action of many
factors. This study selects 14 factors from three aspects of the natural environment, social
economy and regional location to explore the formation mechanism of the spatial pattern
of EQI in Ningxia (Table 2). The data presented in Table 2 were obtained from the Resource
and Environmental Science Data Center of the Chinese Academy of Sciences (The years
of these data all correspond to the data of land use. http://www.resdc.cn accessed on
1 September 2021) and processed by ArcGIS 10.2. Among them, land use intensities were
attributed to different land use types according to the method proposed by Han [39]. The
formula is as follows:

LUI = 100×
(

n

∑
i=1

Pi ×Qi

)
(6)

where LUI is the land use intensity index, Pi is the i-th level of land use intensity in the
study area (i=1, 2, 3, 4, 5); Qi is the percentage of area occupied by the i-th level of land
use type in the study area, and n is the number of land use intensity classifications in the
study area.

Table 2. Index system of GeoDetector model.

Primary Index Secondary
Index Specific Indexes Unit Reference

Natural
environment

Topographic
factors

Altitude (X1) m

[24,32,40–42]

Slope (X2) ◦

Relief amplitude (X3) m

Climatic factors
Temperature (X4) ◦C
Precipitation (X5) mm

Land factors
NDVI (X6) Dimensionless

Land use intensity (X7) Dimensionless
Soil type (X8) Dimensionless

Socioeconomic Social factors
Population density (X9) Person/km2

Per capita GDP (X10) 10,000
yuan/km2

Location Location factors

Distance from railway
(X11) km

Distance from highways
(X12) km

Distance from river
(X13) km

3. Results
3.1. Land Use Change of PEL in Ningxia
3.1.1. PEL Land Change

In Ningxia, ecological land was the predominant type in 2000, 2010 and 2018 (Table 3).
Overall, the area of Agricultural production land (APL) decreased by 761.3 km2, while

http://www.resdc.cn


Sustainability 2022, 14, 9659 7 of 20

the area of Industrial and mining production land (IMPL) increased more than 9 times to
919.9 km2. The area of Forest ecological land (FEL) increased by 450.1 km2, while the area
of Grassland ecological land (GEL) decreased by 982.7 km2, and the Water ecological land
(WEL) and Other ecological land (OEL) changed little. The area of living land expanded
year by year, of which the Urban living land (ULL) and Rural living land (RLL) increased
by 330 km2 and 313.4 km2, respectively.

Table 3. Classification and area of PEL land in Ningxia (km2).

PEL Land Classification 2000 2010 2018

Production
APL 23,751.2 22,798.5 22,989.9

IMPL 101.4 492.7 919.9
Total 23,852.6 23,291.2 23,909.8

Ecology

FEL 3075.8 3577.7 3525.9
GEL 30,526.7 30,228.8 29,544.0
WEL 1195.1 1244.4 1299.9
OEL 6586.4 6376.4 6313.6
Total 41,384.0 41,427.3 40,683.4

Live
ULL 163.5 386.3 493.5
RLL 999.9 1295.2 1313.3
Total 1163.4 1681.5 1806.8

Spatially (Figure 2), APL was mainly distributed along the Yellow River and Qingshui
River, more specifically in the most concentrated irrigation areas from the Yellow River,
including Qingtongxia City, Yongning County and other counties (districts) in northern
Ningxia. IMPL is dotted around in Huinong County and Dawukou District in the north,
Litong District and Yanchi County in the northeast, Zhongning County and Qingtongxia
City in the northwest. Woodland is mainly distributed in Helan County in the north and
Jingyuan County in the south. Helan Mountain and Liupan Mountain are located in these
two counties, respectively. In addition, there was a small amount of woodland in Yanchi
County and Lingwu County. GEL was distributed primarily in north-central Ningxia
and on both sides of the Yellow River. OEL were concentrated in Shapotou District and
Zhongning County in Northwest Ningxia, in which the Tengger desert is located. ULL was
distributed in the center of each county (District), Jinfeng District and Xingqing District
concentrating the most ULL. RLL was scattered around ULL.

3.1.2. Tupu Analysis of PEL Land in the Ningxia from 2000 to 2018

From 2000 to 2018, there were significant differences in transformation between Tupu
units. From 2000 to 2010, the areas of transformation from APL and GEL to OEL uses
reached 2530.6 km2 and 2058.8 km2, respectively (Figure 3). The most obvious changes
in Tupu units from 2000 to 2010 were the transformation from APL to GEL (code 1–4)
and the transformation from GEL to APL (code 4-1), accounting for 23.21% and 17.19%
of the total transformation area of PEL, respectively (Table 4). At the same time, the area
of mutual transformation between GEL and OEL accounted for nearly 6%. From 2010
to 2018, the transformation areas of APL and GEL to OEL use reached 1113.3 km2 and
1697.5 km2, respectively. The most obvious changes in Tupu units from 2010 to 2018 were
the transformation from APL to GEL (code 1-4) and the transformation from GEL to APL
(code 4-1), accounting for 22.11% and 16.97% of the total transformation area of PEL land,
respectively. At the same time, GEL was transformed into OEL and IMPL by 342.63 km2

and 305.45 km2, accounting for 8.76% and 7.81%, respectively. In addition, according to
Figure 4, from 2000 to 2018, the increase of ULL (code 7) and RLL (code 8) was mainly
caused by the transformation of APL. The transformation of APL and GEL into OEL was
larger than that of OEL, resulting in the reduction of APL and GEL.
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on the left side of the figure represents the total area transferred from a certain land type to another.
The number on the right represents the total area of this land transferred from other land types).

Table 4. Ranking of major PEL land transfer in Ningxia from 2000 to 2018.

2000–2010 2010–2018

Code Transformation
Area/km2

Change
Ratio/% Code Transformation

Area/km2
Change
Ratio/%

1-4 1377.69 23.21 4-1 864.78 22.11
4-1 1020.45 17.19 1-4 663.61 16.97
6-4 348.03 5.86 4-6 342.63 8.76
4-6 344.02 5.80 4-2 305.45 7.81
4-3 343.31 5.78 6-1 204.16 5.22
1-6 322.02 5.43 6-4 174.32 4.46
1-8 277.12 4.67 6-2 118.53 3.03
6-1 267.19 4.50 1-8 117.08 2.99
4-2 204.92 3.45 4-3 101.65 2.60
1-3 189.57 3.19 3-4 89.57 2.29

Total 4694.31 79.09 Total 2981.79 76.25
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3.2. Impact of PEL Land Use Transformation on EQI in Ningxia from 2000 to 2018
3.2.1. PEL Land Use Change

Our measurements showed that EQI in Ningxia remained stable on the whole during
the period 2000 to 2018. The average EQI in 2000, 2010 and 2018 were 0.392, 0.402 and
0.388 respectively. The low quality and medium quality areas accounted for more than
79% each year (Table 5). EQI in Ningxia increased slightly from 2000 to 2010, thanks to
the reduction of low-quality areas, and decreased from 2010 to 2018, mainly due to the
reduction of higher-quality areas. Spatially, EQI in Ningxia has obvious spatial differences.
The EQI was generally high in the south and low in the north (Figure 4). The lower quality
areas were mainly concentrated in Zhongning and Shapotou counties in the northwestern
part of Ningxia. The low quality areas were mainly located in several counties (districts)
of Shizuishan City and Yinchuan City. EQI is affected by the expansion of urbanization
and the expansion of mining industry. Medium quality areas accounted for the largest
proportion, being distributed throughout the middle and south of Ningxia. The distribution
of high quality lots were relatively scattered, mainly in the Helan Mountains in the north
and the Liupan Mountains in the south.
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Table 5. Proportion of different levels of EQI area.

Quality Zoning
2000 2010 2018

Area km2 Ratio % Area km2 Ratio % Area km2 Ratio %

Lower quality area 3923.29 5.91 3329.07 5.01 3426.91 5.16
Low quality area 16,122.71 24.28 16,948.42 25.52 17,826.62 26.85

Medium quality area 36,937.15 55.63 37,225.91 56.06 37,070.79 55.83
High quality area 8941.95 13.46 8421.71 12.68 777.37 11.71

Higher quality area 474.90 0.72 474.90 0.72 298.30 0.45

3.2.2. Center of Gravity Trajectory of EQI

Ningxia EQI center of gravity remains basically stable (Figure 5). In 2000, the center
of gravity of EQI was located in Litong county. In 2010, EQI moved 2.78 km to the
southwest to Hongsibao County, and in 2018, EQI moved 7.92 km to the northeast to Litong
County, indicating that EQI in northeast Ningxia improved significantly from 2010 to 2018,
while EQI in southwest China deteriorated. Due to the short migration path of EQI, this
phenomenon was not obvious.
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3.2.3. Evolution Characteristics of Cold and Hot Spot Patterns of EQI Change

The global Moran index was used to test whether the distribution of EQI is random,
discrete or agglomerated. In the case of a concentrated distribution, the local Moran index
could be used to calculate the cold and hot spot distribution area of EQI. The Z value of all
years in 2000, 2010 and 2018 was greater than 5, p < 0.01 (Figure 6). Therefore, the spatial
distribution of EQI in Ningxia showed significant aggregation characteristics from 2000
to 2018, with a spatial positive correlation mode, that is, the area with high value is more
likely to have high value, and the area with low value is more likely to have low value. The
global Moran index in 2000, 2010, and 2018 was 0.2697, 0.2796, and 0.1967, respectively.
With the passage of time, the aggregation characteristics first increased and then decreased.
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Figure 7 shows the spatial distribution characteristics of EQI hot and cold spots in
Ningxia in 2000, 2010 and 2018. Hot spot areas overlapped with areas with relatively high
EQI, mainly including high-quality areas; the cold spot area overlaps with the area with
relatively low EQI, mainly including low quality areas. In 2000, the hot spot “high high”
gathering areas were mainly distributed in Jingyuan County, Longde County, Pengyang
County, Yuanzhou County in the south of Ningxia, Tongxin County and Hongsibao County
in the middle of Ningxia; and cold spot “low low” agglomeration areas were distributed in
Shapotou County and Zhongning County in Western Ningxia. In 2010, the hot spot “high
high” agglomeration area and cold spot “low low” agglomeration area changed greatly
compared to 2000. Some areas of Hongsibao County and Tongxin County changed from
hot spot area to sub hot spot area and non-characteristic area, and Shapotou County and
Zhongning County in the west changed from cold spot area to non-characteristic area.
In 2018, there were fewer hot spots and cold spots than in 2000 and 2010. Some areas of
Jingyuan County, Longde County, Pengyang County and Yuanzhou County in the south
of Ningxia changed from hot spots to sub hot spots, and the “low low” cold spots only
appeared in a small part of Pingluo County in the north. On the whole, the aggregation
of EQI was getting gradually worse, especially in the “low low” aggregation area of cold
spots. At the same time, the distribution of hot spots and cold spots was relatively scattered,
which was related to the relatively scattered distribution of high and low values of EQI.

The results of the Ningxia Ecological Function Area and the cold and hot spot analysis
are further overlaid in Figure 7. The blue color is the ecological functional area of land,
mainly the desert grassland ecological area and the plain irrigated agricultural ecological
subarea, where land sanding and salinization are serious and EQI is consequently low. The
red color is the high ecological functional area, mainly the water conservation ecological
functional area and the soil erosion control ecological functional area, which have high
EQI. The results show that the aggregation effect of low ecological function areas gradually
weakened from 2000 to 2018 (the result of cold spot analysis), and the aggregation effect
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of high ecological function areas also became weaker (the result of hot spot analysis),
indicating that the improvement and deterioration of EQI in the study area coexisted.
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3.3. Analysis of Driving Mechanism of EQI
3.3.1. Single Factor Contribution Rate

Land use intensity was the largest driving factor, with q values above 0.45 in 2000,
2010 and 2018 (Figure 8). The explanatory power of altitude, slope and topographic factors
to EQI in Ningxia are similar, with q value higher than 0.2. Climate factors include rainfall
and temperature, with explanatory power of EQI in Ningxia more than 0.1. Compared with
land factors, terrain factors and climate factors, the q values of regional location and social
factors are below 0.1, which have weak explanatory power for the spatial distribution of
EQI in Ningxia, with regional location factors having a slightly better explanatory power
than social factors. Overall, the relative importance of each driving factors is: land use
intensity (X7), slope (X2), relief amplitude (X3), altitude (X1), precipitation (X5), soil type
(X8), temperature (X4), distance from railway (X11), NDVI (X6), distance from highways
(X12), average GDP (X10), distance from river (X13) and population density (X9).

3.3.2. Significant Difference Analysis of Driving Factors

The effects of altitude (X1) and relief amplitude (X3) in topographic factors on the
spatial distribution of EQI in 2000, 2010 and 2018 were significantly different from other
indicators (Table 6). There was no significant difference between slope (X2) and relief
amplitude (X3), but there was a significant difference with other indicators. Among the
climate factors, in 2018, the impact of temperature (X4) on the spatial distribution of EQI
was not significantly different from the impact of precipitation (X5) and soil type (X8),
while the impact of precipitation (X5) was not significantly different from that of soil type
(X8). Among land factors, land use intensity (X7) was the most important impact index
of EQI in Ningxia. Its impact on the spatial distribution of EQI in Ningxia is significantly
different from all other indexes. Meanwhile, the influence of NDVI (X6) on the spatial
distribution of EQI varied greatly in different years. In 2000, there was no significant
difference between NDVI (X6), spatial distribution of EQI, ground average GDP (X10) and
distance from railway (X11). In 2010, there was no significant difference between NDVI (X6)
and population density (X9), average ground GDP (X10), distance from railway (X11) and
distance from expressway (X12). The significance analysis results of population density (X9)
and average ground GDP (X10) in social factors and distance from railway (X11), distance
from highways (X12) and distance from river (X13) in location factors are different in the
three study periods. Among them, there was a significant difference between population
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density (X9) in 2000 and other indicators; in 2010, there was a significant difference between
2010 and distance from river (X13); and there is no significant difference between 2018 and
distance from river (X13). There was a significant difference between the distance from the
railway (X11) and the distance from the river (X13) in 2010 and 2018. The distance from
the highways (X12) is only seen in 2000 and there was no significant difference from the
distance from river (X13).
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Table 6. Statistical significance of driving factors in 2000, 2010 and 2018 (confidence level 95%).

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13

X1
X2 YYY
X3 YYY NNN
X4 YYY YYY YYY
X5 YYY YYY YYY YYN
X6 YYY YYY YYY YYY YYY
X7 YYY YYY YYY YYY YYY YYY
X8 YYY YYY YYY YYN YYN YYY YYY
X9 YYY YYY YYY YYY YYY YNN YYY YYY

X10 YYY YYY YYY YYY YYY NNY YYY YYY YNY
X11 YYY YYY YYY YYY YYY NNY YYY YYY YNY NNY
X12 YYY YYY YYY YYY YYY YNY YYY YYY YNY YNN YNN
X13 YYY YYY YYY YYY YYY YYN YYY YYY YYN YNY YYY NYY
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3.3.3. Driver Interaction Analysis

The interactive detection effect showed that the driving factors had a synergistic
enhancement effect on EQI in Ningxia, which can be seen in two ways: two factor en-
hancement, and nonlinear enhancement (Figure 9). The interaction between all driving
factors was higher than for any single driving factor, especially for the social factors and
location factors. The action value of a single factor was less than 0.1, but when interacting
with terrain factors, climate factors and land factors, the explanatory power of EQI was
significantly improved. The explanatory power of the interaction of land use intensity with
other drivers on the spatial distribution of EQI was above 0.5 and was enhanced by both
factors. The interaction between altitude, slope, and relief amplitude also improved the
explanatory power of EQI in Ningxia, especially the interaction with rainfall in climate
factors which was close to 0.5. The explanatory power of temperature and precipitation in
climate factors alone was less than 0.2, and increase when interacting with other factors. In
addition, the interaction between population density, average GDP (social factor), distance
from railway, distance from expressway and river (location factors) and other driving
factors also improve the explanatory power of EQI in Ningxia. To sum up, the influence
of each driving factor on EQI was not independent, but interactive. At the same time,
the interaction of multiple factors on EQI was not a simple superposition process, but are
mutually enhanced in a nonlinear way.
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4. Discussion
4.1. EQI Change and PEL Land Use Function Change

Complex dynamic transformations have taken place between different types of PEL
land in the study area and different functional land in the same category. These transforma-
tions were more intense in the 2000−2010 than in the 2010−2018 period (Figure 10). APL
and GEL accounted for more than 80% of the total area of the study area (Table 3), and they
were most frequently interconverted to each other (Figure 3). FEL area increased marginally
from 2000 to 2010 and then stabilized, largely due to the results of ecosystem protection
policies, such as the “natural forest protection plan” [43] (from 1998) and the “returning
farmland to forest plan” [44] (from 1999). These measures increased the area of FEL by 450.1
km2, mainly converted from APL, GEL and OEL (Figure 3). In addition, due to the growth
of population and intensive grazing of livestock, the area of APL and GEL decreased year by
year, while the area of IMPL and ULL and RLL continued to increase. The increase in ULL
and RLL was mainly due to the occupation of APL, as the cultivated land around urban
agglomerations and counties (districts) is increasingly occupied for human habitation [45]
(Figure 10). In addition, due to the “returning farmland to blue (water or wetland)” policy,
a certain amount of APL and GEL have become WEL permanently. Generally speaking,
increased urbanization has caused irreversible damage to cultivated land, but at the same
time, IMPL, ULL and RLL and other land types (such as APL and GEL) also transformed
into each other (Figure 10). With the implementation of APL occupation and compensation
balance policies, a certain amount and quality of cultivated land is supplemented by other
forms.
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Changes in PEL land use functions can lead to changes in EQI, either improvement
or deterioration (Table 7). For example, when IMPL is transformed into FEL and GEL,
the regional EQI is improved. Research shows that FEL and WEL have high ecological
functions and play a decisive role in the improvement of regional EQI [46,47]. However, the
proportion of FEL and WEL in Ningxia is only 5% and 2%, respectively. Thus, the average
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EQI of Ningxia is only 0.394, reflecting medium quality. EQI in the study area is high in the
south and low in the north (Figure 5), mainly due to an increase in APL and IMPL in the
north (Figure 3). From 2000 to 2010, EQI in the study area increased from 0.392 to 0.402;
and from 2010 to 2018, EQI decreased to 0.388. Transfer of APL and OEL to GEL is the main
factor in improving EQI, with a contribution ratio of more than 60%. At the same time, the
transfer of OEL, APL and GEL to FEL also improved EQI to a certain extent. Conversely, a
significant factor in the deterioration of the regional EQI is due to the encroachment of APL,
OEL and IMPL on the GEL area, accounting for more than 65% of the negative regional
EQI impact. The transfer of FEL to other land and the transfer of APL to ULL also caused
the deterioration of EQI to a certain extent, especially in 2010–2018. The transfer of FEL to
APL and OEL accounted for 4.42% and 3.86% of the negative effect of EQI, respectively,
resulting in the decrease of EQI in 2018.

Table 7. Contribution rate of main PEL land function transformation to EQI in Ningxia.

Pattern

2000–2010 2010–2018

Functional
Transformation

Index
Movement

Contribution
Ratio/%

Functional
Transformation

Index
Movement

Contribution
Ratio/%

Ecological
environment
improvement

1–4 0.00575 44.42 1–4 0.00277 43.68
6–4 0.00240 18.51 6–4 0.00120 18.93
1–3 0.00126 9.73 6–1 0.00055 8.73
6–3 0.00103 7.97 1–5 0.00033 5.16
4–3 0.00085 6.55 1–3 0.00030 4.81
6–1 0.00072 5.60 6–3 0.00027 4.31

Total 0.01201 92.80 Total 0.00543 85.62

Deterioration of
ecological

environment

4–1 −0.00426 34.18 4–1 −0.00361 33.11
4–6 −0.00237 19.01 4–6 −0.00236 21.64
4–2 −0.00150 12.07 4–2 −0.00224 20.56
1–6 −0.00087 7.01 3–1 −0.00048 4.42
1–7 −0.00067 5.36 3–6 −0.00042 3.86
3–1 −0.00064 5.17 1–7 −0.00031 2.85

Total −0.01031 82.80 Total −0.00942 86.45

In general, the improvement trend of EQI in the study area is slightly less than the
deterioration trend. Although in general the value of EQI is maintained at about 0.4, and the
ecological quality maintains a relative balance, the local deterioration of the environment
cannot be ignored. In particular, the migration of rural populations led to the emergence
of “hollow villages“ and the abandonment of rural settlements. At the same time, due to
the implementation of the policy of “poverty alleviation in other places”, land resources
were further occupied [48]. This overload and high intensity land resource development is
bound to cause ecological imbalance.

4.2. Spatial Heterogeneity and Driving Mechanism of EQI

The patterns of spatial changes in regional EQI and its drivers are the basis for con-
structing and managing regional ecological security [49]. Our results showed that EQI
in northern Ningxia tended to improve, consistently with other studies [50,51]. The hot
spot area in Ningxia overlaps with the high value of EQI. Conversely, the cold spot area of
EQI overlaps with the low value of EQI. The high-value EQI area is mainly located in the
southern Liupan Mountain area of Jingyuan County. The forest coverage rate of Liupan
Mountain is over 70%, which is an important water-containing forest base in Ningxia. With
the rise of tourism, Liupan Mountain is increasingly disturbed by human activities [51],
resulting in the reduction of the area of the “high high” hot spot in 2018. The low EQI
concentration areas are distributed in Shapotou District and Zhongning County. It is bor-
dered by the Tengger Desert in the northwest, and the EQI is low. Through the trajectory
of the center of gravity of EQI, we find that the center of gravity of Ningxia EQI remains
basically stable (Figure 5), albeit with a sign of it moving to the northeast. To some extent,
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yhis may reflect the trend of EQI changes in the whole region i.e., the EQI in the northeast
has improved, which is consistent with our results based on the cold and hot spot analysis
(Figure 7) in which we superimposed the ecological functional areas in the study area: the
EQI cold spot areas were mainly concentrated in the northern low ecological functional
areas, and conversely, the EQI hot spot areas were mainly concentrated in the southern
high ecological functional areas. With the passage of time, the aggregation effect of the
cold spot low ecological function areas gradually weakened, reflecting that the EQI of low
ecological function areas was gradually improving; the aggregation effect of the hot spot
high ecological function areas also gradually weakened, reflecting that the EQI of high
ecological function areas was impacted. In summary, the superposition of the cold and hot
spot analysis results and ecological functional areas can further identify the degree of EQI
deterioration and improvement in the process of LPE land transformation, which helps to
promote the fine management and precise governance of land resources.

The single factor and interaction tests showed that the spatial heterogeneity of EQI in
Ningxia is the result of multifactorial interactions, in which the land use intensity is the main
driving factor, reflecting the impact of human activities on the ecosystem. Changes of land
use intensity influence the temporal and spatial distribution of biodiversity and resources,
and then destroys the structure, function and stability of ecosystems [52]. In this context,
the area of ecological land gradually decreases, regional land use intensity increases, and
regional EQI decreases. The terrain factor is the second most important driving factor
affecting EQI. Terrain factors include elevation, slope and relief. It is generally understood
that vegetation and even the whole ecosystem change significantly with the change in
altitude. Topographic relief was also an important consideration for the development of
human society. The higher the elevation, the greater the topographic relief. On the one hand,
relief causes higher frequency of geological disasters, and on the other hand, difficulties
in infrastructure construction. Therefore, terrain factors directly or indirectly affected
EQI. When human activities, i.e., land use intensity, interact with topographic factors, it
significantly enhanced the explanatory power of regional EQI spatial and temporal variance.
This is consistent with the results by Liu and Yang [19,41].

4.3. Policy Recommendations

Our results on the driving mechanisms of EQI in Ningxia showed that the synergy of
human activities, topography and natural factors together led to the spatial differentiation
characteristics of EQI. Since 2003, Ningxia has started a region-wide grazing closure. The
grazing ban has seriously affected the industrial development and income growth of local
people. In order to realize the transformation of ecological benefits to economic benefits,
the local government has developed numerous tourism and sightseeing projects. On the
one hand, the conversion of ecological benefits to economic benefits is realized; on the
other hand, the disturbance of the ecological environment is increased to a certain extent.
Therefore, for developing tourism in the Ningxia Nature Reserve, management planning
should be adopted to divide the reserve into areas, such as closed areas, restricted areas,
display areas and buffer areas. In addition, comprehensive management measures should
be employed and adapted according to local conditions, taking topographic factors and
human interference into full consideration. Reasonable control of the intensity of human
interference with the ecological environment is an effective way to maintain regional
ecological security. Meanwhile, with the growth of population, the continuous expansion
of cities is inevitable. The constraints of the ecological red line should be considered
comprehensively; overall land and space planning should be organically integrated; and
priority should be given to the development of multi-functional mixed spaces such as
ecological life advantage type, ecological production advantage type and three life balance
types [53]. This would allow a gradual resolution of the contradictory pressures of human
social development and ecological environment preservation. Finally, the method adopted
in this study is equally applicable to the assessment of EQI in other regions and can provide
a good theoretical basis for relevant government decisions.
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5. Conclusions

Based on the remote sensing data of land use in Ningxia, this study measured the
ecological and environmental effects caused by land use changes in Ningxia. Using the
PEL land classification system, the spatial distribution of EQI in Ningxia showed a general
distribution of “high in the south and low in the north”, which revealed the ecological and
environmental effects caused by changes in land structure and function during the land use
change process. Among them, the encroachment of APL, IMPL, ULL and RLL on GEL and
FLL is the main reason for the deterioration of EQI. In general, the change of PEL land is the
direct cause of the change of ecosystem structure and function, and the deterioration of EQI
can be mitigated to a certain extent by the contingent integration of land and spatial master
plans. Meanwhile, in this study, we tried to solve the spatial distribution and influencing
factors of EQI in Ningxia by using hotspot analysis and a geographic probe model. The
EQI in the study area showed a “high high” and “low low” aggregation effect in space.
By superimposing the ecological functional areas, it was found that this aggregation effect
gradually diminished over time due to anthropogenic disturbance, mainly manifested as a
simultaneous decrease of low and high ecological functional areas. Finally, the interaction
of land use intensity and topographic factors explained most of the spatial variation of
EQI. The research methods and results can help promote the refined management and
rational allocation of land resources in Ningxia and provide references for other regions in
northwest China. At the same time, this study still lacks a comprehensive consideration of
the visual model of land resources (in terms of management practices, inputs and outputs,
etc.) and other aspects. Future research needs to consider in an integrated manner the
impact on EQI of explicit and implicit pattern changes of land resources, natural and
socio-economic factors, and policy regulation.
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