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Abstract: As a major province of energy consumption and carbon emission, Jiangsu Province is also
a major province of the construction industry, which is a key region and potential area for carbon
emission reduction in China. The research and prediction of carbon emission in the construction
industry is of great significance for the development of low-carbon policies in the construction
industry of other cities. The purpose of this paper is to study the influencing factors of the whole
life cycle carbon emissions of buildings in Jiangsu Province, and to predict the carbon emissions
of buildings in Jiangsu Province based on the main influencing factors. This paper uses the energy
balance sheet splitting method, STIRPAT model, gray correlation method and GA-BP neural network
model to study and predict the carbon emissions of construction industry in Jiangsu Province. The
research results show that the resident population, urbanization rate, steel production, average
distance of road transportation, and labor productivity of construction enterprises have a catalytic
effect on construction carbon emissions; GDP per capita and added value of tertiary industry have a
suppressive effect; construction carbon emissions reached the historical peak in 2012; the prediction
results show that the future construction carbon emissions in Jiangsu province generally show a
decreasing trend. The research results of this paper provide a possibility to refine the study of
construction carbon emission, and also provide a basis and guidance for subsequent research on
construction carbon emission.

Keywords: building carbon emission; GA-BP neural network model; green building; building
sustainability; scenario simulation

1. Introduction

According to a special report issued by the IPCC [1], the global climate temperature
has increased by about 1.5 ◦C compared to the pre-industrial period. In order to cope with
the rising global temperature, countries have formulated a series of emission reduction
policies. As a major carbon emitter, China has been committed to energy conservation and
emission reduction, fully demonstrating the responsibility and commitment of a significant
country. In 2020, China committed at the UN General Assembly to strive to achieve peak
carbon by 2030 and carbon neutrality by 2060.

According to the statistics of the Special Committee on Energy Consumption Statistics
of China Building Energy Conservation Association [2], it is known that the whole pro-
cess of carbon emission of the national building industry accounts for about 50% of the
national carbon emission, and the construction industry has become a representative of
high pollution and high energy consumption in China. The carbon emissions of China’s
buildings are shown in Figures 1 and 2. As a central province of energy consumption and
carbon emission, Jiangsu Province is also a significant province of the construction industry,
which is a crucial area and potential area for carbon emission reduction in China. Therefore,
this paper intends to take the construction industry in Jiangsu Province as the research
object and use the whole life cycle theory to divide the whole life cycle of construction into
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the production stage of building materials, the transportation stage of building materials,
the construction stage, the operation stage and the demolition stage of construction. The
factors influencing the whole life cycle of construction in Jiangsu Province are studied, and
the subsequent development trend is predicted.
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2. Literature Review

Carbon emissions have become a hot topic in academia and an international issue.
In order to accurately and effectively formulate national, regional, or industry carbon
reduction policies, it is necessary to understand past and future carbon emission trends.
Therefore, accounting for past carbon emissions and forecasting future carbon emissions
has become particularly important. However, due to the caliber of energy statistics in
China, there are difficulties in accounting for carbon emissions in the building sector, and
the energy balance sheet splitting method is used in this study for accounting [3,4]. In
addition, forming a reliable prediction model can provide a basis for policy or measure
formulation for the country, regions, and industries, which facilitates the development
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of special carbon emission reduction efforts. In the past decades, many scholars have
conducted related studies, mainly using econometric as well as statistics-related principles
and methods for simulation forecasting [5–9]. In recent years, more and more scholars
have introduced the method of artificial neural networks into studying carbon emission
prediction. Predictions using artificial neural network models trained on quarterly data
from 1980 to 2015 in China found that population size was the most significant sensitive
factor in China [10]. After ranking and differentiating the importance of influencing factors
on CO2 emissions, carbon emission projections for China using dynamic nonlinear artificial
neural networks found that the base case will peak in 2031 [11]. Factor decomposition
based on the LMDI model and artificial neural network model predictions found carbon
sinks, carbon capture and storage, and BECCS to be the preferred options for achieving
carbon neutrality in China [12]. Predictive analysis based on IFWA-GRNN network models
suggests that carbon intensity in 2030 is not attainable under the baseline scenario but is
achievable under policy tightening and market allocation scenarios [13]. The prediction
of the general regression neural network model combined with the urban development
scenario found that economic development and the increase in construction industry
standards may significantly impact future CO2 emissions [14]. Combining the STIRPAT
model and a GA-BP neural network model to forecast carbon emissions in Xinjiang, the
results show that the low-carbon scenario is the first to peak, followed by the medium-
carbon scenario, and the high-carbon scenario is difficult to peak before 2050 [15]. A BP
neural network model was constructed to predict carbon emissions in Baoding, and the
results found that: industrial production accounted for a larger share of carbon emissions,
economic growth contributed significantly to the growth of carbon emissions, and energy
intensity was the main negative factor [16].

The selection of drivers of carbon emissions as a precursor to carbon emission projec-
tions has also been the focus of carbon emission research. Energy consumption intensity,
population growth, urbanization rate, and urban and rural GDP per capita were identified
as the drivers of carbon emissions using the U-kaya equation [17]. The log-averaged Divisa
index decomposition was used in the extended Kaya formula to include carbon emission
factors, fossil fuel substitution, renewable energy penetration, carbon intensity, affluence,
and population size as drivers [18]. The STIRPAT model was introduced into the carbon
emission study to identify GDP per capita, total energy patents, economic accumulation,
fossil fuel use, urbanization rate, and foreign direct investment as drivers. The IPAT-E
model was used to identify and classify the drivers of carbon emissions as human impact,
population, affluence, technology, and energy [19]. The extended IPAT model and scenario
analysis were used to study carbon emission reduction pathways, including economic
growth, population growth, energy intensity, and renewable energy share as drivers [20].

Green buildings, regarded as essential tools to combat climate change effectively, have
been subject to extensive government incentives to promote their innovative development,
and studies have found that supply-side policies can facilitate innovation and develop-
ment of green building technologies as well as promote sustainable development in the
construction industry [21]. In a comparison of green buildings with non-green buildings,
it was found that carbon emissions from the operation and maintenance phases account
for a larger share of the whole life cycle and that green buildings have slightly higher
implied CO2 emissions than non-green buildings, but their operational emissions are much
lower [22]. Therefore, promoting the development of green building manufacturing can
be an effective response to the deterioration of the climate environment, and studies have
shown that “energy efficiency and “indoor environmental quality” are sustainability in-
dicators in green building manufacturing [23], in practice, we can grasp these indicators
to promote the development of green building industry better. An analysis based on the
RBF-WINGS model found that industry scale and green financial support are the main
influencing factors for green building development [24], which can provide a theoretical
basis for the development of green buildings in China and a reference for government
departments to make decisions. However, the high cost is still the biggest obstacle to
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implementing green buildings in developing countries [25]. In the case of the Murabba
Palace, a number of building interventions incorporating passive design were found: the
use of double walls with double low-e glazing and the application of polystyrene insulation
improved the thermal comfort of the building interior and contributed to the reduction of
carbon emissions [26].

In summary, most of the studies on carbon emission projections are still conducted
at the national level, there are fewer studies on regional or industry sectors, and there is a
lack of accounting and projections of building carbon emissions for each province and city
in China. In addition, most studies on carbon emission calculation and projection seldom
consider the dynamic changes of electricity and thermal power carbon emission factors.

3. Research Methods and Models
3.1. Gray Correlation Method

The basic idea of the gray correlation degree method is to judge whether the con-
nections are strong or not based on the similarity of the shapes of the set of sequential
curves [27]. Since there are many influencing factors on carbon emission in each stage
of the whole life cycle of a building, this paper applies this method aiming to select the
main influencing factors in each stage of the whole life cycle of a building to construct the
STIRPAT model.

The basic idea [28]: determine the evaluation object as well as the evaluation index;
perform standardization to remove the scale; calculate the absolute difference between
the evaluation object index series and the reference series; calculate the gray correlation
coefficient using Equation (1); calculate the gray correlation degree using Equation (2); and
perform evaluation analysis.

ζi(k) =

min
i

min
k |x0(k)− xi(k)|+ ρ

min
i

min
k |x0(k)− xi(k)|

|x0(k)− xi(k)|+ ρ
min

i
min

k |x0(k)− xi(k)|
(1)

ri =
K

∑
k=1

wkζi(k) (2)

This paper takes the production stage of building materials as an example and uses
the gray correlation method to select the main influencing factors in this stage, the same for
the other stages. The consumption of construction materials and carbon emissions from the
production of building materials in Jiangsu Province over the years are shown in Table 1.

Table 1. Consumption of construction materials and carbon emissions from building materials
production in Jiangsu Province over the years.

Year Steel
(Ton)

Cement
(Ton)

Glass
(Weight Box)

Aluminum
(Ton)

Carbon Emissions
(Ten Thousand Tons)

2005 17,176,219 72,850,624 11,755,245 2,135,532 12,640.5656
2006 19,365,741 82,523,173 5,807,113 722,611 10,412.6537
2007 24,896,823 91,657,074 6,090,033 829,837 12,292.2506
2008 30,475,791 118,258,785 10,392,076 780,865 14,892.7165
2009 35,532,626 152,498,685 16,587,859 1,079,470 18,644.9787
2010 40,618,866 157,705,493 17,325,388 1,301,559 20,465.4572
2011 47,989,650 182,777,750 14,408,094 1,738,724 24,388.8858
2012 141,117,794 754,308,672 18,685,165 7,466,010 89,863.4490
2013 130,393,503 316,346,453 20,494,290 17,162,732 83,597.1095
2014 79,550,112 245,611,224 177,321,086 4,397,407 41,305.1479
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Table 1. Cont.

Year Steel
(Ton)

Cement
(Ton)

Glass
(Weight Box)

Aluminum
(Ton)

Carbon Emissions
(Ten Thousand Tons)

2015 86,746,631 271,234,936 22,840,682 4,136,138 42,787.4867
2016 90,703,898 245,411,043 26,027,869 5,243,690 44,554.2099
2017 90,562,639 241,763,822 20,947,231 4,293,637 42,153.9950
2018 93,709,279 239,359,027 25,063,438 4,493,855 43,079.6396
2019 100,465,171 257,666,274 26,811,036 4,107,839 44,638.2866

The gray correlation between steel, cement, glass, and aluminum and carbon emis-
sions are 0.9588, 0.9373, 0.8524, and 0.9130, respectively. Therefore, steel production
can be selected as the influencing factor of carbon emissions in the production stage of
building materials.

3.2. STIRPAT Model

STIRPAT [29] is an extensible stochastic environmental impact assessment model that
can assess the relationship between human factors and the environment [30]. In this paper,
the STIRPAT model is applied to construct a relationship model between carbon emissions
of buildings and their influencing factors as follows.

CE = a× Pp × Cc × Gg × Tt × Ss × Rr × Ll × e (3)

Taking logarithms of both sides of the above equation simultaneously yields:

lnCE = lna + plnP + clnC + glnG + tlnT + slnS + rlnR + llnL + lne (4)

where CE refers to carbon emissions from buildings; P refers to resident population; C
refers to urbanization rate; G refers to GDP per capita; T refers to value-added of tertiary
industry; S refers to steel production; R refers to an average distance of road transportation;
L refers to labor productivity of construction enterprises; p, c, g, t, s, r, and l refer to the
elasticity coefficients of each index; is a constant term, and is an error term.

3.3. GA-BP Neural Network Model

This paper uses a GA-BP neural network model to predict the development trend of
building carbon emission in Jiangsu province, which is a multi-layer feed-forward neural
network trained according to the error back propagation algorithm after optimizing weights
and thresholds by a genetic algorithm, and the initial weights and thresholds of BP neural
network are optimized by a genetic algorithm to reduce the model error and improve the
accuracy of prediction. The flow is shown in Figure 3.

3.3.1. BP Neural Network

The working process of the BP neural network is roughly divided into two sub-
processes: forward transmission of the working signal and reverse transmission of the
error signal. In the BP neural network constructed in this paper, each sample has seven
inputs and one output, and the number of neurons in the hidden layer is determined as
fifteen according to Equation (5). Robert Hecht-Nielsen found that a continuum in any
closed interval can be approximated by a BP neural network with a hidden layer [31].
Therefore, in this paper, a three-layer BP network is chosen, and its basic structure is shown
in Figures 4 and 5.

S = 2× N + 1 (5)

where N denotes the number of neurons in the input layer; S is the number of neurons in
the hidden layer.
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The basic computational steps of the BP neural network are as follows.
Step 1. Network initialization. In this study, the number of nodes in the input layer is

seven, the number of nodes in the hidden layer is fifteen, and the number of nodes in the
output layer is one. The weight of the input layer to the hidden layer is wij, the weight of
the hidden layer is wjk, the threshold of the input layer to the hidden layer is bj, and the
threshold of the hidden layer to the output layer is bk. The learning rate is η, the activation
function is f(x), and the activation function in this study is chosen as the Sigmoid function
shown in Equation (6).

f (x) =
1

1 + e−x (6)

Step 2. Calculate the output value Hj of the hidden layer.

Hj = f

(
7

∑
i=1

wijxi + bj

)
(7)

Step 3. Compute the output value Ok of the output layer.

Ok =
15

∑
j=1

Hjwjk + bk (8)

Step 4. Calculate the error between the output value Ok and the desired output
value EOk.

E =
1
2
(EOk −Ok)

2 (9)

Step 5. The weights are updated according to the error back propagation between the
output value and the desired output value, using the gradient descent method.

∂E
∂wjk

= (EOk −Ok)

(
− ∂Ok

∂wjk

)
= (EOk −Ok)

(
−Hj

)
(10)

∂E
∂wij

=
∂E
∂Hj
·

∂Hj

∂wij
(11)

∂E
∂Hj

= (EOk −Ok)

(
−∂Ok

∂Hj

)
= −wjk(EOk −Ok) (12)

∂Hj

∂wij
=

∂ f
(

∑7
i=1 wijxi + bj

)
∂wij

= Hj
(
1− Hj

)
xi (13)

{
wij = wij + ηHj(EOk −Ok)

wij = wij + ηHj
(
1− Hj

)
xiwij(EOk −Ok)

(14)
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Step 6. The error between the output value and the desired output value is back
propagated and gradient descent is used to update the threshold value.

∂E
∂bk

= (EOk −Ok)

(
−∂Ok

∂bk

)
= −(EOk −Ok) (15)

∂E
∂bj

=
∂E
∂Hj
·
∂Hj

∂bj
(16)

∂Hj

∂bj
=

∂ f (∑7
i=1 wijxi + bj)

∂bj
= Hj

(
1− Hj

)
(17)

∂E
∂Hj

= (EOk −Ok)

(
−∂Ok

∂Hj

)
= −wjk(EOk −Ok) (18)

{
bk = bk + η(EOk −Ok)

bj = bj + ηHj
(
1− Hj

)
wjk(EOk −Ok)

(19)

Step 7. Determine whether the algorithm iteration is completed.

3.3.2. Genetic Algorithm

Step 1. The connection with the BP neural network is established through the fitness
function, and in this study, the fitness function is associated with the error in the neural
network model, as shown in Equation (20).

f itness =
1
E
=

2

(EOk −Ok)
2 (20)

Step 2. In this study, chromosome selection and duplication were performed using the
roulette wheel method, while retaining the elite chromosomes in the sire for inheritance.
The basic calculation of roulette is shown below.

p(xi) =
f (xi)

∑N
j=1 fi

(21)

q(xi) =
i

∑
j=1

p
(
xj
)

(22)

where p(xi) denotes the probability of each individual being selected; and q(xi) denotes the
cumulative probability of each component.

Step 3. Select the parent chromosome for crossover to produce new offspring.
Step 4. Mutate the chromosomes of the offspring.
Step 5. Repeat Step 2, Step 3, Step 4 until a new population is generated.

3.3.3. Genetic Algorithm to Optimize BP Neural Network

Step 1. Determine the structure of BP neural network.
Step 2. Optimization of weights and thresholds using genetic algorithm.
Step 3. The optimized BP neural network is trained and predicted.

3.4. Ridge Regression

Ridge regression [32] was first proposed by Hoerl et al. in 1970 as an improved least
squares estimation that obtains regression coefficients at the cost of losing some information
and reducing accuracy. Unlike general linear regression, the unbiased estimation of ridge
regression tends to shrink some of the coefficients toward zero, which helps to alleviate the
problems of multiple co-linearity and overfitting.
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The prediction model of building carbon emissions in Jiangsu Province is built accord-
ing to this process, as shown in Figure 6.
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4. Model Construction and Data Analysis

All raw data used in this paper are from China Statistical Yearbook, Jiangsu Statistical
Yearbook, China Construction Statistical Yearbook, and China Energy Statistical Yearbook
from 2005–2019.

In this paper, the energy balance sheet splitting method [2,3,33,34] is used to calculate
the whole life cycle of building carbon emissions. Among them, the energy carbon emis-
sion factor is calculated using Equation (23) [35]; the electricity carbon emission factor is
calculated using Equation (24); and the thermal carbon emission factor is calculated using
Equation (25).

f = 44/12× J × C×O (23)

fe = CEt/(Et + Er) (24)

fh = CEh/Ph (25)

where, f refers to energy carbon emission factor; J refers to average low-level heat genera-
tion; C refers to carbon content per unit calorific value; O refers to carbon oxidation rate;
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fe refers to electricity carbon emission factor; CEt refers to carbon emission from thermal
power generation; Et refers to thermal power generation; Er refers to renewable energy
generation. fh refers to thermal carbon emission factor; CEh refers to carbon emission from
various types of heating energy; and Ph refers to total heat production.

The carbon emission factors of electricity and thermal power in Jiangsu Province
are shown in Tables 2 and 3 respectively. The carbon emissions from the production of
construction materials, transportation of construction materials, building operation and
building construction processes in Jiangsu Province are shown in Tables 4–7 respectively.
The raw data of building carbon emissions and their influencing factors in Jiangsu Province
are shown in Table 8.

Table 2. Carbon Emission Factor for Electricity in Jiangsu Province.

Year 2005 2006 2007 2008 2009

Power carbon emission factor
(kgCO2/kWh) 0.8879 0.8517 0.7798 0.7630 0.7394

Year 2010 2011 2012 2013 2014
Power carbon emission factor

(kgCO2/kWh) 0.7082 0.7475 0.7430 0.7330 0.6972

Year 2015 2016 2017 2018 2019
Power carbon emission factor

(kgCO2/kWh) 0.7007 0.6869 0.6841 0.6556 0.6455

Table 3. Thermal Carbon Emission Factor for Jiangsu Province.

Year 2005 2006 2007 2008 2009

Thermal carbon emission factor
(kg/kg) 3.1312 3.2555 3.0945 3.1505 3.0677

Year 2010 2011 2012 2013 2014
Thermal carbon emission factor

(kg/kg) 2.8153 2.9660 3.0769 3.0159 3.0128

Year 2015 2016 2017 2018 2019
Thermal carbon emission factor

(kg/kg) 3.0690 3.0149 3.0935 3.6314 3.5692

Table 4. Carbon emissions from building materials production in Jiangsu Province.

Year 2005 2006 2007 2008 2009

Carbon emissions
(Ten Thousand Tons) 12,640.5656 10,412.6537 12,292.2506 14,892.7165 18,644.9787

Year 2010 2011 2012 2013 2014
Carbon emissions

(Ten Thousand Tons) 20,465.4572 24,388.8858 89,863.4490 83,597.1095 41,305.1479

Year 2015 2016 2017 2018 2019
Carbon emissions

(Ten Thousand Tons) 42,787.4867 44,554.2099 42,153.9950 43,079.6396 44,638.2686

Table 5. Carbon emission of building materials transportation in Jiangsu Province.

Year 2005 2006 2007 2008 2009

Carbon emissions
(Ten Thousand Tons) 113.9471 136.4962 158.0850 197.8498 320.4802

Year 2010 2011 2012 2013 2014
Carbon emissions

(Ten Thousand Tons) 345.2539 423.8154 1664.8701 1353.2409 978.1925

Year 2015 2016 2017 2018 2019
Carbon emissions

(Ten Thousand Tons) 1013.6430 942.5937 961.7008 941.2930 1070.3047
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Table 6. Carbon emission from building operation in Jiangsu Province.

Year 2005 2006 2007 2008 2009

Carbon emissions
(Ten Thousand Tons) 4127.0743 4359.5150 4511.4667 5160.9920 5570.8610

Year 2010 2011 2012 2013 2014
Carbon emissions

(Ten Thousand Tons) 6139.5220 6872.6039 7680.1223 8694.3287 8019.8521

Year 2015 2016 2017 2018 2019
Carbon emissions

(Ten Thousand Tons) 9013.4497 9462.6038 10,492.9558 11,328.2717 11,616.3580

Table 7. Carbon emission during construction in Jiangsu Province.

Year 2005 2006 2007 2008 2009

Carbon emissions *
(Ten Thousand Tons) 449.1982 473.4452 483.9768 499.4249 530.2938

Year 2010 2011 2012 2013 2014
Carbon emissions

(Ten Thousand Tons) 648.4856 771.1489 852.3013 944.6358 971.8402

Year 2015 2016 2017 2018 2019
Carbon emissions

(Ten Thousand Tons) 901.2428 828.8998 855.2922 901.7684 953.4604

* Carbon emissions in the construction stage include carbon emissions from construction and demolition.

Table 8. Raw data of influencing factors and building carbon emissions in Jiangsu Province.

Year

Resident
Population

(Ten Thousand
People)

Urbanization
Rate (%)

Per
Capita
GDP

(Yuan)

Added Value of
Tertiary
Industry

(Hundred
Million Yuan)

Steel
Production

(Ton)

Average
Distance of

Highway
Transportation

(km)

Labor
Productivity of
Construction
Enterprises

(Yuan/Person)

Building
Carbon

Emissions (Ten
Thousand

Tons)

2005 7588.24 50.5 23,984 1300.10 17,176,219 60.18 127,657 17,330.79
2006 7655.66 51.9 27,868 1284.32 19,365,741 64.29 142,846 15,382.11
2007 7723.13 53.2 33,798 1993.99 24,896,823 65.51 160,387 17,445.78
2008 7762.48 54.3 39,967 2130.80 30,475,791 65.60 174,742 20,750.98
2009 7810.27 55.6 44,272 1754.71 35,532,626 93.38 189,932 25,066.61
2010 7869.34 60.6 52,787 3460.14 40,618,866 93.04 207,116 27,598.72
2011 8022.99 62.0 61,464 3578.19 47,989,650 93.41 249,338 32,456.45
2012 8119.81 63.0 66,533 2610.53 141,117,794 94.50 262,834 100,060.74
2013 8192.44 64.4 72,768 3442.75 130,393,503 172.64 282,532 94,589.31
2014 8281.09 65.7 78,711 3421.77 79,550,112 172.87 296,918 51,275.03
2015 8315.11 67.5 85,871 3757.42 86,746,631 182.88 297,437 53,715.82
2016 8381.47 68.9 92,658 4337.88 90,703,898 182.68 304,925 55,788.31
2017 8423.50 70.2 102,202 4430.92 90,562,639 184.45 312,383 54,463.94
2018 8446.19 71.2 110,508 4235.98 93,709,279 182.72 335,803 56,250.97
2019 8469.09 72.5 116,650 3915.58 100,465,171 196.55 363,015 58,278.39

4.1. Multicollinearity Analysis

Tables 9 and 10 were obtained after multiple regression analysis using SPSS software.
lnP, lnC, lnG, lnT, lnR, and lnL in Table 9 had tolerances less than 0.1 and VIF values greater
than 10; the maximum value of the conditional index in Table 10 was 8050.731, which
indicated the existence of multicollinearity among the independent variables.

4.2. Ridge Regression Analysis

In this paper, SPSSPRO software was used to perform ridge regression analysis, and
the results of the analysis are shown in Figure 7 and Table 11. The lnP, lnC, lnG, lnT, lnS, lnR,
and lnL regression model significance p value is 0.001, which indicates significance at a high
level and rejects the original hypothesis, indicating that there is a regression relationship
between the independent and dependent variables. Meanwhile, the goodness of fit R2 of
the model is 0.944, and the model performs better.
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Table 9. Coefficient a.

Model

Non-Standardized
Coefficient Collinearity Statistics

B Standard
Error

Standardization
Coefficient t Significance Tolerance VIF

Constant −5.646 31.242 −0.181 0.862
lnP −0.412 3.935 −0.026 −0.105 0.920 0.013 79.689
lnC 2.826 1.550 0.562 1.823 0.111 0.008 121.781
lnG −1.027 0.447 −0.843 −2.296 0.055 0.006 172.917
lnT −0.092 0.135 −0.064 −0.682 0.517 0.088 11.307
lnS 1.110 0.074 1.261 14.895 0.000 0.109 9.195
lnR 0.089 0.136 0.068 0.655 0.534 0.073 13.672
lnL 0.006 0.590 0.003 0.009 0.993 0.008 130.036

Table 10. Collinearity diagnosis.

Variance Ratio

Dimension Characteristic
Value

Condition
Index Constant lnP lnC lnG lnT lnS lnR lnL

1 7.993 1.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.006 36.337 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00
3 0.001 122.863 0.00 0.00 0.00 0.00 0.30 0.00 0.24 0.00
4 0.000 168.490 0.00 0.00 0.00 0.00 0.05 0.42 0.10 0.00
5 7.258 × 10−5 331.866 0.00 0.00 0.01 0.08 0.42 0.21 0.28 0.00
6 7.421 × 10−6 1037.830 0.00 0.00 0.63 0.08 0.04 0.09 0.04 0.16
7 3.574 × 10−6 1495.421 0.00 0.00 0.13 0.79 0.01 0.27 0.03 0.84
8 1.233 × 10−7 8050.731 0.99 1.00 0.22 0.04 0.19 0.01 0.25 0.00
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Table 11. Ridge regression analysis results.

K = 0.127

Non-Standardized
Coefficient

Standardization
Coefficient

t p R2 Adjusted
R2

F
B Standard

Error Beta

constant −11.544 9.752 - −1.184 0.275

0.944 0.889
17.001

(0.001 ***1)

lnP 0.877 1.146 0.056 0.765 0.469
lnC 0.18 0.309 0.036 0.581 0.580
lnG −0.004 0.073 −0.004 −0.061 0.953
lnT −0.091 0.161 −0.063 −0.561 0.592
lnS 0.639 0.1 0.726 6.402 0.000 ***1

lnR 0.057 0.145 0.044 0.396 0.704
lnL 0.207 0.115 0.112 1.801 0.115

1 *** represent the significance level of 1%.

The resulting model equation is as follows:

lnCE = −11.554 + 0.877lnP + 0.18lnC− 0.004lnG− 0.091lnT + 0.639lnS
+0.057lnR + 0.207lnL

(26)

CE = (9.5976e− 06)× P0.877 × C0.18 × G−0.004 × T−0.091 × S0.639 × R0.057

×L0.207 (27)

5. Carbon Emission Scenario Setting for Buildings in Jiangsu Province

In this paper, the scenario model is set to low-carbon, baseline, and high-carbon, and
the rate of change of each factor is set based on the overall trend and annual average rate of
change of the factor in the past ten years, with reference to the relevant policies and plans
promulgated by the state and Jiangsu Province. The scenario settings for carbon emission
prediction in Jiangsu Province are shown in Table 12.

Table 12. Scenario setting of building carbon emission prediction in Jiangsu Province.

Scenario
Pattern

Rate of Change (%)

Population
Size

Urbanization
Rate

Per Capita
GDP

Added-Value
of Tertiary
Industry

Steel
Production

Average Haul
Distance of

Highway
Transportation

Labor
Productivity of
Construction
Enterprises

Low carbon 0.70 1.25 10.5 9.5 18 9.5 6.5
Standard 0.75 1.3 10 9 20 10 7

High
carbon 0.80 1.35 9.5 8.5 22 10.5 7.5

6. GA-BP Model Validation and Prediction of Building Carbon Emissions
6.1. GA-BP Model Validation

After the basic parameters of the genetic algorithm and neural network are set, the
GA-BP model is continuously trained using MATLAB software to optimize the parameters
as well as the logical structure, to ensure that the training results can fully reflect the actual
situation of carbon emission of buildings in Jiangsu Province.

Figures 8 and 9 show that the trained GA-BP model has good performance and is
suitable for prediction. In addition, the mean square error of the trained model is 0.034694,
which is small, indicating that the model can predict the carbon emissions of buildings in
Jiangsu Province more accurately.
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6.2. Scenario Prediction Results

As shown in Figure 10, the overall carbon emissions from construction in Jiangsu
Province from 2020 to 2024 show a decreasing trend, indicating that the carbon emission
reduction work in construction in Jiangsu Province has been practical. By 2024, the carbon
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emissions in the low-carbon, baseline, and high-carbon modes will be 437,521,600 tons,
486,433,700 tons, and 531,693,200 tons, respectively, indicating that there is still much room
for carbon emission reduction in the construction industry in the province.
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7. Conclusions

In this paper, we use the STIRPAT model to analyze the factors of carbon emissions
from the construction industry in Jiangsu Province and use the GA-BP neural network
model to forecast the carbon emissions from construction in Jiangsu Province from 2020 to
2024. The main findings are as follows.

(1) The growth of whole life cycle carbon emissions of buildings in Jiangsu Province from
2005 to 2019 is about 409,476,000 tons, peaking in 2012 and gradually decreasing and
leveling off afterward. This shows that the construction industry in Jiangsu Province
has the initial carbon peak conditions.

(2) Resident population, urbanization rate, steel production, average road transporta-
tion distance, and construction enterprise labor productivity have a catalytic effect
on construction carbon emissions; GDP per capita and value-added of the tertiary
industry have a suppressive effect. Among them, steel production has a significant
catalytic effect on carbon emissions. Therefore, in the process of carbon emission
reduction in the construction industry of Jiangsu Province, it is necessary to reduce
the use of steel as much as possible and switch to the use of new energy-saving and
emission-reducing materials as an alternative.

(3) According to the elasticity coefficient, the absolute value of the coefficient for the
resident population is the largest, which indicates that the resident population is
the most sensitive factor affecting the change of whole life cycle carbon emission of
buildings in Jiangsu province. That is, the change in the number of resident population
per unit has the greatest influence on the change of life-cycle carbon emissions of
buildings in Jiangsu Province.

(4) The prediction results show that the overall trend of carbon emissions from 2020 to
2024 is decreasing. In addition, under the high carbon scenario and the low carbon
scenario, there is a large difference in the carbon emissions of buildings between the
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two, indicating that there is still more room for carbon emission reduction in the
construction industry in Jiangsu Province.

There are still some limitations that can be improved in future research. Firstly, in this
study, only the changes of carbon emission factors of heat and electricity are considered
in the whole life cycle carbon emission accounting and forecasting of buildings in Jiangsu
Province, and the changes of carbon emission factors of other energy sources can be
further considered in future studies to improve the accuracy of accounting and forecasting.
Secondly, only some of the major influencing factors are selected for carbon emission
prediction study in this study, which will inevitably have an impact on the prediction
results. Therefore, all influencing factors can be considered more comprehensively in future
studies to reduce the prediction errors. Thirdly, in this study, only three different scenarios
of building carbon emissions are predicted, and more scenarios can be set in future studies
to predict future building carbon emissions more accurately.
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