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Abstract: Highway construction projects are important for financial and social development in the
United States. Such types of construction are usually accompanied by construction delay, causing
liquidated damages (LDs) as a contractual provision are vital in construction agreements. Accurate
quantification of LDs is essential for contract parties to avoid legal disputes and unfair provisions
due to the lack of appropriate documentation. This paper effort sought to develop an ensemble
machine learning technique (EMLT) that combines algorithms of the Extreme Gradient Boosting
(XGBoost), Categorical Boosting (CatBoost), k-Nearest Neighbor (kNN), Light Gradient Boosting
Machine (LightGBM), Artificial Neural Network (ANN), and Decision Tree (DT) for the prediction
of LDs in highway construction projects. Key attributes are identified and examined to predict the
interrelated correlations among the influential features to develop accurate forecast models to assess
the impact of each delay factor. Various machine-learning-based models were developed, where
the different modeling outputs were analyzed and compared. Four performance matrices such as
Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error
(MAPE), and Coefficient of Determination (R2) were used to assess and evaluate the accuracy of the
implemented machine learning (ML) algorithms. The prediction outputs implied that the developed
EMLT model has shown better performance compared to other ML-based models, where it has the
highest accuracy of 0.997, compared to the DT, kNN, CatBoost, XGBoost, LightGBM, and ANN
with an accuracy of 0.989, 0.988, 0.986, 0.975, 0.873, and 0.689, respectively. Thus, the findings of
this research designate that the EMLT model can be used as an effective administrative decision
adding tool for forecasting the LDs. As a result, this paper emphasizes ML’s potential to aid in
the advancement of computerization as a comprehensible subject of investigation within highway
building projects.

Keywords: sustainable highway construction; liquidated damages; prediction; machine learning;
ensemble models

1. Introduction

Highway facilities are a significant transportation mode for passengers and goods.
For instance, the United States has one of the most sophisticated highway networks,
spanning 1.3 million miles. Highway utilization has progressively augmented over the
years with the development in connectivity between counties within the state. More than
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343,600 thousand daily vehicle miles traveled in 2019 compared with 296,263 thousand
miles in 2014 [1].

It is indispensable for highway project contract parties to ensure timely construction
within the constricted accomplishment period. Unfortunately, though, construction activi-
ties regularly interfere with traffic disturbances from detours and lane closings. Although
the US transportation department and the other involved parties seem to distinguish
that traffic interferences are inevitable in construction projects, their influences on project
delivery can still be controlled and minimalized.

Thus, the LDs are considered reasonable reimbursement for the project owner to en-
sure the tangible damages that probably will be demanded through legalized arrangements
for construction completion beyond the contractual project duration. In addition, many
aspects (i.e., environment, public mobility, economy, access, and safety) are affected by the
transportation project’s duration [2]. However, the planning stage for estimating the con-
struction time and all relevant development stages had not received sufficient attention [3].
Using linear regression modeling, a study has offered a proposed model to handle this issue
with three features to estimate the highway project duration [4]. Moreover, planar flow-
based variational auto-encoder prediction model has been proposed to decrease the data
bias and overfitting [5]. In the same vine, XGBoost technique was applied to enhance the
driving evaluation and risk prediction, by selecting the most important related features [6].

Claims management is a critical need for construction project success [7], especially
in large and complex projects (i.e., megaprojects) [8,9]. Therefore, claim management
performance criteria have been proposed to enhance the claiming management process
positively. In addition, interviews have been conducted to enhance the efficiency of claims
management. As a result, there is an urgent need to monitor the additional cost confirmed
by project agents and LDs issues [10]. LDs is considered a significant feature in managing
material procurement and storage [11].

Contract parties specify a pre-evaluated quantity of damage documented within the
contract itself. Such measures are critical to comprise a contractual procedure instigated
to recover these additional expenditures from the contractor as an alternative to actual
damages [12,13]. The concurrent delay caused by subcontractors themselves or between the
main contractor and other subcontractors was discussed. How to logically distribute these
damages between contractors and sub-contractors in terms of liability [14]. Alternatives
to the financing process were addressed in the construction project to effectively reduce
financing expenditures and avert LDs using the cash flow prediction model [15]. Project
delay can lead to an increase in the overall project cost due to the LDs [16,17].

A comprehensive analysis of policies and laws was undertaken by considering several
relevant aspects (i.e., LDs, conflict resolution, time extension issues, change orders, and
circumstance site conditions) to compare the US federal acquisition regulation (and the
Saudi public works contract from an international contracting perspective. This study
provides the literature with integrated insight to properly understand and reduce potential
risks once large contractors engage with international contracts [18]. A comprehensive
survey and targeted interviews were conducted considering the LDs effect for the investi-
gation of all possible alternative highway contracting using Department of Transportation
(DOT) data [19]. Twenty-three private–public partnerships were examined for all potential
conflicts of interest regarding public sector authority and franchisor empowerment in
United States highway projects. The study shows various techniques have been applied
to observe concessionaire behavior rather than empowering them in the public-private
partnership [20].

In general, the LDs can be thought of as accurate delay compensation fees that must
be paid to the owner [21,22]. The LDs that can be afforded by insurance companies in terms
of predictable loss have been estimated using a case study. However, the estimated error
in determining the LDs was significantly high when applying this estimate to other cases
where they had just established their model by adopting only one case study. Thus, this
is not adequate for inclusive use [23]. For example, the I-95 express lanes project, the LDs
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consequence has been illustrated using (VDOT 2012); The government has the authority
to levy USD 5000 in LDs for each day that the officially declared final decision for project
completion is not released [24].

Highway construction projects normally face delays in its delivery. Such wasted time
significantly affects the projects’ sustainability. As it has ripple impacts on the main project
objective functions (i.e., time, quality, safety, cost, and combined LDs). In such cases, having
an accurate LDs prediction is vital for decision makers, where prospective conflicts amongst
stakeholders can be avoided. Thus, a comprehensive model that considers all compelling
circumstances and constraints is critically required to adapt with the construction project
dynamic situations (i.e., generic prediction model). In the related model available in
the literature, the actual damage is estimated, which may be much greater or less than
the liquidated amount written in the relevant contract clause. To this end, few papers
have investigated the LDs prediction. However, to the best of the authors’ knowledge, a
limited number of ML-based LDs prediction models are available in the literature. Such
investigations have not provided a well-defined and described analysis of the forecasting
process, where only a few influential attributes were considered, and preliminary prediction
tools were employed. Accordingly, the need to estimate the actual liquidated amount has
become a critical issue that must be addressed in construction projects.

The current study creates a combined ML-based forecasting models for the prediction
of LDs. Datasets developed during a 15-year data gathering procedure for hundreds of
highway building projects collected on their contractual LDs were used for training and
testing. According to the recent research available within the literature and using up-to-
date pre- and post-processing techniques, the most influential attributes that affect the
LDs prediction were chosen and defined. These factors are the net change order amount,
bid days, total bid amount, road system type, auto liquidated damage indicator, pending
change order amount, total adjustment days, and funding indicator. Using a complex
assembled model and being generic, while considering all influential factors provide the
proposed model with a step forward in the LDs prediction arena. Moreover, the current
study findings can be incorporated into broader ongoing research to offer a decision support
tool for modernizing the LDs estimation strategies worldwide.

2. LDs Prediction Methodology

The current research paper is structured as follows. First, the latest research efforts
related to LDs prediction and ML-based forecasting models related to the literature are
comprehensively illustrated. Then, the data collection, processing phases, and critical
attributes considered in LDs predictions were illustrated. In addition, the research method-
ology is presented, where various utilized ML techniques (i.e., XGBoost, CatBoost, kNN,
LightGBM, ANN, DT) are explained and then combined. After that, various modeling
results are presented and thoroughly discussed, where prediction accuracy is evaluated and
compared using several performance indecencies (i.e., MAPE, RMSE, MAE, R2). These
evaluation metrics were computed to assess the proposed models’ efficiency and validity.
The coefficient of determination R2 embodies the precision of the forecast. Thus, for R2

closer to one, additional forecast precision is acquired. The MAPE, the RMSE, and the
MAE are standard measures to assess the prediction accuracy with continuous dependent
attributes, where they offer awareness about the forecast’s potential errors. Finally, the
research conclusion along with future research recommendations are listed. The devel-
oped prediction models showed high accuracy with distinguished capabilities for LDs
forecasting the highway projects. Results are anticipated to play a vital role in eradicating
possible struggles amongst contract parties, particularly when decision-makers tackle dif-
ferent complications and challenges in assessing the actual LDs. For more illustrations, the
methodology flowchart was carried out in Figure 1.
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Figure 1. Methodology flowchart of LDs prediction.



Sustainability 2022, 14, 9303 5 of 23

3. Data Processing and Analysis
3.1. Data Collection and Features Selection

The data were collected between 2006 and 2021 from the DOT in Florida, US. Where
the DOT is a vital component for tracking the relevant dataset and the specific features of
highway construction projects. For the analysis process to be more appropriate, the data
was imported into MS Excel. The data appear to be a promising clue that gives a proper
visualization to LDs, which is considered a critical factor that undergoes the project’s
stakeholders to tense. The gathered data was related to the major categories of the road
systems such as federal highway, interstate, county highway, state highway, rural roads,
district roads, and village roads.

The gathered data provides a clue to visualize the projects’ variables and their descrip-
tion. Data collection transformation took about 10 months to ensure that the accumulated
datasets were appropriate and representative of the ML models’ technique. The study
factors of LDs were represented by the main attributes needed to improve the usefulness
and efficiency of the developed model.

Feature selection is used to identify the most important inputs or attributes that
will affect model prediction. This strategy is necessary for the success of the study, and
it is an important aspect of ML to assure the creation of highly linked features [25,26].
Feature selection reduces the number of input variables to those that are deemed to be most
essential to the accuracy of the prediction model. The most influential elements have been
picked to launch the LDs prediction models based on common information, the available
literature, DOT requirements, and construction project professionals. The crucial factors
were considered (i.e., net change order amount, bid days, total bid amount, road system
type, auto liquidated damage indicator, pending change order amount, total adjustment
days, and funding indicator).

LDs are determined by several interconnected elements that have a latent influence on
their value. Thus, during the prediction process itself, the feature importance is estimated
and the models’ priorities from a factor selection point of view are updated accordingly.
To consider the integral integrated relationship form algorithms, all LD properties must
be fully identified to enable appropriate collection. To match the model input or enhance
analytical precision, any features demand a transformation step. The model gets more
generic and simpler by utilizing fewer functions, boosting its accuracy. Some associated
features have been picked to begin the LDs prediction model based on common information,
the available literature, and professionals in building projects. Furthermore, a wrapper
approach (backward elimination) selected the relevant feature by using its performance
as an assessment criterion. Where an iterative procedure is used to reduce the model’s
lowest performing features until the total accuracy of the model reaches an acceptable
range [27]. The p-value is the performance parameter utilized in this study to evaluate
feature performance, and features with a p-value of 0.05 or less are deleted. These variables
play a significant role in the estimation process of LDs of road projects. Figure 2 shows the
description of the eight influential dependents (X1 to X8) and one independent feature (Y).

3.2. Data Pre-Processing

Pre-processing the data is a crucial step for managing the data before using ML
algorithm. This step is required due to the need for data suitable for ML techniques. The
data-selection process leads to choosing a key parameter for LDs estimation.

Thus, Table 1 shows the numerical and independent features’ statistical measurements
for the real collected data. Moreover, the scatterplot matrix for the full features is illustrated
in Figure 3.
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Figure 2. Key features description of LDs prediction.

To enhance the model stability, data pre-preparation should be conducted. Several
measures are needed for this process, such as data noise, normalization, outlier cleaning,
standardization, conversion, and usual assortment. For pre-processing the datasets, the
outliers must be excluded firstly, which is since outliers could reduce the efficiency of the
model when using ML techniques. Additionally, in this process, data normalization is
highly required. Moreover, data filtering is conducted by employing an interquartile range
to detect the extreme and outlier values. Boxplots, for example, have been chosen as a
graphical method for eliminating the outliers. The “Null” indicator concept was employed
for missing value representation and elimination. Consequently, a little quantity of missing
data necessitated pre-processing (i.e., 8.9% of the initial database). The average and median
values of pertinent attributes were used to replace the missing data points. The previously
stated phases within the pre-processing step have a positive impact of the dataset readiness
for the ML-based prediction phase.
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Table 1. Descriptive statistical analysis for numerical variables of LDs dataset.

Descriptive Statistics Bid Days Total Bid
Amount (USD)

Net Change
Order Amount

Pending Change
Order Amount

Total
Adjustment

Days

Liquidated
Damages Rate

Amount

Mean 240 4,913,469 180,628 995 55 2125

Mode 150 600,000 0 0 0 1148

Standard Deviation 239 16,495,664 1,139,190 48,564 80 4119

Kurtosis 8 225 351 2472 17 86

Skewness 3 12 16 50 3 8

Q1 (25-th) 90 357,957 0 0 9 758

Q2 (50-th) 160 1,126,793 0 0 26 1148

Q3 (75-th) 290 3,274,002 38,419 0 67 1914

Figure 3. Scatterplot matrix of the LDs variables.

After that, the transformation (from categorical feature into numerical feature) process
will ensure convergence and a smooth modeling system. One-Hot Encoding is used to
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execute the transition [28]. Despite this, label encoding is straightforward, but algorithms
can misread numeric values, since they include a hierarchical class. This ordering problem
is handled through another popular alternative strategy known as ‘One-Hot Encoding’.
Each category value is translated into a new column and assigned a 1 or 0 (notation for
true/false) value to the column in this method. For example, the property feature categories
can be encoded into numerical values, such as 100, 010, and 001 for road system type, auto
liquidated damage indicator, and financing indication, respectively. Table 2 shows how to
use the One-Hot Encoding to turn the categorial property attribute into a number attribute.
As a result, the entire database is converted only to contain the numerical values for
all attributes.

Table 2. Transforming categorical property into numerical attribute via One-Hot Encoding.

Features Road System Type Auto Liquidated Damage Indicator Funding Indicator

Road System Type 1 0 0

Auto Liquidated Damage Indicator 0 1 0

Funding Indicator 0 0 1

3.3. Correlation Coefficients (CC)

The (CC) is used to boost the relationship between two variables by providing a linear
relationship between two variables. r(X, Y) is applied to calculate a numerical degree of
the linear relationship between two variables (X, Y) as shown in Equation (1).

r(X, Y) =
Cov(X, Y)

δXδY
(1)

where Cov(X, Y), δX , and δY can be calculated, as shown in Equations (2)–(4), respectively.

Cov(X, Y) =
1
N

N

∑
i=1

(xi − x)(yi − y) (2)

δX =
1
N

N

∑
i=1

(xi − x)2 (3)

δY =
1
N

N

∑
i=1

(
Yi − Y

)2 (4)

The set of the input and output of the proposed model can be represented by
i = 1, 2, 3, . . . , N for (xi, yi). In terms of Equation (1), the results will be three cases:
(1) if r(X, Y) = 0, which means no linear correlation between input (X) and output (Y),
(2) r(X, Y) > 0, which means a sturdy linear relationship between those variables, and
(3) r(X, Y) < 0, which means a sturdy reverse linear relationship between those variables.
Thus, it is spirited to illustrate the relationship between features and assign the pairs with
high positive or negative correlations. Hence, features are being defined as the Pearson
coefficient into expressions; correlation rates close to one are robust and explicit correlations
between the two attributes. Otherwise, the correlation values near −1 appear robust yet
are the inverse correlation between the two features. For example, the total bid amount
and bid days features have a correlation value of 0.6, indicating that the bid days increase
as the total bid amount increases. This positive correlation means a higher LDs value.

Conversely, total bid amount and road system type features have a correlation estimate
of −0.19, demonstrating the opposite impact on each other. Yet, both factors have a positive
impact on the LDs value. Such an illustration represents the importance of generating a
heatmap that shows the interconnected relation amongst the considered attributes. Figure 4
shows the correlation between the different features.
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Figure 4. Features correlation.

4. ML Techniques

ML techniques were employed individually to estimate the LDs before being com-
bined in this study. To evaluate the efficacy of the suggested ML algorithm, training and
testing processes were also carried out. The training section comprises 70% of the dataset
required to train the developed model, while the testing portion comprises 30% of the
dataset needed to carry out the testing operation. Then, 5-k-fold cross-validation was used
to ensure the durability and effectiveness of the presented forecast ML-based models.

4.1. Extreme Gradient Boosting (XGBoost)

XGBoost is a tree-based ensemble technique, like the random forest. XGBoost also
incorporates another prevalent approach known as boosting [25], in which successive trees
provide greater weight to samples incorrectly predicted by earlier trees. A weighted vote
of all trees produces the final forecasts [26]. XGBoost acquired its name from the piece of
evidence that it uses a gradient ancestry strategy to reduce loss, while adding together
additional models. By combining the capabilities of these two strategies, XGBoost excels at
tackling supervised learning challenges. The XGBoost architecture is seen in Figure 5.
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Figure 5. The XGBoost construction.

4.2. Categorical Boosting (CatBoost)

CatBoost is another boosting-based ensemble strategy that performs well with data
from several categories [27]. CatBoost, like XGBoost, can handle missing numbers. CatBoost
distinguishes itself using symmetric trees with the same split at each level’s nodes, making
it substantially faster than XGBoost. CatBoost uses the model learned from other data to
compute the residuals for each data point. As a result, each data point receives its own
residual dataset. These data serve as targets, and the general model is trained over a certain
number of iterations.

4.3. k-Nearest Neighbor (kNN)

The kNN method is a simple ML-based technique for classification and regression [28].
The kNN method searches a database for data like the current data. These newly found
data are known as the current data nearest neighbors. To tackle the LDs prediction problem,
a similarity-based categorization might be utilized. As a result, the LDs and test data are
charted into a set of trajectories. Every vector characterizes N dimensions for each related
characteristic. A similarity measure (e.g., Euclidean distance) is calculated to decide. kNN
is also known as lazy learning, since it does not create a model or function in advance and
instead returns the k records from the training dataset that have the highest similarity to
the test (i.e., query record). The class label is subsequently assigned to the query record,
based on a majority vote among the chosen k records. KNN is used to anticipate LDs in
the following way:

(a) Locate the closest neighbors, k.
(b) Ascertain the space amongst the training and query samples.
(c) Sort out the entire training data according to distance values.
(d) Take a majority vote on the class labels of the query record’s k nearest neighbors and

allocate it as a forecast value.
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4.4. Light Gradient Boosting Machine (LightGBM)

Microsoft Research proposed LightGBM, a gradient-boosting DT based on a decision-
tree approach [29]. LightGBM is a powerful approach for dealing with regression and
classification issues [30]. It also uses less memory and produces more accurate forecasts.
LightGBM enhances training while utilizing less memory. It is based on the histogram
approach and the leaf-by-leaf growth strategy of trees. Figure 6 depicts the histogram
decision-tree-based approach. Figure 6 also depicts the development processes at the level
and leaf levels. The level-wise growth strategy splits leave on the same layer simultaneously.
Therefore, it is better to augment various strands to maintain model convolution in self-
control. Furthermore, despite receiving different amounts of information, leaves on the
same layer are processed the same way.

Figure 6. Explanation of LightGBM construction.
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4.5. Artificial Neural Network (ANN)

ANN is a neural network built on a creature’s nervous process technique. The basic
idea behind a neural network (NN) is to generate neurons or nodes that store and process
datasets and connect them with artificial synapses [31]. A neural network comprises many
layers of nodes that communicate with one another. The number of nodes in the input
layer represents the number of attributes that reflect the assessed variables, whereas the
number of neurons in the output layer represents the number of classes. The whole node
takes input from the preceding layer, determines its output, and sends it to the node for the
following layer as shown in Figure 7. When this procedure is repeated, the output layer
nodes may provide the required outcome. The nature of the job and the amount of training
data available dictate the number of neurons and hidden layers. Each neuron in the hidden
and output layers was numerically connected to all the nodes in the preceding layer. The
weight of the two neurons controls the signal’s amplitude that happens between the two
neurons and the ANN’s input, hidden, and output layers.

Figure 7. The construction of the ANN technique.

4.6. Decision Tree (DT)

When used correctly, DT is one of the most routinely and widely utilized ML ap-
proaches, producing accurate results and being simple to understand [32]. To mention
a few applications, DT has been used successfully in character recognition, radar signal
categorization, medical diagnosis, remote sensing, voice recognition, and expert systems.
Developing a model aims to anticipate the target variable value using decision-making
rules derived from data properties. The inputted datasets divide the LDs data into subsets,
and the procedure must be repeated for each subset. For example, a new dataset is required
to compare a root node with a categorization statute that follows the route from the root to
the leaf. This leaf depicts the predicted state of the output characteristic. Figure 8 depicts a
schematic depiction of the DT, a specific form of algorithm representing the ML model,
using a tree-like scheme.



Sustainability 2022, 14, 9303 13 of 23

Figure 8. Decision tree structure for LDs prediction.

4.7. Ensemble Model (EMLT)

The EMLT model was used to improve machine learning results (outcomes) by merg-
ing several models, as shown in Figure 9. Compared to a single model, this strategy enables
a better predictive model. Voting ensemble, or voting classifier, was used to aggregate pre-
dictions from different machine learning algorithms (XGBoost, CatBoost, kNN, LightGBM,
DT) to create more accurate classifiers by combining less accurate ones. It generates a
strong unique learner to address regression and classification issues in the field of machine
learning [33]. As a result, the combination can supplement the separate classifiers’ failures
on various regions of the input space. Thus, the ensemble model’s primary principle is
to mix numerous base learners in generating the final answer rather than depending on a
single model [34]. A voting ensemble calculates the average of numerous other learners
in regression situations (regressor). In general, regressor ensembles strategies optimize
regression issues by combining the objectives using weighted average. The ensemble
output (ŷj) is written in Equation (5).

ŷj =
k

∑
i

ωiλij (1) (5)

where k is number of learners, ωi defines the weight of the ith regressor, λij defines the ith
regressor yield related to the training sample.

The voting-averaged ensemble algorithm merges the outcomes in the subsequent
phases:

1. Categorizing: the regressor outcome λj =
(

λ1j, λ2j, . . . ..λkj

)T
can be split into

c classes
(
Sjn
)

. . . (n = 1, 2, . . . .c) corresponding to various approaches (e.g., (Sj1, Sj2,
. . . ..Sjc) = Classi f ying

(
λj
)
).

2. Voting: corresponding to the majority voting, the
=
n − th class is the leader class, such

as S
j
=
n

= (Sj1, Sj2, . . . ..Sjc).

3. Averaging: the weighted average of the
=
n − th class is measured as the ensemble

outcome equal to the ith sample (e.g., ŷj = Averaging S
j
=
n

).
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Figure 9. Flowchart structure of EMLT model.

5. Result and Discussion

The assessment metric was used to examine the adequacy of the suggested model. It is
vital to assess the efficacy and prognostic capacity of the developed model after evaluating
the primary model assumptions. As indicated in Table 3, four statistical indices (RMSE,
MAE, MAPE, R2) were used to analyze the efficacy of the developed model quantitatively.
If the R2 value approaches one, and the RMSE, MAE, and MAPE values approach zero,
the model’s accuracy and performance will improve.
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Table 3. The arithmetic formula for performance metrics.

Performance
Metrics Equation Symbol Definition

MAE 1
m

m
∑

i=1

∣∣Yi − Yi
∣∣

• Yi: actual (measured) values of the LDs
• Yi : forecasted outcome
• Y : mean of the Yi
• m: number of the datasets utilized

RMSE

√
1
m

m
∑

i=1

(
Yi − Yi

)2

MAPE 1
m

m
∑

i=1

∣∣∣Yi−Yi
Yi

∣∣∣× 100

R2 1 − ∑m
i=1(Yi−Yi)

2

∑m
i=1(Yi−Y)

2

The training procedure on the LDs dataset was carried out using k-fold cross-validations
to assess the ensembled models’ efficacy. Table 4 demonstrates a group of nonoverlapping
and random partitioned folds, utilized as datasets for the training purposes of k = 3, k = 5,
and k = 7, along with their related performance assessment measures. Thus, five-fold
cross-validation had the greatest prediction accuracy. Figure 10 depicts the current model’s
five-fold cross-validation results. It worth mentioning, as indicated in Table 4, the ANN
model was eliminated from the assembly process because of its low accuracy.

Table 4. Performance of different k-folds.

k-Fold
Cross-Validation

Evaluation
Metrics

ML Model

XGBoost CatBoost kNN LightGBM ANN DT EMLT

k = 3

MAE 2.05 1.31 0.98 1.44 8.21 0.96 0.66

RMSE 2.15 1.57 1.06 3.12 10.95 1.07 0.54

MAPE (%) 9.3 7.4 6.8 9.5 39.6 6.7 4.9

R2 96.4 97.4 97.5 85.8 66.9 97.8 99.1

k = 5

MAE 1.15 0.91 0.53 0.88 6.11 0.53 0.32

MSE 2.15 1.57 1.06 3.12 10.95 1.07 0.54

MAPE (%) 6.7 5.5 4.9 6.9 28.1 4.8 3.6

R2 97.5 98.6 98.8 87.3 68.9 98.9 99.7

k = 7

MAE 2.11 1.39 1.02 1.49 8.66 0.99 0.70

MSE 2.24 1.66 1.11 3.37 11.33 1.13 0.60

MAPE (%) 10.1 7.8 7.4 10.4 40.4 7.1 4.9

R2 96.2 97.1 97.1 84.9 66.1 97.5 99.0

Figure 10. Five-fold cross-validation of the ML models.
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Table 5 shows how the proposed ML algorithms utilized in this work must adjust
their hyperparameters to determine the needed time to train the dataset. Herein, such
hyperparameters are to be changed based on the actual dataset. The order in which these
hyperparameters were optimized was dictated by their reciprocal interaction and the
relevance of their effect on the ML model. The LightGBM was also the quickest model,
taking 20 s, whereas the EMLT took 51 s. As a result, the LightGBM was around 0.5 min
quicker than the EMLT. Even though, the EMLT was slower than the LightGBM it has
provided a superior prediction accuracy.

Table 5. Optimization hyperparameters and training times (in seconds) of the ML models.

ML Models Hyperparameters Optimal Parameters

XGBoost

Number of trees 80

Learning rate 0.1

Mamaimum depth 5

Fraction of columns 0.3

Training time 24

CatBoost

Number of iterations 100

Mamaimum depth 2

Training time 21

kNN
Number of neighbors 3

Training time 32

LightGBM

Number of trees 200

Learning rate 0.1

Mamaimum depth 8

Needed leaf count 40

Fraction of columns 0.9

Training time 20

DT

Mamaimum depth 4

Min number of samples
required at leaf node 40

Max number of leaf nodes 10

Min number sample required
for a split 5

Training time 26

ANN

Number of neurons 15

Batch size 32

Epochs 50

Number of hidden layers 2

Activation function ReLU

Training time 41

EMLT
Estimators XGBoost, CatBoost, kNN,

LightGBM, and DT

Training time 51

5.1. ML Models of LDs Prediction Results

This paper intends to comprehensively compare the efficacy of the state-of-the-art
ML algorithms (i.e., XGBoost, CatBoost, kNN, GBM, ANN, DT) with EMLT to predict
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the LDs. Various evaluation metrics (i.e., MAE, RMSE, MAPE, R2) checked the model’s
comparisons to investigate the prediction capability of the developed ML models.

The previously described performance measures are calculated and given in Table 6 for
the entire model. Table 6 shows that the EMLT model outperforms the single models in pre-
dictive performance (i.e., XGBoost, CatBoost, kNN, LightGBM, ANN, DT). The CatBoost
and DT models fared similarly on the training dataset, while the CatBoost model achieved
better performance on the test dataset, as shown in Table 6. The ANN model performed
the worst on the training and test sets alike, with the lowest coefficient of determination
(68.9% and 59.5% on the training and test sets, respectively) and the highest in the rest of
the metrics, such as RMSE (7.65 and 8.46 on the training and test datasets, respectively), as
shown in Table 6. The EMLT model outperformed all other developed models on the train-
ing and test phases alike, as seen by the performing measures in Table 6. The arithmetical
metrics for the EMLT developed model is 95.3% (R2), 1.01 (MAE), 1.13 (RMSE), and 4.1%
(MAPE) on the test dataset, as itemized in Table 6. The coefficient of determination numeric
value for the XGBoost, CatBoost, kNN, GBM, ANN, and DT models was 84.4%, 86.4%,
87.2%, 78.2%, 59.5%, and 87.7%, respectively, matched to R2 value of 95.3% for the EMLT
model developed on the test dataset, as described in Table 6. Figures 11a–f and 12 provide
scatter plots for anticipated (Mpred) against actual (Mact) LDs values, using single ML
and ensemble ML models’ EMLT, respectively. Overall, the created ML models (XGBoost,
CatBoost, KNN, DT, EMLT) demonstrated a 97.5%correlation between LDs’ actual and
projected values during the testing phase. Among the single models, ANN had the lowest
prognostic performance in the training and test sets, while DT had the highest.

Table 6. Evaluation metrics for LDs prediction.

Prediction Models
Training Results Testing Results

R2(%) MAE RMSE MAPE(%) R2(%) MAE RMSE MAPE(%)

XGBoost 97.5 1.15 1.23 6.7 84.4 1.25 1.73 9.6

CatBoost 98.6 0.91 0.98 5.5 86.4 1.20 1.61 6.6

kNN 98.8 0.53 0.59 4.9 87.2 1.19 1.56 6.5

LightGBM 87.3 0.88 2.04 6.9 78.2 1.49 2.05 10.3

ANN 68.9 6.11 7.65 28.1 59.5 6.78 8.46 20.7

DT 98.9 0.53 0.59 4.8 87.7 1.14 1.53 6.3

EMLT 99.7 0.32 0.37 3.6 95.3 1.01 1.13 4.1

However, the DT model requires improvement because its R2 in the testing procedure
for LDs prediction was 87.7%. As shown in Figure 12, the predicted value of the testing
and training processes is tightly centered on the 45-degree diagonal line, which displays a
complete matching among the predicted and corresponding actual values in the testing
and training datasets. Furthermore, as shown in Table 6, the proposed ensemble model
EMLT resulted in a significant correlation between the predicted and actual, as indicated
by the coefficient of determination, R2 ≥ 95.3%, in both phases (i.e., testing and training).
As a result of this discovery, the suggested ensemble model EMLT successfully forecasts
the LDs, as shown in Figure 12.
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Figure 11. Actual versus predicted values of LDs.
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Figure 12. Actual versus predicted values of LDs based on ensemble models (EMLT).

5.2. Feature’s Importance Analysis

We do feature significance analysis based on the EMLT after developing the EMLT
model with the eight features to predict LDs. Figure 13 depicts these traits in descending
order of significance. In this part, we take the feature significance analysis a step further.
The contribution of each feature to increasing the prediction performance of the overall
model is referred to as feature significance. It can intuitively reflect the relevance of features
and observe which characteristics significantly affect the final model, but it is hard to
determine how the feature and the final forecast are related.

Figure 13. Representation of features’ importance.

The total bid amount, bid days, and net change order amount are the three most
significant factors, as shown in Figure 13. In contrast, the pending change order amount
and financing indication are the least relevant parameters for predicting LDs using the
suggested EMLT model. Figure 13 does not reveal whether these characteristics have
positive or negative correlations with LDs or whether they have other more complicated
associations. Figure 14 depicts the distribution of Shapley values for every attribute
throughout the whole dataset.
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Figure 14. Overall illustration of features’ importance.

Each point in this diagram signifies a Shapley value for an attribute and a unique
reflection in the dataset. Each dot on the x-axis indicates a Shapley value for each factor,
indicating the effect of each component on the LDs, while the y-axis lists the factors in
order of significance. The higher the value of the feature is, the redder the color, and the
lower the value of the feature is, the bluer the color. We can see from Figure 14 that the total
bid amount is an essential aspect, and it is largely positively connected with LDs.

Bid days, net change order amount, and financing indicators are also good predictors
of LDs, so raising the values of these variables can improve LDs prediction. Pending change
order quantity and road system type are inversely connected with LDs, and the lower the
values of these characteristics are, the better the model’s prediction. Other characteristics
do not affect LDs.

During the 15-year study period, the departments of transportation all over the US
have collected around 3500 distinct highway construction projects, with eight early speci-
fied characteristics to construct a model with a flexible concept to deal with all the types
of factors that might arise in the future. Furthermore, the suggested model may be con-
structed with new road forms that must be handled. Eight road system data variables
were employed as predictor factors for highway development projects to generate hybrid
machine learning models to forecast the associated liquidated damages.

The modeling prediction results are intended to contribute to developing a comprehen-
sive long-term framework, for estimating the presently enacted highway code requirements
and prosecution processes enlightened by the findings of this study. As a result, the pro-
posed model gives the scientific capability for the decision-maker to evaluate these conflicts
in such a setting. Furthermore, they would be given sufficient information regarding
the disagreement.

This disagreement was identified as a critical obstacle that needs to be solved to finish
a motorway project. Contractors aim to reduce their expenditures due to late task execution
by keeping the owner responsible as the principal cause of late delivery/task execution.
However, the expected income might change at any time. Whereas, if the contractors
are not entirely aware of the expenditures and time compensation, the business may go
bankrupt due to LDs. According to contract law, the time required to finish a highway
project must already be established. Therefore, contractors would be held accountable for
such a delay. This approach was created to assist decision-makers in dealing with any LDs
difficulties that significantly impede project progress. Thus, it is imperative to develop
technological and research-based tools (e.g., machine and deep learning, optimization,
and decision support tools) that can be practically used to pave the road towards creating
comprehensive guidelines and policies to minimize the financial claims in the construction
industry and foster the automation in the construction management arena [35–46].
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6. Conclusions

The current study proposed six modified ML models for forecasting LDs, while a
hybrid model was developed via a systematic combination of the crated individual models
adopted with the EMLT model. The obtained results from each individual ML model can
be classified as satisfactory, i.e., the EMLT had an accuracy of 0.997, compared to the DT,
kNN, CatBoost, XGBoost, and LightGBM, with an accuracy of 0.989, 0.988, 0.986, 0.975, and
0.873, respectively. However, to reach maximum prediction accuracy, it was found that
the developed model’s fusion is vital to enhance the forecasting results. According to the
analysis results, the most critical eight independent indicators for forecasting LDs are road
system type, bid days, finance indicator, total bid amount, net change order amount, auto
liquidated damage indicator, total adjustment days, and pending change order amount.
Nevertheless, the four most significant attributes were the overall bid amount, bid days,
net change order amount, and type of road system.

Since LDs are often calculated as a percentage of the entire venture expense, the impact
of the total bid amount may be explained. As a result, the LDs are likely to rise as the
entire project cost rises. In addition, the circumstance clarifies the impact of bid days
that venture length has a significant impact on LDs, since projects with extended periods
have higher costs. Additionally, the amount of the net change order plays a vital role in
determining the LDs. Thus, the net change order amount has a positive relationship with
the LDs. This can be explained by the fact that contractors gain high revenues from the
projects’ change orders, without considering their impact of the project timeline. Thus,
more change orders are expected to cause extensive delays that are associated with high
values of the LDs. Ultimately, the impact of the type of road system may be clarified by the
fact that the highway system represents an essential part in establishing the regulations
and guidelines that the organization that supports the project implements. Furthermore,
federal requirements must ensue when the venture is a federal or interstate road, whereas
state standards must be observed for state and county roads. On the other hand, the total
adjustment days might not be utilized to forecast LDs since some of these modifications are
the consequences of change orders according to the owner’s specifications, and developers
are not held accountable for delays caused by the owner’s specifications. Consequently,
the outcomes of such requests are very uncertain. Moreover, the auto liquidated damage
indicator, funding indicator, and pending change order amount have minimal impact of
the LDs prediction process.

A rudimentary EMLT model improved the LDs prediction in numerous situations.
With better prediction performance matrices, the developed EMLT model had outper-
formed each individually created model. Using the same comparison criteria, the descend-
ing order of the developed models’ accuracy is EMLT, DT, KNN, CatBoost, XGBoost,
LightGBM, and ANN, respectively.

The proposed hybrid LDs prediction model (i.e., EMLT) will most likely benefit
decision-makers by predicting LDs. The managerial impact of the developed model is
expected to pave the way towards broader long-term context for assessing the available
enacted highway construction code requirements and prosecution processes informed
by the conclusions of the current research. Consequently, the developed model provides
the systematic capacity for decision and policymakers to assess these inconsistencies in
such cases.

As a future research recommendation, data collection and recording procedures might
be improved, as exact and comprehensive data are vital to forecasting LDs correctly. In addi-
tion, more holistic prediction modeling might be conducted according to further advanced
algorithms, after being fused with technological tools (e.g., Building Information Modeling
(BIM), Digital Twin, Internet of Things (IoT), and Blockchain) which might be utilized to
automatically forecast the liquidated damages for various types of construction projects.
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