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Abstract: Magnetic modification holds a significant place for regulating the performance of biochar
for wastewater treatment, endowing its magnetic separation property and facilitating its wide
application. Herein, a ball-milled oxidative magnetic modification of pristine biochar was employed
to manufacture magnetic biochar using K,FeOy as a precursor and internal oxidant for removal of
methylene blue and tetracycline from aqueous solution. The characterizations showed that magnetic
iron oxide and oxygen-containing groups were simultaneously introduced. Moreovert, specific surface
area and pore volume were remarkably enhanced from 0.7 m? /g to 71.2 m? /g and from 0.001 cm3/g
to 0.034 cm3/ g, respectively. The magnetic biochar showed that 133.76 mg/g and 58.34 mg/g
adsorption capacities for MB and TC, respectively, significantly transcended the pristine biochar. Its
adsorption was mainly dominated by oxygen-containing groups and iron species. This would provide
an efficient oxidative magnetic modification for the preparation of oxygen-containing group-rich
magnetic biochar for the removal of MB and TC.
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1. Introduction

Biochar has captured widespread attention as a low-cost carbon-based material for
environmental remediation with unique characteristics and tunable structure [1,2]. In
particular, magnetic biochar finds wide applications for removing pollutants from wastew-
ater with intriguing magnetic separation property [3,4]. Generally, magnetic biochar is
manufactured by impregnating magnetic media such as iron, nickel, and cobalt species
into a biochar matrix through either pyrolysis or post-treatment [5]. Magnetic iron species,
for instance, zerovalent iron, Fe304, and y-Fe,O3, are prevailing candidates owing to their
low-cost and environmental friendliness.

Usually, zerovalent iron doped biochar is manufactured via the reduction of biochar
loaded with iron oxides by NaBHy (This can be called “reductive magnetic modifica-
tion”) [6]. By contrast, iron oxide doped magnetic biochar is air-stable and thereby has
great potential for industrial application. This kind of biochar can be prepared by doping
magnetic iron oxide via either co-pyrolysis or base-induced co-precipitation using ferric
and ferrous as precursors [5]. However, high pyrolysis temperature is used for gaining
either magnetic iron oxide medium or biochar matrix with a large specific surface area for
loading iron species in most cases, easily causing loss of functional groups on the surface.
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They dominate multiple physiochemical properties of carbon matrix, including surface
electronegativity, acidic-basic properties, ion exchange, and complexation capability for
adsorption, and also serve as active sites for immobilizing iron species.

To expand the application of iron oxide doped magnetic biochar, several modifications
were developed to improve its performance in recent years. For instance, functionalization
was applied to improve the performance of magnetic biochar using ammonia [7] and imin-
odiacetic acid [8] for the removal of Cr (VI) and Cd (II), respectively. CaCOs-impregnation
was utilized to enhance the adsorption capability of magnetic biochar for As (III) and
Cd (II) [9]. Similarly, calcium-based magnetic biochar was also prepared for efficiently
adsorbing other heavy metals (Pb (II), Cu (II), and Cr (VI)) using calcium-rich feedstock
such as iron sludge [10] and crayfish shell [11]. Chitosan-crosslink was also developed
to engineer magnetic biochar for the removal of various heavy metals [12], where the
multiple functional groups of chitosan played an important role in the adsorption. This en-
deavor was mostly dedicated to removing heavy metals and less paid for organic pollutants
by now.

Ball-milling is an emerging technology for regulating the physicochemical properties
of biochar with several intriguing advantages such as high efficiency and environmentally
friendliness [13]. It could improve the physical properties, including specific surface area
and pore volume [14], leading to an increased adsorption capability. A great advance has
been made in improving adsorption capability of biochar for removing various pollutants
using ball-milling in the past decade [15]. Especially, it was applied to modify magnetic
biochar for adsorbing heavy metals [16,17], antibiotics [18,19], and dye [20] from an aque-
ous solution, where multiple physicochemical properties were improved and enhanced
adsorption capabilities were achieved.

This work was dedicated to investigating ball-milled K;FeO, modification for the
preparation of oxygen-containing group-rich magnetic biochar. To avoid decomposition
of oxygen-containing groups during pyrolysis with K,FeOy, direct K;FeO, oxidation of
pristine biochar was used instead; meanwhile, ball-milling was applied to accelerate this
oxidation. It was hoped that additional oxygen functional groups could be simultaneously
introduced with magnetic iron species such as Fe3O4 and y-Fe,O3; due to the strong
oxidizing ability of K;FeO4. Meanwhile, ball-milling could accelerate K;FeO,4 oxidation to
boost oxygen-containing groups and improve the physicochemical properties of biochar,
such as surface morphology and porous structure. Mangosteen shell, a largely available
biowaste mainly consisting of crude fiber and pectin from the tropical fruit mangosteen [21],
was used as feedstock to prepare the biochar. The biochar was prepared at a relatively low
temperature (300 °C) for conserving functional groups, which was beneficial to K;FeO,
oxidation for boosting active oxygen groups such as -COOH and —-OH. Such oxidative
magnetic modification would provide an efficient method for addressing the shortcoming
of the above-mentioned magnetic modifications in a small amount of surface functional
groups that were usually achieved. Additionally, the adsorption capabilities of pristine and
magnetic biochars toward methylene blue (MB) and tetracycline (TC) were also assessed
in an aqueous solution. In short, it was aimed to establish a facile and efficient oxidative
magnetic modification for the preparation of highly adsorptive magnetic biochar at low
pyrolysis temperature.

2. Material and Methods
2.1. Materials and Feedstock

Mangosteen shell was collected from a fruit market in the Hainan University of Hainan
Province in China and used as feedstock. Analytically pure chemicals such as MB, tetra-
cycline hydrochloride, and K,FeO,4 were purchased from Shanghai Aladdin and Macklin
Biochemical Technology Co., Ltd.s. (Shanghai, China) and used without purification.
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2.2. Biochar Preparation and Characterization

Mangosteen shell was washed with tap water, dried at 60 °C, and broken into powder
(60 mesh). Pristine biochar (PB) was prepared through direct pyrolysis of mangosteen shell
at 300 °C for 1 h, washed with ultrapure water, and dried at 60 °C. PB was mixed with
K;FeOy4 and 10 mL ultrapure water (pH = 5), where 2 g PB and 3 g K,FeO,4 were employed
to reduce the formation of aggregates of iron oxides. Then, the mixture was milled with
100 g ball beads (3 mm) on a planetary ball mill (Pulverisette 6, Fritsch GmbH, Germany)
at a rotation speed of 400 r/min for 30 min. The ball-milling was paused for 20 min every
10 min to prevent an increase in temperature. The resulted product was washed with
ultrapure water until colorless and dried at 60 °C to get oxidized magnetic biochar (OMB).

The organic element contents, including C, H, O, and N, were determined on a Thermo
Scientific Flash 2000 CHNS/O analyzer (Waltham, MA, USA) directly. The inorganic el-
ements Fe and K were measured using an inductively coupled plasma atomic-emission
spectrometer (Agilent ICPOES730, Palo Alto, CA, USA). The carbon matrix was digested
to measure Fe and K content by the mixture of nitric acid, hydrofluoric acid, hydrogen
peroxide, and hydrochloric acid in an oven at 180 °C for 8 h. Surface properties were mea-
sured using N adsorption/desorption isotherms on an ASAP 2460 analyzer (Micromeritics,
Norcross, GA, USA); the specific surface area was determined by Brunauer-Emmett-Teller
(BET) model, the pore size and volume were calculated by Barret-Joyner—-Halenda (BJH)
model. Functional groups were determined by Fourier transform infrared spectrum (FTIR)
on a Bruker Tensor 27 infrared spectrometer (Ettlingen, Germany). Surface elements and
functional groups were analyzed by X-ray photoelectron spectrum on a Thermo Scientific
Escalab 250Xi spectrometer (Waltham, MA, USA). Crystal morphology was analyzed by an
X-ray powder diffractometer (Rigaku MiniFlex600, Tokyo, Japan) with Cu K« radiation
from 10-90°. The Zeta potential was measured by a Malvern Zetasizer NANO ZS analyzer
(Malvern, UK), where the test was repeated three times, and the average value was reported.
The surface structure and element composition analysis was carried out on a scanning
electron microscope (Phenom ProX, South Holland, Holland). The chemical structure was
also analyzed by Raman spectrum (Renishaw PLC, Gloucestershire, UK) at the wavelength
of 514 nm.

2.3. Batch Adsorption Experiments

All the adsorptions were performed using a 1/2 g/L ratio of biochar to adsorbate
solution on a shaker at 180 r/min and 25 °C. The concentration of adsorbate was measured
before and after adsorption to determine the adsorption capability of biochar. MB concen-
tration was tested by a UV-visible spectrophotometer (MAPADA UV-3300PC, Shanghai,
China) at 665 nm, and TC concentration was measured on a high-performance liquid
chromatograph (HPLC: Waters e2695, Milford, MA, USA) using a mixture of methanol, ace-
tonitrile, and 0.01 M aqueous oxalic acid solution (8/20/72 volume ratio) as mobile phase.
The adsorption experiments were repeated three times, and the adsorption data were
presented as mean values with standard deviations. The pHs (3, 5, and 7) were used to eval-
uate the effect of initial pH of adsorbate solution. The adsorption kinetics were performed
at pH =5, where 100 mg/L and 0.5 mg/L were used for MB, and 100 mg/L and 1 mg/L
were applied for TC. For adsorption isotherms, the adsorption was carried out at pH =5
for 72 h. A series of concentrations including 50 mg/L, 100 mg/L, 150 mg/L, 200 mg/L,
250 mg/L, and 300 mg/L were used to investigate the adsorption of PB for MB and TC,
and 25 mg/L, 100 mg/L, 150 mg/L, 200 mg/L, 250 mg/L, 300 mg/L, and 350 mg/L were
applied for evaluating the adsorption of OMB toward TC; 100 mg/L, 200 mg/L, 250 mg/L,
300 mg/L, 350 mg/L, 400 mg/L, and 450 mg/L were employed to assess its adsorption
toward MB. Co-existed ions including NaCl, MgCl,, CaCl,, NaNOs, Na;SOy4, NagPOy, and
NapCO3 were investigated to evaluate their influence on the adsorption capability of OMB
at a high concentration (50 mM). To evaluate the competitive adsorption between MB and
TC, the adsorption of OMB was performed in an aqueous mixture solution of them.
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2.4. Recycle of Magnetic Biochar

The OMB loaded with MB was regenerated in various solvents, including aqueous
HCI (0.1 M), ethanol, acetonitrile, and a mixture of ethanol/acetic acid (9/1 v/v) with a
1/2 mg/mL ratio at room temperature for 12 h. TC was desorbed by Fenton oxidation
using dilute aqueous HyO;, solution (0.03 wt%), where OMB loaded with TC was added to
the H,O; solution in 1/2 mg/mL ratio and shaken at room temperature for 12 h.

2.5. Fixed Bed Column Adsorption

Briefly, 250 mg biochar was filled into a plastic column with 10 mm diameter, and the
height of OMB and PB was about 6 mm and 9 mm, correspondingly. Pollutant solution was
injected into the biochar-filled column from bottom to top with a flow speed of 5.0 mL/min,
and the effluent was collected at one-minute interval and measured its concentration. The
adsorption cures were depicted as adsorption efficiency (C;/Cp) versus flow time (T).

3. Results and Discussion
3.1. Biochar Characterization

As listed in Table 1, a large amount of Fe was impregnated into OMB, and higher
oxygen content was achieved for OMB than PB. Therefore, KyFeO,4 succeeded in oxidizing
the biochar matrix to produce iron oxides and oxygen-containing groups with the assistance
of ball-milling. Moreover, much higher content of K was observed on OMB than PB,
meaning that it was also introduced using K,FeOy, as precursor. Importantly, much larger
specific surface area (SSA) and pore volume (PV) were achieved for OMB than PB. Pore
diameter (PD) decreased sharply from 60.0 nm to 3.0 nm because of iron oxide filling
and pore collapse. This suggested the combination of K,FeO,4 oxidation and ball-milling
induced a synergistic effect for regulating multiple physicochemical properties of biochar.

Table 1. The physicochemical properties of biochars.

BC Element Content (wt%) Surface Properties
C H o N Fe K SSA (m?/g) PV (cm3/g) PD (nm)
PB 63.2 43 24.6 0.6 0.0 1.4 0.7 0.001 60.0
OMB 30.7 29 31.8 0.3 241 2.8 71.2 0.034 3.0

SEM images showed that wrinkle and compact surface was observed for PB, yet a
smooth surface was achieved for OMB due to KyFeOy oxidation (Figure 1a—d). Moreover,
a certain amount of pores were observed on OMB, leading to a larger PV (Table 1). EDS
spectra indicated that C, O, and K were found on the surface of PB (Figure le-h). C, O, K,
and Fe were coated on the surface of OMB with sheet structure (Figure 1i-m). Meanwhile,
OMB possessed much higher relative oxygen content (17.91/31.22 vs. 30.16/65.64) than PB,
which was consistent with elemental analysis. Additionally, K was introduced onto the
surface of OMB. It is worth mentioning that it should exist in the form of -COOK and -OK,
and thereby higher cation exchange capacity was achieved for OMB.

The crystalline of biochar was analyzed by XRD spectra (Figure 2a). A broad peak
around 21.46°, which could be assigned to cellulose I [22], was observed on PB but was
hardly detected on OMB without the peaks of crystal carbon. This suggested crystal
cellulose was converted into an amorphous carbon structure with ball-milled K;FeO,
modification [23]. Additionally, three peaks around 35.38°, 44.82°, and 62.58° were found
on OMB.
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Figure 1. SEM images (a-d) and EDS spectra (e-m) of biochars.

These peaks could be attributed to either Fe30, or y-Fe,O3, endowing OMB 10.22 emu/g
saturation magnetization (SM) (Figure 2b). Raman spectra were performed to distinguish
these magnetic iron species. Two peaks around 1323 cm ! and 1583 cm™!, assigned to G and
D bands of carbon correspondingly, were achieved for both biochars. Additionally, four peaks
at215cm~1, 274 em™1, 382 cm !, and 690 cm~! were detected on OMB (Figure 2c). They
should be attributed to Fe-O vibration of Fe3O4 and Fe-C vibration on the surface of OMB [24].
Therefore, the magnetic iron medium doped on OMB should mostly be Fe;04. It should be
noted that amorphous iron oxides were also impregnated besides Fe;O,. This was verified
by the fact that OMB had a much lower SM than the calculated one [25] based on the 24.1%
content of iron (Table 1).

The FTIR spectra showed that several functional groups, including -OH (3452 cm 1),
aliphatic C-H (2833 cm™!, 1392 cm™~!), C=0/C=C (1645 cm~!), and C-O (1110 cm™})
groups were generated on the biochars (Figure 2d). OMB possessed comparable intensity
of these peaks as PB even though iron oxides were introduced. Moreover, aromatic C-H
(777 cm~1) was also observed on them [26]. Compared to PB, OMB had higher aromaticity
as a stronger peak of aromatic C-H was observed. It could be concluded that ball-milled
K;FeO, oxidation facilitated the formation of oxygen-containing groups and aromatic
structures through oxidation and dehydration, respectively. Apparently, a higher negative
potential was observed for OMB than PB (Figure 2e) due to the introduction of oxygen-
containing groups and iron oxides on the surface [27]. OMB still displayed electronegativity
at strong acidic condition (pH = 3). Such a high negatively charged surface will be beneficial
to adsorb cationic pollutants by electrostatic interaction.
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Figure 2. Characterization of biochars by XRD pattern (a), hysteresis curve (b), Zeta potential (c),
Raman spectra (d), and FTIR (e).

PB and OMB were mainly composed of C/O/N and C/O/N/Fe/K on their surfaces
correspondingly (Figure 3a,b). The high-resolution Cls spectra indicated that PB primarily
consisted of C-C/C=C (284.8 eV), C-OH (286.3 eV), and C-O-C (287.1 eV) groups [28,29]
(Figure 3c). Importantly, C=0 (288.6 eV) was also detected on OMB besides these peaks
(Figure 3d). Evidently, OMB had much higher content of all these oxygen-containing
groups than PB, indicating that K,FeO,4 oxidation efficiently oxidized the carbon matrix and
produced new oxygen-containing groups on its surface, where ball milling should also play
an important role in the acceleration of K;FeO, oxidation as well as regulation of surface
structure. Ols spectra revealed that O-C and O=C were obtained on PB with H,O [30,31]
(Figure 3e). Besides these groups, Fe-O-Fe and Fe-OH were also generated on OMB [30,32]
(Figure 3f), and thereby iron hydroxides and iron oxides were simultaneously incorporated.
The high-resolution Fe 2P spectrum indicated that Fe?* and Fe®* were observed in the ratio
of 0.85/1 (Figure 3g). A pair of peaks at 710.4 eV and 723.9 eV with a satellite peak at
714.9 eV were detected, which were assigned to Fe?* [33,34]. Likewise, a pair of peaks at
712.3 eV and 726.3 eV with a satellite peak of 719.1 eV were observed for Fe>*. In summary,
new oxygen-containing groups were generated on the carbon matrix, and ferric/ferrous
oxides and hydroxides were impregnated by using K,FeO; as a precursor.
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3.2. Adsorption Capability of Biochar for MB and TC
3.2.1. The Effect of Initial pH

The adsorption capability of PB was maintained at a low level for both MB and TC
over a pH range of 3-7 (Figure 4a,b); even increased zeta potential was obtained with pH
(Figure 2e), implying electrostatic interaction wasn’t a dominating factor. The adsorption of
OMB toward MB greatly increased from 78.51 mg/g to 170.56 mg/g, enhancing the initial
pH from 3 to 5 (Figure 4a). The increase in Zeta potential and reduction of H* exchange
against MB cation might be the main reasons for causing this phenomenon. While higher
pH was employed, the adsorption almost remained at this level. Interestingly, its adsorption
toward TC was less influenced by initial pH, and good adsorption capability was gained
(Figure 4b). This suggested that OMB showed good compatibility for adsorption of variable
TC as a different state of TC was formed at these pHs [35]. Therefore, it was a powerful
adsorbent for the removal of TC in different pH aqueous environments. Significantly, OMB
always displayed much higher adsorption capabilities toward MB and TC than PB over a
wide pH range.

3.2.2. Adsorption Kinetics and Isotherms

As shown in Figure 4c,d, OMB processed much higher adsorption speed and equi-
librium adsorption capabilities for MB and TC at a high concentration (100 mg/L). OMB
could rapidly remove most MB at low concentration (0.5 mg/L) within 10 min, even us-
ing 1/8 g/L biochar dosage (Figure 4e), and most TC (1 mg/L) within 10 h (Figure 4f).
By contrast, PB only adsorbed 70% of MB and 43% of TC at the above-mentioned con-
centrations (Figure 4f,g). Moreover, OMB also could adsorb most MB at a wide range
of low concentrations (1-5 mg/L) but showed a lower removal ratio for TC (Figure 4h).
These adsorption data were closely described by pseudo second model (see Supplementary
Materials), suggesting that these adsorptions were chemically controlled processes.

The adsorption isotherms are depicted in Figure 4ij; PB showed low adsorption
capacities for both MB (3.69 mg/g) and TC (7.86 mg/g). In the case of OMB, much
higher adsorption capacities (MB: 133.76 mg/g, TC: 58.34 mg/g) were gained, indicating
that ball-milling accelerated K;FeO4 oxidation could efficiently enhance the adsorption
capability of mangosteen shell biochar. The enhancement of adsorption capability could
be attributed to the introduction of oxygen-containing groups and iron oxides, as well
as the enlargement of SSA and PV. Their adsorptions were accurately described by the
Freundlich model (R? > 0.95) (see Supplementary Materials) and should be multilayer
heterogeneous adsorption processes [29]. The Freundlich exponents n were greater than
1, suggesting they were favorable processes [36,37]. Higher values of n were obtained for
OMB than PB. Therefore, ball-milled K,FeO, oxidation not only endowed the biochar good
magnetic response but also improved its adsorption efficiency. This would provide an
efficient and low energy consumption method for the preparation of magnetic biochar for
efficient removal of MB and TC compared to the existed methods (Table 2). It should be
pointed out that the adsorption capability and magnetism of the magnetic biochar could
be further improved by using a longer ball milling time and a higher ratio of K;FeOy to
pristine biochar.
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Table 2. Summary of preparation methods of magnetic biochar for removal of MB and TC.

Magnetic Biochar Preparation Method Om (mg/g) SM (emu/g) Ref.
. Hydrothermal carbonation with iron mud at
Fe304-doped biochar 180 °C for 12 h 186.003 (MB) 22.35 [38]
Fe304-doped biochar Co-pyrolysis with Fe3O4 at 500 °C for 30 min 52.6 (MB) — [39]
) . Pretreatment by Fe,O3/KMnO,/HNO; and o
Fe;O3-doped biochar pyrolysis at 800 °C for 20 min 46.30 (MB) [40]
. Pyrolysis at 600 °C for 4 h and ball-mill
Fe304-doped biochar extrusion with Fe;O, for 12 h 500.5 (MB) 349 [20]
} . KMnOjy-activation, pyrolysis at 500 °C for 2 h,
Fe304-doped biochar and base-induced co-precipitation 98.89 (TC) 647 [41]
Fe;Oy-doped biochar | Y7Olysis at700 °C for 3 hand base-induced 42.31 (TC) 26.28 [42]
co-precipitation
; . Iron impregnation, pyrolysis at 700 °C for 2 h,
Fe304-doped biochar and ball-milling for 12 h 268.3 (TC) 15.39 [16]
Base promoted hydrothermal carbonization at
Fe304-doped biochar 230 °C for 24 h and heat treatment at 400 °C 48.35 (TC) 9.73 [43]
forlh
Microwave-assisted pyrolysis at 700 °C for
Fe304-doped biochar 2 h and microwave hydrothermal treatment 202.62 (TC) — [44]
with iron at 200 °C for 1 h
. Pyrolysis at 800 °C for 2 h and
v-Fe;O3 doped biochar alkali-acid modification 286.913 (TC) — [45]
Fe30,-doped biochar Pyrolysis at 300 °C for 1 h, and ball-milling ;45 7\ 1p) 58,34 (TC) 10.22 This work

with K, FeOy for 30 min

3.2.3. Effect of Co-Existed Mineral on the Adsorption of Magnetic Biochar

Co-existing minerals might interact with biochar and adsorbate in an aqueous solution
and influence their adsorption behavior greatly. The effect of common minerals such as
NaCl, MgCl,, CaCl,, NaNO3, NaySO4, NapyCOs, and NazPO4 was investigated at a high
concentration (50 mM) (Figure 5a,b). The adsorption of OMB was disturbed by these
minerals for MB (Figure 5a) due to the competitive adsorption of metal cation against MB
cation by ion exchange. A similar phenomenon was also found for its adsorption toward
TC (Figure 5b), which should be resulted from the reduction of active adsorption sites as
anion could occupy oxygen-containing groups and ion center by hydrogen bonding and
complexation correspondingly. The “squeeze-out effect” of minerals could also be one
reason for the decrease in its adsorption [46,47]. In comparison to Na*, the bivalent cations
Mg?* and Ca?* caused a sharp decrease in adsorption capability for MB and TC owing to
the occupation of oxygen-containing groups by their stronger complexation. Moreover,
they might exchange with K* and weaken electronegativity and cation exchange capability,
resulting in a decrease in MB adsorption. Oxygen anions SO4%~, PO,3~, and CO3%~ also
heavily disturbed the adsorption of MB on account of their occupation of the active Fe center
and hydrogen (—COOH and —OH) by complexation and hydrogen bondings. By contrast,
these anions slightly disturbed the adsorption of TC as they could bridge it with OMB
by -NH; and -OH groups. Additionally, OMB exhibited displayed good and moderate
adsorption capabilities for MB and TC in domestic wastewater, respectively. Thus, OMB
should be a potential adsorbent for the removal of MB and TC in industrial wastewater.
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Figure 5. Effect of co-existed mineral (a,b): 1/2 g/L, pH =5, 25 °C, 48 h; the adsorption capability
in the mixture solution of MB and TC (c): 100 mg/L MB + 100 mg/L TC, 1/2 g/L, pH =5, 0.25 °C;
recycle of OMB (d,e): pH =5,25°C, 24 h.

3.2.4. Competitive Adsorption Behavior of MB and TC

The adsorption behavior of OMB was also evaluated in the binary system of MB
(Figure 5c). The adsorption of MB and TC decreased simultaneously as limited active
adsorption sites participated in the adsorption of either MB or TC. Even though MB
(C16H1sN3CIS (319.85 g/mol)) had a lower molecular weight than TC (CyH4N,OgeHCl
(480.90 g/mol)), its adsorption was still much higher than that of TC, probably because of
its additional cation exchange with OMB. This was consistent with the adsorption result in
single solutions of MB and TC. Thus, the cation exchange of MB was less influenced by TC,
probably owing to the stronger exchangeability of -COOK and -OK on OMB.

3.2.5. Recycle of Magnetic Biochar

To recycle OMB, different regenerants were employed to desorb MB and TC. MB was
desorbed in several solvents, including aqueous HCI (0.1 M), ethanol, acetonitrile, and a
mixture of ethanol and acetic acid (9/1 v/v). The regeneration was the best in the mixture
of ethanol and acetic acid and led to the decrease in adsorption capability for MB from
126.45 mg/g to 55.93 mg/g for the first time (Figure 5d). Low adsorption capability was
achieved after the first recycle. Fenton oxidative degradation was investigated to desorb TC
using a low concentration of HyO; (0.03%). The first regeneration resulted in the reduction
of adsorption capability from 64.86 mg/g to 39.68 mg/g (Figure 5e), and the adsorption
capability diminished to 20.60 mg/g after four times recycle.

3.2.6. Fixed Bed Column Adsorption

To further assess the industrial applicability of the biochars, a continuous adsorption
study was carried out. The breakthrough curves of PB and OMB are depicted in Figure 6.
For PB, the adsorption ratio of MB gradually decreased with sampling time at a concentra-
tion of 25 mg/L, whereas that of TC decreased rapidly at a relatively low concentration
(10 mg/L). A similar result was also achieved for the adsorption of them at high concen-
trations (MB: 500 mg/L, TC: 150 mg/L) by OMB. The adsorption data could be suitably
simulated by Thomas and Yoon-Nelson models [10,35] (see Supplementary Materials). The
maximum adsorption capacities of OMB calculated by the Thomas model were much larger
than that of PB. Compared to PB, OMB had longer and comparable breakthrough times (t)
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of 50% (C;/Cyp = 0.5) for MB (1.97 min vs. 0.88 min) and TC (0.39 vs. 0.38) even at higher
concentrations, indicating that ball-milled K,FeOy could efficiently improve the adsorption
capability of mangosteen shell biochar for industrial application.
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Figure 6. Fixed column adsorption curves ((a,b): PB, (c,d): OMB.) of biochars (pH = 5, 25 °C).

3.2.7. Adsorption Mechanism of OMB

As TC primarily existed in the form of electrically neutral molecule TC* at pH = 5 [35],
electrostatic interaction should be ruled out in its adsorption. OMB and TC were rich in
functional containing groups (including C=0, C-O-C, -OH, and -NH)y), so they could
interact with each other through hydrogen bonding. Moreover, hydrogen bonding and
coordination of TC with iron oxides and hydroxides should be involved in the adsorption.
For MB, hydrogen bonding and complexation of N on MB with hydroxyl and iron of
OMB should be involved in the adsorption. Cation exchange and electrostatic interaction
could also participate in the adsorption of MB as a certain amount of COOK and -OK
were observed, and a negatively charged surface was obtained for OMB. Additionally, a
high aromatic structure was generated on OMB, so - electrostatic interaction should
be involved in its adsorption for MB and TC. Therefore, carbon matrix and iron species
simultaneously contributed to the adsorption of OMB toward MB and TC.

4. Conclusions

Ball-milling assisted K;FeO4 modification succeeded in efficiently oxidizing pris-
tine biochar and impregnating magnetic y-Fe;O3 within a short time. Various oxygen-
containing groups such as -OH, C=0, and C-O-C were introduced with nonmagnetic iron
oxides; meanwhile, the specific surface area and pore volume were significantly enhanced.
The magnetic biochar displayed much higher adsorption capacities for MB and TC than the
pristine biochar with good saturation magnetization. It can also efficiently remove them at
low concentrations from an aqueous solution. Oxygen-containing groups and iron species
collaborated with each other for their adsorption. This would provide an efficient and low
energy-consumed approach to preparing magnetic biochar for the removal of MB and TC
in an aqueous solution.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/su14159349 /51, Table S1: The fitted parameters of adsorption kinet-
ics; Table S2: The fitted parameters of adsorption isotherms; Table S3. The fitted parameters of fixed bed
column adsorption.
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