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Abstract: Demand forecasting is a crucial component of demand management. While shortening the
forecasting horizon allows for more recent data and less uncertainty, this frequently means lower data
aggregation levels and a more significant data sparsity. Furthermore, sparse demand data usually
result in lumpy or intermittent demand patterns with irregular demand intervals. The usual statistical
and machine learning models fail to provide good forecasts in such scenarios. Our research confirms
that competitive demand forecasts can be obtained through two models: predicting the demand
occurrence and estimating the demand size. We analyze the usage of local and global machine learning
models for both cases and compare the results against baseline methods. Finally, we propose a novel
evaluation criterion for the performance of lumpy and intermittent demand forecasting models. Our
research shows that global classification models are the best choice when predicting demand event
occurrence. We achieved the best results using the simple exponential smoothing forecast to predict
demand sizes. We tested our approach on real-world data made up of 516 time series corresponding
to the daily demand, over three years, of a European original automotive equipment manufacturer.

Keywords: demand forecasting; lumpy demand; supply chain agility; smart responsive manufactur-
ing; artificial intelligence; machine learning; industry 4.0; CatBoost

1. Introduction

Demand forecasting is a critical component of supply chain management, directly
affecting production planning and order fulfillment. Accurate forecasts have an impact
across the whole supply chain and affect manufacturing plant organization: operational
and strategic decisions are made regarding resources (the allocation and scheduling of raw
material and tooling), workers (scheduling, training, promotions, and hiring), manufactured
products (market share increase and production diversification), and logistics for deliveries.

To issue accurate forecasts, we have to consider demand characteristics (Kim et al. [1]
and Moon et al. [2]). Multiple demand characterizations have been proposed (Williams [3]
and Johnston et al. [4]), and one of the most influential is the characterization proposed
by Syntetos et al. [5], which divides demand patterns into four quadrants based on the
inter-demand interval and the coefficient of variation. The four demand types are smooth
(regular demand occurrence and low demand quantity variation), erratic (regular demand
occurrence and high demand quantity variation), intermittent (irregular demand occurrence
and low demand quantity variation), and lumpy (irregular demand occurrence and high
demand quantity variation). Intermittent and lumpy demand problems are considered
among the most challenging demand forecasting problems (Amin-Naseri et al. [6] and
Mukhopadhyay et al. [7]). Both present infrequent demand arrivals with many zero-demand
periods; these factors pose an additional challenge to accurate demand quantity estimation.
Demand quantity estimation is harder for lumpy demand since it also presents variable
demand sizes (Petropoulos et al. [8] and Bartezzaghi et al. [9]). Nevertheless, intermittent
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demand items account for considerable proportions of any organization’s stock value
(Babai et al. [10]). Furthermore, for a use case described by Johnston et al. [11], it was found
that 75% of items had a lumpy demand and accounted for 40% of the company’s revenue
and 60% of stock investment. Along this line, Amin-Naseri et al. [6] cite multiple authors
who observe that lumpy patterns are widespread, especially in organizations that hold many
spare parts, such as the process, aviation, and automotive industries, as well as companies
dealing with telecommunication systems, large compressors, and other examples.

Increasing industry automation, digitalization, and information sharing (e.g., through
electronic data interchange software), fomented by national and regional initiatives
(Davies [12], Glaser [13], and Yang et al. [14]), accelerates the data and information flow
within an organization, enabling greater agility. Therefore, it is critical to develop demand
forecasting models capable of providing forecasts at a low granularity level to achieve
greater agility in supply chain management. Such models enable short forecasting horizons
and provide insights at a significant level of detail, allowing organizations to foresee and
react to changes quickly. However, while these forecasting models benefit from the most
recent data available (which helps enhance the forecast’s accuracy), the low granularity
level frequently requires dealing with irregular demand patterns (Syntetos et al. [15]).

Given the variety of demand types, researchers have proposed multiple approaches to
providing accurate demand forecasts. While smooth and erratic demand patterns achieve
good results using regression models, intermittent and lumpy demand require specialized
models that consider demand occurrence. Statistical, machine learning, and hybrid models
have been developed to that end. The increase in industry digitalization enables the timely
collection of data relevant to demand forecasts. Data availability is critical for developing
machine learning models, which sometimes achieve the best results.

To deal with intermittent demand, Croston [16] proposed a forecasting model that
provides separate estimates for demand occurrence and demand quantity. Since then, much
work has followed this direction. The measurement of intermittent and lumpy model
performance has also been the subject of extensive research. Many authors agree that
we require regression accuracy and inventory metrics. Furthermore, there is increasing
agreement that regression metrics alone, used for smooth and erratic demand, do not help
measure intermittent and lumpy demand since they fail to weigh zero-demand periods.
Inventory metrics suffer the same bias while providing a perspective on how much time
products stay in stock.

Croston’s intuition in separating demand occurrence from demand sizes was valuable.
While many authors followed this intuition, we found that in the reviewed literature, no
author fully considered demand forecasting as a compound problem that required separate
models and metrics. We propose reframing demand forecasting as a two-phase problem
that requires (i) a classification model to predict demand occurrence and (ii) a regression
model to predict demand sizes. Classification can be omitted for smooth and erratic demand
patterns since demand (almost) always occurs. In those cases, using only a regression
model provides good demand forecasts (Briihl et al. [17], Wang et al. [18], Sharma et al. [19],
Gao et al. [20], Salinas et al. [21], and Bandara et al. [22]). For intermittent and erratic
demand patterns, using separate models for classification and regression provides at least
two benefits. First, separate models allow optimization for different objectives. Second,
each problem has adequate metrics, and the cause of performance or under-performance
can be clearly understood and addressed.

In this research, we propose:

1.  Decoupling the demand forecasting problem into two separate problems: classification
(demand occurrence) and regression (demand quantity estimation);

2. Using four measurements to assess demand forecast performance: (i) the area un-
der the receiver operating characteristic curve (AUC ROC) (Bradley [23]) to assess
demand occurrence, (ii) two variations of the mean absolute scaled error (MASE)
(Hyndman et al. [24]) to assess demand quantity forecasts, and (iii) stock-keeping-
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oriented prediction error cost (SPEC), proposed by Martin et al. [25] as an inventory

metric;

3. A new demand classification schema based on the existing literature and our research
findings.

We compared the statistical methods proposed by Croston [16], Syntetos et al. [26],
and Teunter et al. [27]; the hybrid models developed by Nasiri Pour et al. [28] and Wille-
main et al. [29]; the ADIDA forecasting method introduced by Nikolopoulos et al. [30];
an extreme learning machine (ELM) model proposed by Lolli et al. [31]; and the VZ,g;
model described by Hasni et al. [32]. We measured their performance using classification,
regression, and inventory metrics. We also developed a compound model that outperforms
the ones listed above.

We performed our research on a dataset consisting of 516 time series of intermittent
and lumpy demand at a daily aggregation level, corresponding to the demand of European
manufacturing companies related to the automotive industry.

The rest of this paper is structured as follows: Section 2 presents related work, Section 3
describes our approach to demand forecasting, with a particular focus on intermittent and
lumpy demand, Section 4 describes the features we created for each forecasting model,
as well as how we built and evaluated them, and Section 5 describes the experiments we
performed and the results obtained. In Section 6, we provide our conclusions and outline
future work.

2. Related Work
2.1. Demand Characterization

Many authors have tried to characterize demand to support stock management, de-
termine material planning strategies, and provide cues to decide which forecasting model
is most appropriate for each case. A common practice is to classify products into three
categories (ABC) according to their cost-volume share: A usually includes items with
a large cost-volume share, B is for items with a moderate cost-volume share, and C is
for items with a low cost-volume share (Flores et al. [33]). Another three categories are
proposed by the FSN approach, which divides products according to their demand velocity
into the fast-moving, slow-moving, and non-moving categories (Mitra et al. [34]). XYZ
categorization divides items according to their fluctuations in consumption: X for items
with almost constant consumption, Y for items with consumption fluctuations (due to
trends or seasonality), and Z for items with irregular demand (Scholz-Reiter et al. [35]).
Botter et al. [36] mention the VED approach, where products are divided into a different
set of categories: vital parts (that cause high losses if not present in stock), essential parts
(that cause moderate losses if not available in stock), and desirable parts (that cause minor
disruptions to the manufacturing process if not present in stock). ABC categorization has
been used jointly with several of the aforementioned categorization schemes. For example,
Nallusamy et al. [37] reported using a mixed approach combining the ABC and FSN analy-
ses, while Scholtz et al. [35] combined the ABC and XYZ analyses. Croston [16] proposed
another approach that assessed demand based on demand size and inter-demand intervals.
Williams [3] considered the variance in the number and size of orders given a particular
lead time, classifying items into five categories based on high/low demand sporadicity and
size. Based on the author’s empirical findings regarding demand intermittence, a particular
category was created for products with a highly sporadic demand occurrence and high
demand size variance. Eaves et al. [38] found that the classification schema proposed by
Williams did not provide the means to distinguish continuous demand solely based on
transaction variability. They proposed dividing demand into five categories based on lead
time variability, transaction rate variability, and demand size variability.

Total Periods
ADI = Total Demand Buckets )

Equation (1): ADI stands for average demand interval.
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Demand Standard Deviation
V = 2
C Demand Mean @

Equation (2): CV stands for coefficient of variation. It is computed over non-zero
demand occurrences (Syntetos et al. [39]).

Johnston et al. [4] introduced the concept of the average demand interval (ADI, see
Equation (1)), which was complemented by Syntetos et al. [5], who introduced the coef-
ficient of variation (CV, see Equation (2)). Both concepts allow us to divide demand into
quadrants, i.e., the smooth, erratic, intermittent, and lumpy demand types (see Figure 1).
Smooth and erratic demand present regular demand; smooth demand has little variability
in demand sizes, while this variability is strong for erratic demands. Intermittent and
lumpy demand present irregular demand intervals over time. Intermittent demand has
little variability in demand sizes, unlike lumpy demand, which has a greater demand size
variability. Thresholds were set based on empirical findings regarding where the methods
proposed by Croston [16] and Syntetos et al. [39,40] performed best.

HIGH HIGH
ERRATIC LUMPY
Erratic Lumpy
(Syntetos & Boylan) | (Syntetos & Boylan)
CV?=0.49 CV2=0.49
SMOOTH INTERMITTENT
Smooth Intermittent
(Croston) (Syntetos & Boylan)
LO ADI=1.32 HIGH™ LO ADI=1.32 HIGH
(A) (B)

Figure 1. Demand pattern classification. (A) depicts different demand patterns, while (B) shows the
classification proposed by Syntetos et al. [5] based on empirical findings.

In this paper, we use the term continuous demand to refer to smooth and erratic demand
(both of which display regular demand occurrence) and irregular demand or sparse demand
for intermittent and lumpy demand (both of which display irregular or infrequent demand
occurrence).

2.2. Forecasting Sparse Demand

In order to mitigate lumpiness, four traditional strategies are frequently used in manu-
facturing: (a) the use of fixed additional capacity to handle peaks, (b) additional inventories,
(c) order rejection during high-demand periods, and (d) temporary increases in manu-
facturing capacity (e.g., using subcontractors, overtime, or introducing additional shifts)
(Arzi et al. [41]). However, accurate forecasts can reduce the need for such approaches,
protect the firm’s reputation (e.g., by not rejecting consumer orders), and reduce costs (e.g.,
ensuring enough planned capacity to meet the expected demand).

Forecasting irregular demand is considered a challenging task since it requires consid-
ering irregular demand occurrence in addition to the demand size forecast. Box—Jenkins
approaches, frequently used for regular time series forecasting, are considered useless in
the context of irregular demand (Wallstrom et al. [42]) since it is challenging to estimate
trends and seasonality given the high proportion of zeros. Therefore, researchers developed
specialized models to tackle this particular type of demand.

2.3. Demand Forecasting Models

Forecasting irregular demand is considered a challenging task since, in addition to
the demand size forecast, it requires taking into account irregular demand occurrence.
A seminal work regarding intermittent demand forecasting was developed by Croston [16],
who identified exponential smoothing as inadequate for estimating demand when the
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mean demand interval between two transactions is greater than two time periods. He
proposed a method to estimate the expected interval between transactions and the expected
demand size (Equation (3)). Assuming that successive demand intervals and sizes are
independent, the inter-demand intervals follow a geometric distribution, and the demand
sizes follow a normal distribution. Shenstone et al. [43] showed that Croston’s method
was not consistent with intermittent demand properties, but its results still outperformed
conventional methods. Many researchers followed Croston’s approach, either by enhancing
this method or proposing similar ones.

a1 =w-di+(1—a)-a api1 = a
if di>0Qpi=a-q-di+1—a)-pr if dr=04p1=ps ©)
fi =14 frri=fi

Equation (3): Croston’s formula [16] for irregular demand estimation, where a is the
demand level, p is periodicity, d refers to demand observations, g is previous demand
occurrence, and & represents a smoothing constant.

Syntetos et al. [26] proposed a slight modification to Croston’s method, known as the
Syntetos—Boylan approximation (SBA), in order to avoid a positive correlation between
the forecasted demand size and the smoothing constant (Equation (4)). Levén et al. [44]
suggested computing a new demand rate every time demand takes place, considering a
maximum of one time per time bucket. Teunter et al. [45] considered computing a demand
probability for each period and updating the demand quantity forecast only when demand
takes place (Equation (5)). In a similar line of research, Vasumathi et al. [46] adapted Cros-
ton’s method by considering the average of the last two demands. Prestwich et al. [47]
proposed a hybrid of Croston’s method and Bayesian inference to consider items” obsoles-
cence. Tiirkmen et al. [48] considered intermittent demand forecasting models as instances
of renewal processes and extended Croston’s method for a probabilistic forecast. Further-
more, they envisioned that Croston-type methods could be replaced by recurrent neural
networks. Chua et al. [49] developed an algorithm that estimated future demand occurrence
based on three time series: non-zero-demand periods, inter-arrival periods between de-
mand occurrences, and periods spanning between two demand occurrences. They estimated
demand size with a simple moving average.

14
Y = (1 - E) : PrEdCroston 4)

Equation (4): Syntetos et al. [26] proposed the Syntetos—Boylan Approximation as an
adjusted version of Croston’s [16] forecast formula.

a1 =w0-di+(1—a)-a apy1 = a
if di>09p1=p-9q-di+1=p)-pt if d=00p1=(1-p) pt ©)
fr41 = A1 - Praa fre1 = a1 P

Equation (5): The Teunter, Syntetos, and Babai formula [45] for irregular demand estima-
tion, where 4 is the demand level, p is the probability of demand occurrence, d refers to demand
observations, g is previous demand occurrence, and « represents a smoothing constant.

Wright [50] developed linear exponential smoothing, an adaptation of Holt’s double
exponential smoothing model that considers variable reporting frequency and irregular-
ities in time spacing to compute and update a trend line with exponential smoothing.
Altay et al. [51] demonstrated that this method helps forecast intermittent demand where
the trend is present. Sani et al. [52] and Ghobbar et al. [53] found that averaging methods
can provide acceptable performance in some cases, despite demand intermittency. Chat-
field et al. [54] suggested using a zero-demand model for highly lumpy demand, where
the holding cost is much higher than the shortage cost. Gutierrez et al. [55] proposed fore-
casting lumpy demand with a three-layer multilayer perceptron (MLP) (Rosenblatt [56]),
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considering only two inputs: the demand of the immediately preceding period and the
number of periods separating the last two non-zero-demand transactions. Along the same
line, Lolli et al. [31] considered using ELM (Huang et al. [57]) and training the model based
on three input features: (a) the demand size for the previous time period, (b) the number of
periods separating the last two non-zero-demand transactions considering the immediately
preceding period, and (c) the cumulative number of successive periods with zero demand.

Some researchers proposed performing data aggregation to achieve smooth time series
to cope with event sparsity. Much research was performed on the effect of aggregation on
regular time series (Hotta et al. [58], Souza et al. [59], Athanasopoulos et al. [60], Rostami-
Tabar et al. [61,62], Petropoulos et al. [8], and Kourentzes et al. [63]), showing that higher
aggregation improves forecast results. One such approach is the aggregate—disaggregate
intermittent demand approach (ADIDA) (Nikolopoulos et al. [30]), which is a three-stage
process: (i) perform time-series aggregation (either overlapping or non-overlapping ag-
gregation), (ii) forecast the next time series value over the aggregated time series, and (iii)
disaggregate the forecasted value to the original aggregation level.

Following Croston’s intuition [16], some researchers developed separate models to
forecast demand occurrence and demand size. Willemain et al. [29] proposed to model
demand occurrence as a Markov process and forecast demand size by randomly sam-
pling past demand sizes and eventually jittering them to account for not-yet-seen values.
Hua et al. [64] followed a similar approach, attributing demand occurrence to autocorre-
lation or explanatory variables. If they attributed demand occurrence to autocorrelation,
they predicted it based on Markov processes. Otherwise, they used a logistic regression
model. Nasiri Pour et al. [28] developed a hybrid approach, forecasting demand occurrence
with a neural network (see Figure 2) while they estimated demand size with exponential
smoothing. The neural network they proposed considered four input variables: (a) the
demand size at the end of the preceding period, (b) the number of periods between the
last two demand occurrences, (c) the number of periods between the target period and the
last demand occurrence, and (d) the number of periods between target period and first
immediately preceding zero-demand period. The authors considered demand to not occur
if the network forecasted a zero value and considered demand to take place if the predicted
value was greater than zero.

iy hy

iz h;
Predicted

o —— occurrence of

. demand

I3

is hm

bias
L J L J L )
T | T
INPUT LAYER HIDDEN LAYER OUTPUT LAYER

Figure 2. MLP for the hybrid approach proposed by Nasiri Pour et al. [28]. The inputs to the model
are the demand size at the end of the preceding period, the number of periods between the last
two demand occurrences, the number of periods between the target period and the last demand
occurrence, and the number of periods between the target period and the first immediately preceding
zero-demand period.
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Finally, Petropoulos et al. [65] developed an alternative perspective to the ADIDA
framework (Nikolopoulos et al. [30]), aggregating time series in such a way that each time
bucket contained a single demand occurrence. As a result, the transformed time series no
longer presented intermittency, and it forecasted the time-varying number of periods when
such demand would occur. Then, based on the mean values for the inter-demand interval
and the coefficient of variation, demand size was estimated using Croston’s method, SBA,
or simple exponential smoothing. A similar approach was described by Hasni et al. [32].
The authors proposed forecasting demand by repeatedly random sampling from the fre-
quency histograms of past inter-demand intervals and demand sizes.

Forecasting Features

Bartezzaghi et al. [66] considered demand lumpiness as a consequence of different
market characteristics, such as the numerousness and heterogeneity of customers, the fre-
quency at which customers place the orders, the variety of customer requests (e.g., high
customization in make-to-order settings (Verganti [67])), and the correlations between
customer behavior). Lumpiness is also related to the granularity level at which demand
is considered (e.g., visualizing demand at a client and product level vs. only at a product
level or visualizing daily demand vs. monthly). Higher aggregation levels usually reduce
the number of periods without demand, changing the demand pattern classification.

In the scientific literature related to the demand forecasting of intermittent and lumpy
demand patterns, authors describe multiple characteristics and features relevant to de-
mand occurrence forecasting. Among them, we find the average inter-demand interval size
(Levén et al. [44]), the previous demand event occurrence (Gutierrez et al. [55]), the distri-
bution of inter-demand interval sizes (Croston [16]), demand size (Nasiri Pour et al. [28]),
demand shape distribution (Bartezzaghi et al. [68] and Zotteri [69]), the usage of early infor-
mation generated by customers during the purchasing process (Verganti [67]), the presence
of paydays, billing cycles, or holidays (Hyndman et al. [24]), demand event autocorrela-
tion (Willemain et al. [70]), demand event correlation (products being complementary or
alternate) (Arzi et al. [41]), and whether items may be purchased by the same supplier or
shipped using the same transportation mode (Syntetos [71]).

We found that two techniques were applied to estimate demand size across all cases.
The first one was exponential smoothing (and its variants), and it was applied across
previous non-zero demand sizes (Nasiri Pour et al. [28]). The second one was the use of
jittering on top of randomly sampled past demand sizes to account for yet-unseen values
(Willemain et al. [29] and Hua et al. [64]). Altay et al. [51] described means to adjust demand
size values based on the presence of trends in data.

On top of the above-mentioned approaches, two approaches used to reduce uncer-
tainty regarding lumpiness can help create features: early sales and order overplanning
(Verganti [67] and Bartezzaghi et al. [66]). The early sales approach considers information
regarding actual orders received for future delivery, where future demand can be estimated
given that some degree of correlation exists between the unknown and known portions of
the demand. On the other hand, the order overplanning approach focuses on every cus-
tomer instead of the overall demand. It, therefore, enables collecting and using information
specific to each customer and their future needs.

2.4. Metrics

The measurement of forecasting models’ performance for lumpy and intermittent de-
mand has been a subject of extensive research (Anderson [72]). Syntetos et al. [71] compared
the performance of the Mean Signed Error, Wilcoxon Rank Sum Statistic, Mean Square Fore-
cast Error, Relative Geometric Root Mean Square Error (RGRMSE), and Percentage of times
Better metrics (PB). They concluded that the RGRMSE behaves well in the context of irregu-
lar demand. Teunter et al. [73] pointed out that the RGRMSE cannot be applied on a single
item for zero or moving average forecasts (it would result in zero error). Hemeimat et al. [74]
suggested using the tracking signal metric, which is calculated by dividing the most re-
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cent sum of forecast errors by the most recent estimate of the mean absolute deviation
(MAD). Among many metrics, Hyndman et al. [24] suggested using the MASE for lumpy
and intermittent demand to provide a scale-free assessment of the accuracy of demand
size forecasts. Although traditional per-period forecasting metrics, such as the root mean
squared error (RMSE), the mean squared error (MSE), the MAD, and the mean absolute
percentage error (MAPE), were widely used in the literature regarding irregular demand,
Teunter et al. [73] and Kourentzes [75] showed they were not adequate due to the high
proportion of zeros. Prestwich et al. [76] proposed computing a modified version of the error
measures that considered the mean of the underlying stochastic process instead of the point
demand for each point in time. Finally, it is relevant to point out that two metrics were used
in the M5 competition (Makridakis et al. [77]) to assess time series with respect to irregular
sales: the root mean squared scaled error (RMSSE, introduced by Hyndman et al. [24])
and the weighted RMSSE. With these metrics, using a score that considers squared errors,
result measurements optimize towards the mean. The weighted RMSSE variant allows for
penalizing each time series error based on various criteria (e.g., item price). However, both
metrics unevenly penalize products sold during the whole time period in contrast to those
that are not.

Syntetos et al. [78] noted that regardless of the metrics used to estimate how accurate
demand forecasts are, it is crucial to measure the impact of forecasts on stock-holding and
service levels. Along this line, Wallstrom et al. [42] proposed two complementary metrics.
The first one was the number of shortages, counting how many times the cumulated forecast
error was over zero during the time interval of interest. The second one was periods in
stock (PIS), defined as the number of periods the forecasted items spent in fictitious stock
(or how many stock-out periods existed). More recently, Martin et al. [25] proposed the
stock-keeping-oriented prediction error cost (SPEC), which considers, for each time step,
whether demand forecasts translate into costs of opportunity or stock-keeping costs; the
result is never both at the same time. We summarize the metrics adopted in relevant related
works in Table 1.

Table 1. Metrics identified in main related works we reviewed on the topic of lumpy and intermit-
tent demand.

Metric

[54]

[79]

[55]

[e] [s0] [28] [e6] [81]1 53] [82] [16] [39]1 [83]1 [42] [71] 73] [74] [751 (761 [77]1 [24] [25]

Theil’s U statistic
WRMSSE

X

X

X

X

X

XXX X XXX s

> XX X
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3. Reframing Demand Forecasting
3.1. A Classification of Existing Demand Forecasting Models for Lumpy and Intermittent Demand

From the models we presented in Section 2, we observe that certain patterns arose in
how the demand forecasting problem for lumpy and intermittent demand was framed. We,
therefore, classify the forecasting approaches into four categories:

*  TypeI: uses a single model to predict the expected demand size for a given time step.

e  TypeII: uses aggregation to remove demand intermittency and benefit from regular
time series models to forecast demand.

*  Type III: uses separate models to estimate whether demand will take place at a given
point in time and the expected demand size.

e TypeIV: uses separate models to estimate the demand interval and demand size.

We classify the models analyzed in the related works according to these four categories
in Table 2.

Table 2. Model types identified in main related works we reviewed on the topic of lumpy and
intermittent demand.

Model Type Related Work
I [16,26,31,44-46,49-55]
II [8,30,58-61,63]
111 [28,29,64]
v [32,65]

3.2. Demand Characterization and Forecasting Models

Croston [16] developed the idea to consider two components for intermittent demand
forecasts: demand occurrence and demand sizes. Syntetos et al. [5] considered these two
components and developed an influential system of demand categorization, dividing
demand into four types: smooth, erratic, intermittent, and lumpy, based on the coefficient
of variation and the average demand interval. The need to separately address these two
dimensions was further recognized by Nikolopoulos et al. [84].

Many authors followed Croston’s lead, developing separate models to estimate de-
mand occurrence and demand size (e.g., Willemain et al. [29], Hua et al. [64], and Nasiri
Pour et al. [28]), though none of them measured the performance of the demand occurrence
component. We thus propose decoupling the demand forecasting problem into two sub-
problems, each of which requires a separate model with separate features and metrics: (i)
demand occurrence, addressed as a classification problem, and (ii) demand size estimation,
addressed as a regression problem. Following the original work by Syntetos et al. [5] and
the division mentioned above, we propose an alternative demand categorization schema.
Considering demand occurrence and demand quantity forecasting as two different prob-
lems, we can divide demand into two types (see Figure 3). The first demand type is ‘R’,
which refers to demand with regular demand event occurrence. Since demand (almost) al-
ways occurs in this case, estimating demand occurrence is rendered irrelevant and does not
pose a challenge when developing a regression model to estimate demand size. The second
demand type is ‘C+R’, which refers to demand with an irregular occurrence. This second
case benefits from models that consider both demand occurrence and demand size (see
Section 2.3).

In Figure 4, we present a demand forecasting model architecture and a flowchart de-
scribing how to build it and issue demand forecasts. Since the classification and regression
models address different problems, we expect them to use different features to help achieve
their goals. We described the aspects relevant to demand occurrence and demand size
forecasting presented in the literature in Section 2.3. These can be used as the features of
the classification and regression models.
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Figure 3. Demand categorization schemas. On the right, (A) corresponds to the influential catego-
rization developed by Syntetos et al. [5]. On the left, (B) proposes a new schema that only considers
demand occurrence, dividing demand into two groups. ‘R” denotes regular demand occurrence, where
demand size can be predicted with a regression model. ‘C+R’ denotes irregular demand occurrence
that requires a model to predict demand occurrence and a model to predict demand size.

HIGH ADI=132 Determine demand intermittency
ERRATIC LUMPY l
Is demand
intermittent?
cvz +
R C+R YES
SMOOTH INTERMITTENT
Create demand occurrence No
forecasting model
Forecast demand
occurrence
LOWY
—_———— L L S e =
* FOR ML REGRESSION CLASSIFICATION

MODELS FEATURE VECTOR

FEATURE VECTOR l Will demand take place?

DEMAND

DEMAND SIZE

DEMAND?  OCCURRENCE  DEMAND?
FORECASTING  *ves FORECASTING NO
MODEL NO Create demand size forecasting model
‘ PREDICTION Demand size is zero Forecast demand size

Figure 4. Two-fold machine learning approach to demand forecasting. (A) shows a basic architecture
for demand forecasting when reframing demand forecasting as classification and regression problems.
(B) shows a flowchart with steps followed to create the demand forecasting models and issue demand
forecasts.

An increasing body of research suggests that global machine learning time series
models (models built with multiple time series) provide better results than local ones
(models considering time series corresponding to a single product) (Bandara et al. [22]
and Salinas et al. [21]). Furthermore, increased performance is observed even when training
models with disparate time series that have different magnitudes or may not be related to
each other (Laptev et al. [85] and RoZanec et al. [86]), although how to bound the maximum
possible error in such models remains a topic of research. Given this insight, we conclude
that dividing demand based on the coefficient of variation provides limited value and is no
longer relevant to demand categorization.

We keep the cut-off value of ADI = 1.32 proposed by Syntetos et al. [5] as a reference.
This cut-off value, jointly with the CV?, is accepted as a measure of whether a collection
of observed demand is smooth, lumpy, intermittent, or erratic (Lowas III et al. [87]); it
remains relevant for statistical methods. Nevertheless, we consider its relevance to blur with
respect to different machine learning models. Its importance may be rendered irrelevant for
global machine learning classification models that predict demand occurrence. By consid-
ering multiple items simultaneously, global models perceive a higher density of demand
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events and less irregularity than models developed with data regarding a single demand
item. Simultaneously, the model can learn underlying patterns, which may be related to
specific behaviors (e.g., deliveries that take place only on certain days). It is important
to note that event scarcity usually results in imbalanced classification datasets, posing an
additional challenge.

We present suggested metrics to assess each model, and the overall demand forecasting
performance, in Section 3.3.

3.3. Metrics

Though several authors (e.g., [16,39,83]) considered separating demand occurrence
and demand size when forecasting irregular demand, in the scientific literature we re-
viewed (see Table 1), we found that researchers measured them separately. We thus con-
clude that they did not consider demand occurrence and demand size forecast as entirely
different problems.

Considering irregular demand forecasting only as a regression problem led to much
research and discussion (presented in Section 2.4) on how to mitigate and integrate zero-
demand occurrence to measure demand forecasting models” performance adequately.
In our research, we provide a different perspective. We adopt four metrics to assess the
performance of demand forecasting models: (i) AUC ROC to measure how accurately the
model forecasts demand occurrence, (ii) two variants of MASE to measure how accurately
the model forecasts demand size, and (iii) SPEC to measure how the forecast impacts
inventory. When measuring SPEC, we consider a; = a; = 0.5 since we have no empirical
data that would support weighting & asymmetrically.

-KQ] '(t—i+1)> (6)

Equation (6): Stock-keeping-oriented Prediction Error Cost (SPEC).

AUC ROC is widely adopted as a classification metric and has many desirable prop-
erties, such as being threshold independent and invariant to a priori class probabilities.
MAGSE has the desirable property of being scale-invariant. We consider two variants (namely
MASE; and MASEj). Following the criteria in Wallstrom et al. [42], we compute MASE;
for the time series that results from ignoring zero-demand values. By doing so, we assess
how well the regression model performs against a ndive forecast, assuming a perfect de-
mand occurrence prediction. On the other hand, MASE[; is computed for the time series
that considers all points where demand either took place or is predicted according to the
classification model. By doing so, we measure the impact of demand event occurrence mis-
classification on the demand size forecast. When the model predicting demand occurrence
has perfect performance, (i) should equal (ii). Finally, we compute SPEC for the whole time
series (considering zero and non-zero demand occurrences). This way, the metric measures
the overall forecast impact on inventory, weighting stock-keeping, and opportunity costs.

4. Methodology
4.1. Business Understanding

Demand forecasting is critical to supply chain management since its outcomes directly
affect the supply chain and manufacturing plant organizations. This research focuses on
demand forecasting for a European original equipment manufacturer in the automotive
industry. We explored providing demand forecasts for each material and client daily. Such
forecasts enable highly detailed planning. From the forecasting perspective, accurate fore-
casts at a daily level can leverage the most recent information, which is lost at higher
aggregation levels for non-overlapping aggregations. They also avoid imprecisions that re-
sult from higher-level forecast disaggregations. We tackled the demand forecasting problem
as a modeling approach. In particular, we developed machine learning models that learn
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from past data to issue forecasts. In the following subsections, we provide a detailed insight
into the steps we followed to create such predictive models.

4.2. Data Understanding

For this research, we used a dataset with three years of demand data extracted from
enterprise resource planning software. We considered records that accounted for products
shipped from manufacturing locations. For demand data, demand was registered on the day
products shipped. The dataset comprised 516 time series corresponding to 279 materials and
149 clients. When categorized according to the schema proposed by Syntetos et al. [5], we
found that 49 corresponded to a lumpy demand pattern and 467 to an intermittent demand
pattern (see Figure 5). In Tables 3 and 4, we provide summary statistics for the time series
corresponding to each demand pattern. We found that demand occurrence for both sets
of time series was highly infrequent, having a mean of one demand event in almost two
months or more.

ADI

Cv2

Figure 5. The ADI-CV? categorizations for the time series based on the classification proposed by
Syntetos et al. [5].

Table 3. Summary statistics for 49 lumpy demand time series.

Metric Mean Std Min 25% 50% 75% Max
ADI 86.00 87.26 1.97 11.86 37.29 156.60 261.00
CVv2 1.44 1.04 0.50 0.70 1.10 1.90 4.83

Table 4. Summary statistics for 467 intermittent demand time series.

Metric Mean Std Min 25% 50% 75% Max
ADI 56.72 70.58 1.41 9.79 25.26 71.18 261.00
Cv? 0.09 0.11 0.00 0.02 0.05 0.13 0.48

4.3. Data Preparation, Feature Creation, and Modeling

We forecasted irregular demand with two separate models: a classification model to
predict demand occurrence and a regression model to predict demand size. Though source
data were the same for both, different features were required to address each model’s goals.
Based on knowledge distilled from the literature, we created the features presented in
Section 2.3 and some features of our own.

To model demand occurrence, we considered weekdays since last demand, the day of
the week of the last demand occurrence, the day of the week for the target date, the mean of
the inter-demand intervals, the mean of the last inter-demand intervals (across all products),
and the skew and kurtosis of the demand size distributions, among other factors.
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To model demand size, we considered, for each product, the size of the last demand,
the average of the last three demand occurrences, the median value of past occurrences,
the most frequent demand size value, and the exponential smoothing of past values,
among other factors.

When computing feature values, we considered two forecasting horizons, namely
fourteen and fifty-six days (Figure 6), to understand how the forecasting horizon size affects
forecasts. The forecasting horizons were selected based on a business use case.

Predictor Period Forecasting
Horizon

14 days

A |W1|W2|W3 W4 W1l W2|W3| W4 W1|W2| W3l W4 W1 W2 W3| W4

I
I
I
T
MIONTH N

MONTH N-... MONTH N-2 MONTH N-1
1
Forecast Forecast Forelpast
Issue Time Issue Time  Validity Time

I
]
I
|

B |W1|W2|W3|W4| W1l W2| W3 W4 W1 W2 W3 W4 W1 WZ W3 | w4

I I
I
. I
1
MONTH N-... MONTH N-2 MONTH N-1 MbNTH N
1 !
I I

56 days

Forecasting Horizon

Figure 6. We computed predictions for two forecasting horizons, i.e., 14 (A) and 56 (B) days, to test the
sensitivity of predictions regarding demand occurrence and demand size to the forecasting horizon.

To forecast irregular demand, we compared nine methods described in the literature:

*  Croston: Croston’s method [16] (see Equation (3)).

*  SBA [26] (see Equation (4)).

e TSB [27] (see Equation (5)).

¢  MC+RAND: a hybrid model proposed by Willemain et al. [29]. Demand occurrence
is estimated as a Markov process, while demand sizes are randomly sampled from
previous occurrences.

e NN+SES: a hybrid model proposed by Nasiri Pour et al. [28]. Considers a NN model
(see Figure 2) to forecast demand occurrence; demand size is computed by exponential
smoothing over non-zero demand quantities in past periods. We used the following
parameters for the NN: a maximum of 300 iterations, a constant learning rate of 0.01,
and a hyperbolic tangent activation. Given that no description was given on whether
scaling was applied to the dataset prior to training the network, we explored two
models: without feature scaling (NNns+SES) and with feature scaling (NNws+SES).

* ADIDA forecasting method, proposed by Nikolopoulos et al. [30], which removes
intermittence through aggregation and then disaggregates the forecast back to the
original aggregation level.

*  ELM: an ELM model as proposed by Lolli et al. [31]. We initialized the model with the
following parameters: 15 hidden units, ReLU activation, a regularization factor of 0.1,
and normal weight initialization. We trained two models: ELM(C1) (two models, trained
per demand type) and ELM(C2) (global model, considering all the demand types).

*  VZ,: amethod proposed by Hasni et al. [32], considering only positive demands
when the predicted lead-time demand was equal to the forecasting horizon considered.

We also developed models of our own. We created a CatBoost model (Prokhorenkova
et al. [88]) to forecast demand occurrence and compare six models to forecast demand
size: ndive, most frequent value (MFV), moving average over last three demand periods
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(MA(3)), simple exponential smoothing (SES), random sampling from past values with
jittering (RAND), and LightGBM regressor (ML). We used the LightGBM regression algo-
rithm (Ke et al. [89]) because four of the top five time series forecasting models in the M5
competition were based on this algorithm (Makridakis et al. [77]).

CatBoost is an implementation of gradient-boosted decision trees. During training
time, it sequentially builds a set of symmetric binary decision trees, ensuring that each
new tree built reduces the loss compared to previous trees. The algorithm avoids one-hot-
encoding categorical features by computing the frequency of the occurrence of particular
values, reducing sparsity while enhancing computation times. CatBoost uses gradient
descent to minimize a cost function, which informs how successful it is at meeting the
classification goal. Since the dataset regarding demand occurrence was heavily imbalanced
(less than 6% of instances corresponded to demand occurrence), we chose to optimize
the model training with focal loss (Lin et al. [90]). Focal loss has the desirable property of
asymmetric penalization of training samples, focusing on misclassified ones to improve the
overall classification.

Our CatBoost classification model was built with a maximum depth of 2, 150 iterations,
focal loss, and the AUC ROC evaluation metric. The LightGBM regressor was built with
a maximum depth of 2, the RMSE objective, gradient-boosting decision tree boosting,
100 estimators, a learning rate of 0.1, and 31 tree leaves for base learners.

5. Experiments and Results

This section describes the experiments we conducted and assesses their results with the
metrics described in Section 3.3. For the SPEC metric, we considered «; and a; equal to 0.5.
We summarize our experiments in Table 5. In Table 6, we summarize the results obtained
for our own models, while in Table 7, we compare the best-performing of our models
against the models described in the scientific literature and described above (in Section 4.3).

We adopted two forecasting horizons (fourteen and fifty-six days) to understand
how sensitive the existing approaches were to forecast lead time. To evaluate the models,
we used nested cross-validation (Stone [91]), which is frequently used to evaluate time-
sensitive models. We tested our models by having them make predictions at the weekday
level for six months of data. For the classification models, we measured AUC ROC, with
prediction scores cut at a threshold of 0.5. The only exception to this was the model by
Nasiri Pour 