
����������
�������

Citation: Xie, F.; Luo, H.; Li, S.; Liu,

Y.; Lin, B. Using Clean Energy

Satellites to Interpret Imagery: A

Satellite IoT Oriented Lightweight

Object Detection Framework for SAR

Ship Detection. Sustainability 2022, 14,

9277. https://doi.org/10.3390/

su14159277

Academic Editors: Amjad Ali,

Farman Ali, Jin-Ghoo Choi and

Muhammad Shafiq

Received: 30 May 2022

Accepted: 26 July 2022

Published: 28 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Using Clean Energy Satellites to Interpret Imagery: A Satellite
IoT Oriented Lightweight Object Detection Framework for SAR
Ship Detection
Fang Xie 1,2,3,4,* , Hao Luo 5, Shaoqian Li 1,2,3,4, Yingchun Liu 2,3,4 and Baojun Lin 1,2,3,4,6,*

1 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China;
lisq@microsate.com

2 University of Chinese Academy of Sciences, Beijing 100094, China; liuyc@microsate.com
3 Innovation Academy for Microsatellites, Chinese Academy of Sciences, Shanghai 201210, China
4 Shanghai Engineering Center for Microsatellites, Shanghai 201304, China
5 School of Aeronautics and Astronautics, Zhejiang University, Zhejiang 310058, China; luohao@zju.edu.cn
6 School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
* Correspondence: xief@microsate.com (F.X.); linbaojun@aoe.ac.cn (B.L.)

Abstract: This paper studies the lightweight deep learning object detection algorithm to detect
ship targets in SAR images that can be deployed on-orbit and accessed in the space-based IoT.
Traditionally, remote sensing data must be transferred to the ground for processing. With the
vigorous development of the commercial aerospace industry, computing, and high-speed laser inter-
satellite link technologies, the interconnection of everything in the intelligent world has become an
irreversible trend. Satellite remote sensing has entered the era of a big data link with IoT. On-orbit
interpretation gives remote sensing images expanse application space. However, implementing
on-orbit high-performance computing (HPC) is difficult; it is limited by the power and computer
resource consumption of the satellite platform. Facing this challenge, building a processing algorithm
with less computational complexity, less parameter quantity, high precision, and low computational
power consumption is a key issue. In this paper, we propose a lightweight end-to-end SAR ship
detector fused with the vision transformer encoder: YOLO−ViTSS. The experiment shows that
YOLO−ViTSS has lightweight features, the model size is only 1.31 MB; it has anti-noise capability is
suitable for processing SAR remote sensing images with native noise, and it also has high performance
and low training energy consumption with 96.6 mAP on the SSDD dataset. These characteristics
make YOLO−ViTSS suitable for porting to satellites for on-orbit processing and online learning.
Furthermore, the ideas proposed in this paper help to build a cleaner and a more efficient new
paradigm for remote sensing image interpretation. Migrating HPC tasks performed on the ground to
on-orbit satellites and using solar energy to complete computing tasks is a more environmentally
friendly option. This environmental advantage will gradually increase with the current construction
of large-scale satellite constellations. The scheme proposed in this paper helps to build a novel
real-time, eco-friendly, and sustainable SAR image interpretation mode.

Keywords: eco-friendly IoT; synthetic aperture radar; ship detection; YOLOv5; vision transformer;
lightweight deep learning algorithms

1. Introduction

With the vigorous development of computing and connectivity technologies, promot-
ing the interconnection of everything in the intelligent world has become an irreversible
trend. Sensors in satellites will also develop in the direction of perception, interconnection,
and intelligence. Fusion applications of remote sensing data and Internet of Things (IoT)
technology are widely used in intelligent agriculture [1], rock settlement monitoring [2],
supersonic vehicle navigation [3], etc. The Synthetic Aperture Radar (SAR) sensors have
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been widely applied to marine monitoring due to their self-illumination capability [4]. Ship
object detection is commonly used in port surveillance, illegal smuggling surveillance,
and military use. Traditionally, remote sensing data must be transferred to the ground
station and processed through a time/computing-consuming intelligent interpretation algo-
rithm to detect the ship object. However, with the vigorous development of the commercial
aerospace industry, the cost of entering space has been dramatically reduced. Low Earth
Orbit (LEO) satellite launch increased significantly [5]. Satellite remote sensing has entered
the era of a big data link with IoT.

In this trend, the traditional remote sensing object detection route is outdated. It limits
the interconnection between satellites and other ground sensors such as GIS, search and
rescue, autopilot, etc. Furthermore, processing large amounts of remote sensing data at
ground stations also brings a lot of energy consumption. Transplanting the algorithm to
satellites for on-orbit interpretation has three advantages: The first is for satellites. Due
to their global positioning and ultra-long distance communication, they are particularly
essential when sensors and actuators are located in remote areas without service from
terrestrial access networks [6]. The on-board interpretation of the object information can
be directly transmitted to other sensors through the space-based IoT through the inter-
satellite and satellite-to-ground links, which has more advantages in terms of timeliness
and coverage. The second point is to transmit the data after on-orbit interpretation through
the space-based IoT, which can realize data enhancement of remote sensing information
in many aspects. Take MIMO-SAR [7–9] as an example: The SAR performance is limited
by target scintillation; by exploiting the diversity of target scattering, MIMO technology
applied to SARs can significantly improve resolution and sensitivity, and detection and
estimation performance for IoT space applications [10]. The third is that due to the satellite
being powered by solar energy, the energy consumed by the interpretation of a large
number of remote sensing images does not impose an additional burden on the ground
stations, which is more environmentally friendly.

A breakthrough in Convolutional Neural Network (CNN) Technology [11] shows
excellent performance in the computer vision field. Many state-of-the-art CNN-based object
detectors [12–22] show superior performance, but at the same time, the high-performance
computing (HPC) methods, also correspond to high energy consumption. On-orbit HPC
is difficult; satellites are powered by solar arrays (SA), and the area of the SA decided the
power supply for the satellite platform. However, due to the high manufacturing cost of
solar panels and the space constraints of the launch vehicle fairing, the area of the SA is
limited, so the power consumption of the satellite is also limited. Furthermore, the particle
radiation of the space environment spared the design of the electronic components, and the
computing power of onboard satellite computers was also limited. Some existing intelligent
target recognition algorithms are directly transplanted to the satellite platform and cannot
run smoothly and stably.

The most cost-effective way to solve the above problems is to optimize the detection
algorithm. The one-stage method is suitable for deployment on the terminal due to it only
needing to be fed into the network once to predict all the bounding boxes, which is faster
than the two-stage method. Many scholars focus on optimizing the speed of the one-stage
SOTA algorithm to take advantage of its fast speed [23–30]. For example, in 2020, the ar-
ticle [23] proposed a mixed YOLOv3-LITE detector, this method complements Residual
Blocks (ResBlocks) and parallel high-to-low resolution sub-networks, makes full use of
shallow network features while increasing network depth, and uses “shallow and narrow”
convolutional layers to achieve lightweight characteristic; in 2022, the article [24] pro-
posed a YOLOv4-tiny based lightweight object detection framework to improves inference
speed without sacrificing accuracy than baseline method. In this article, channel attention,
and spatial attention are used to extract more effective information and using ResBlock-D
module replace the CSPDBlock module to reduces the computational complexity. Many
scholars also focus on researching lightweight SAR image detection algorithms for high
speed and low power consumption. In 2021, the article [25] proposed an efficient GPU par-
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allel algorithm to accelerate image registration for InSAR image processing and achieved
10w power consumption on Nvidia Jetson. In 2021, article [26] proposed a lightweight
detection framework that integrates CFAR and YOLOv4 to achieve on-orbit target detection
of SAR ship images. The model size is 22 MB and achieves 85.9% precision on the HISEA-1
image set, but the detection framework is divided into two stages; the dependent soft
environment is more complex, and it is still challenging to transplant for microsatellites.
In 2022, the article [27] proposed a lightweight SAR ship detector named Lite-YOLOv5,
with a model size of only 2.38 MB, and achieved 73.15% mAP in the LS-SSDD-v1.0 dataset.
Still, this work does not assess the energy consumption of algorithm operation, which is a
crucial metric for porting to satellite platforms.

These earlier works explored the feasibility of the one-stage algorithm in the field of
object detection in satellite remote sensing images and laid a technical foundation for the
realization of the new paradigm of on-orbit interpretation. Inspired by the above work, this
paper aims to study a more lightweight and high-precision target recognition algorithm,
and qualitatively analyze and evaluate the training power consumption, so as to provide
theoretical support for the goal of transplantation in the algorithm onboard.

Based on the previous analysis, we mainly focus on studying the lightweight detec-
tion algorithm design to meet the task of detecting ships in orbit. We choose a one-stage
lightweight detector, YOLOv5 [22], as the baseline method. Since YOLOv5 is a multiclass
classifier, it has a scale optimization margin in a binary classification problem. Furthermore,
some studies have shown that the vision transformer [31,32] can improve performance
in remote sensing tasks effectively [30]. Inspired by the vision transformer technology,
we study the performance of the vision transformer encoder [31] connected at different
locations in the lightweight detection framework. We propose a YOLO-based dedicated
SAR ship detector: You Only Look Once with Vision Transformer Encoder for SAR Ship de-
tection (YOLO-ViTSS); we test it on the SAR Ship Detection Dataset (SSDD) [33]. The results
show that YOLO-ViTSS is lightweight, robust, and has low training energy consumption.
The main contributions of this paper are as follows:

1. This paper analyzes the state of the art of the novel on-orbit remote sensing inter-
pretation paradigm architecture. Compared with traditional interpretation methods,
The scheme proposed in this paper helps to build a novel real-time, eco-friendly and
sustainable remote sensing image interpretation mode.

2. We study the fusion performance of the vision transformer module under the reduced
YOLO framework. Choosing a suitable position to integrate the vision transformer
module can improve mAP and reduce false alarms;

3. We compared the model size and performance of classic YOLOv5 models through
experiments at different scales. Reducing the number of input channels of the network
and adequately controlling the model depth has little effect on detection performance
for SAR ship detection tasks. The YOLO-ViTSS has good detection performance
and achieves 96.77% mAP0.5 with a lightweight parameter of 1.3 MB; this is more
streamlined than the methods proposed in those articles [26–30];

4. We calculated computational complexity and energy consumption. The energy con-
sumption of YOLO-ViTSS is only 1/7 of YOLOv5X. Furthermore, it has only an
average training power consumption of 151W which means a 0.7-square-meter satel-
lite solar array can meet the power supply requirement; it has excellent potential
to port to satellite platforms for on-orbit reasoning and online training, providing a
green solution for online IoT access of satellite remote sensing data.

2. Materials and Methods
2.1. A New Paradigm for Remote Sensing Image Interpretation

In recent years, with the rapid development of large-scale satellite constellation tech-
nology, the resolution, update frequency, and spectral range of remote sensing data have
rapidly increased. Combined with the characteristics of remote sensing data and the new
capabilities brought by artificial intelligence, the interpretation technology of remote sens-
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ing images has been improved from manual interpretation to an intelligent one marked
by rapid investigation and monitoring, scientific diagnosis and analysis, efficient decision-
making and management. As shown in Figure 1, the current method of remote sensing
intelligent interpretation is to use the HPC server on the ground segment to complete the
intelligent interpretation of the remote sensing image after transmitting the remote sensing
image data to the ground segment and generating remote sensing products for users.

Information Flow

Energy Flow

Ground Station Raw remote sensing image data

Ground Segment

Space Segment

HPC Server

Remote sensing products
User

Traditional remote sensing image interpretation methods On-orbit remote sensing image interpretation methods

Ground Electricity 
Supply Network

Ground Station

Ground Segment

Space Segment

Edge Computing

Remote sensing products

User

Solar Energy Solar Energy

Remote sensing products

Inner Satellite Link

Figure 1. Comparison of traditional remote sensing interpretation methods and on-orbit interpreta-
tion methods.

However, the post-processing and interpretation of remote sensing images on the
ground still have certain limitations and room for optimization, such as poor timeliness
and large link occupancy. Furthermore, HPC for interpreting remote sensing data will also
consume power resources. The consumption of energy resources will increase significantly
with the continuous increase in satellites and the generated remote sensing data.

In order to optimize the above problems, this paper proposes a new remote sens-
ing image processing system architecture, as shown in the right half of Figure 1, which
transplants the remote sensing interpretation calculation from the ground segment to the
space segment. On-board remote sensing interpretation in the space segment has the
following advantage:

1. More environmentally friendly: The satellite uses solar energy. Compared with
computing on the ground which consumes the electronic resources on the earth,
on-orbit computing uses clean energy provided by satellites to saves the electronic
resources on the earth.

2. More timeliness: The remote sensing satellite are the front end of perception. On-orbit
interpretation can complete the early discovery and continuous tracking of the target
information of interest.

3. Easier access to IoT: Only transmitting meaningful semantic information instead of
raw remote sensing data could reduce the bandwidth occupied by the inter-satellite
link, making it easier to realize the collaborative work of multiple satellites.

4. Automatically improves the recognition performance of satellites in orbit: On-orbit
semi-supervised training of intelligent models could be performed in real orbital work
scenarios to improve performance.

However, there are still the following challenges in performing on-orbit interpreta-
tion calculations:

1. Compared with high-performance servers on the ground, the computing power
and storage resources on satellites are more limited, so a more lightweight target
detection algorithm is required, that is, a neural network model algorithm with lower
computational energy consumption and less storage space.
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2. To achieve enough high precision requirements.

Therefore, research on the algorithm of intelligent interpretation with lightweight, high
precision, and low power consumption is the core problem. This research intends to focus
on the new remote sensing image processing constitution of on-orbit interpretation, and face
the practical problem of automatic ship target detection in SAR remote sensing images.

According to the analysis in Section 1, the one-stage target detection framework has
more lightweight characteristics. Based on a large number of investigations, we chose the
SOTA algorithm YOLOv5 as the baseline technique to build a target detection framework
suitable for the satellite platform.

2.2. YOLOv5 Object Detection Framework

The principle of YOLO is to divide the input image tensor into N * N cell grids [18].
If the center of the target is in a grid cell, select that grid cell as the predicted bounding box.
Figure 2 shows the architecture of the YOLOv5 detector. The network consists of three parts:
the backbone network, the neck network, and the head network. The backbone network is
used for feature extraction of input tensors. The neck network is used for collecting multi-
scale features and fed to the head. A YOLOv3 [20] detect head used for output multi-scale
object detection information in a one-hot form with location and classification information.

Conv

Conv

Input

3×C3

Conv

6×C3

Conv

SPP

9×C3

Conv

Upsample

Concat

3×C3

Conv

Upsample

Concat

Conv

3×C3

3×C3

Concat

Conv

3×C3

Conv

Concat

3×C3

YOLO 
Head

YOLO 
Head

YOLO 
Head

Backbone Neck Head

Figure 2. The network architecture of the YOLOv5 detector. Modules with different colors represent
different structures, the details are shown in Figure 3.

Figure 3 shows the structure of the constituent unit: CONV units, C3 units, and an SPP
unit. CONV unit performs 2D convolution, batch normalization, and Sigmoid-weighted
Linear Unit (SiLU) activation in sequence. SiLU is a special case of the swish function
which performs nonlinear smoothing on the ReLU function [34,35]. SiLU is defined as the
following equation [35]:

S(x) = x · σ(x), where σ(t) = (1 + exp(−t))−1 (1)
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= 

= RES 
UnitRES 
Unit*X

= Add
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= 

C3 Conv

Conv

Concat Conv

Conv Conv×2X 

Conv

Concat Conv

Conv Conv2D BatchNorm SiLU 

Resunit
Conv Conv

C3

Resunit 
× X

Figure 3. Structural details of the C3 and the CONV units. The blue C3 module contains the Shortcut
structure, the green C3 module does not contain the Shortcut structure.

The C3 is a Cross Stage Partial (CSP) module, it divides the input tensor into two
compute branches, after the calculation, the two branches connect and operate a CONV unit.
Two types of C3 units are used in YOLOv5, as shown in Figure 3, the blue C3 unit shows
the C3 unit with residual structure applied to the backbone network, and Resunit [36] is a
residual structure that avoids depth computation degradation issues in the process; the
green C3 unit with no residual structure was used for Neck, and the Resunit was replaced
with the CONV unit. Figure 4 shows the Spatial Pyramid Pooling (SPP) module [37]; it
concatenates different scale receptive fields to adapt to multi-scale targets.

SPP

Maxpool 5 × 5 
stride=1

Maxpool 9 × 9 
stride=1

Maxpool 13 × 13 
stride=1

SPP module
Concatenate

Tensor before scale 
equalization

Scale-balanced 
Tensor

Figure 4. Structural details of the SPP unit.

For binary classification problems, the design of the loss function should consider
bounding box loss and object confidence loss synchronously. The object confidence loss
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is used to reflect the confidence probability that the bounding box contains an object.
The confidence prediction is closer to 1, the more likely it is that the center of the object is
within this bounding box. Object Con f idence is defined as follows [21]:

ObjectCon f idence = Probability(Object) ∗ IOUGT
p (2)

The IOUGT
p indices measure the relevance correlation between prediction bounding

box and ground truth boundingbox, IOUGT
p defined as the following equation:

IOUGT
P =

BP ∩ BGT
BP ∪ BGT

(3)

where BP, BGT describe the predicted bounding box area, and ground truth bounding box,
respectively. The confidence loss defined as the following equation [21]:

Lc = −λpos ∑N2

i=0 ∑B
j=0 Iobj

i,j

[
Ĉj

l log
(

Cj
i

)
+
(

1− Ĉj
l

)
log
(

1− Cj
i

)]
−

λneg ∑N2

i=0 ∑B
j=0 Iobj

i,j

[
Ĉj

l log
(

Cj
i

)
+
(

1− Cj
i

)
log
(

1− Ĉj
l

)] (4)

where N2 denotes grids quantity,B denotes bounding boxes quantity in each grid, Iobj
i,j

determine if the bounding box contains an object in the ith grid, when an object exists in the

jth bounding box, Iobj
i,j equal to 1, otherwise it is 0.

ˆ
Cj

i denotes the confidence of prediction,

Cj
i denotes the confidence of ground truth .λpos and λneg used to control the weight of the

loss function from bounding box coordinate predictions.

2.3. Proposed Method

Transformers were originally proposed for language modeling [38], and recently vision
transformers were applied to computer vision, which has shown promising potential in
a variety of tasks, such as recognition, detection, and segmentation [39]. The transformer
encoder block can capture global information and abundant contextual information [40].
The structure of the vision transformer is shown in Figure 5.

MLP

Add

Embedded Patches

Norm

Multi-Head 
Attention

Norm

Add

Transformer Encoder

Figure 5. Schematic diagram of Vision Transformer Encoder.
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The basic unit of language information is a word, but a picture is composed of pixels.
If a method similar to NLP is used to arrange the pixels into a queue for input, the input
dimension has far exceeded the sequence length that the Transformer could carry; therefore,
based on this problem, the Vision Transformer proposes a strategy to block the image, that
is, the original image is divided into small patches and encoded in blocks.

Figure 5 shows a block composition of VisionTransofomer. The input tensor first passes
through Layer Normalization, then passes through a Multi-Head Attention, passes through
a residual connection, then passes through Layer Normalization, and finally obtains the
output through an MLP and residual connection. Dimensions remain unchanged.

A vision transformer encoder contains two stages with residual connections. One is a
multi-head attention layer, and the other is a fully connected MLP layer. The transformer
encoder block adds the ability to focus on the current pixel and acquire the semantics of the
context. Thus, we use the transformer encoder fuse in the detection framework to avoid
the underfitting problem of lightweight networks.

Figure 6 shows our method; we simplified the number of C3 layers in YOLOv5 and
reduced the number of input channels to 1/8 to achieve a lightweight baseline detection
network. Such a reduced parameter was chosen for two reasons: Firstly, since the SAR
ship detection task is a binary classification task; and the SAR image is a grayscale image,
the number of color channels is only 1/3 of the optical RGB image, so there is no need for a
complex backbone network to extract image features. Secondly, the input channel of 1/8 is
selected to ensure that the weight file can adapt to the capability of the aerospace-grade
onboard computers. Take a 6U aerospace-grade computer RAD750 [40] as an example, its
EEPROM has a storage space of 4 MB, The size of the model file is about 1.3 MB with a 1/8
input channel, which is just enough to achieve double redundancy storage on the computer
to avoid data loss in the space radiation environment.

Conv

Conv

Input

C3

Conv

2×C3

Conv

SPP

3×C3

Conv

Upsample

Concat

C3

Conv

Upsample

Concat

Conv

C3

C3

Concat

Conv

C3

Conv

Concat

C3

YOLO 
Head

YOLO 
Head

YOLO 
Head

3×Transformer 
Position 2

2×Transformer 
Position 1

Transformer 
Position 3

Transformer 
Position4

Transformer 
Position 5

Figure 6. Block diagram of the proposed method. The figure also shows a corresponding map
of the position relationship added by the transformer encoder marked in purple. For example: If
the vision transformer is fused at Position 1, then the fusion network is named YOLOv5+ViT(1);
if the transformer is connected at Position 1 and Position 2, then the fusion network is named
YOLOv5+ViT(1+2).

To prevent the underfitting of the shallow network, we fuse the vision transformer
module in the baseline network. It is worth noting that to ensure the balance of the entire
detection framework and keep the lightweight feature, we also adjust the scale of the
transformer. The transformer input channel is reduced to 1/8 and the number of layers is
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reduced to 1/3 of the paper [31] proposed to match the lightweight detection network. Since
we study a lightweight algorithm, the efficiency of the transformer encoder integration
within the detection framework is crucial, to study this problem we set different pre-fusion
points on the baseline detection framework; the position definition corresponding map is
shown in Figure 6. Due to the black-box nature of the neural network model, we set up
experiments to investigate different configurations’ performance and energy consumption
to find the most efficient fusion configuration.

2.4. Dataset

SAR Ship Detection Dataset (SSDD) [30] is an open-source dataset with a total of
1160 images for evaluating performance in this paper. We divide the dataset into training
sets with 928 images and test sets with 232 images. Figure 7 shows examples. The average
number of ships per image is 2.12.

Figure 7. Some slice samples of the SSDD dataset. The green bounding box is the ground truth
annotation of the ships in the dataset.

We convert the label files from the PASCAL VOC standard to YOLO format, each
rectangular bounding box represents each ship label in the dataset; each bounding box
contains five parameters, the normalized (from 0 to 1) ship center position (X, Y), the length
and width of the rectangle (W, H), and one-bit ship identification marks. Figure 8 shows
the labeling method.
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（0，0） （1，0）

（0，1） （1，1）

X-axis

Y-axis

Origin

( X, Y, W, H )

Figure 8. The annotation information of a labeled ship chip.

3. Results
3.1. Evaluation Methods

Precision rate, Recall rate, and mean Average Precision (mAP) indicators are dedicated
to evaluating the model’s performance. If the predicted result is true and the ground truth
result is also true, the test result is regarded as a true positive (TP). If the predicted result is
true and the ground truth result is false, the test result is regarded as a false positive (FP).
If the predicted result is false but the ground truth result is true, the test result is regarded
as a false negative (FN).

Equation (5) defines the Precision rate. Precision describes the amount of the positives
predicted by the detector as true positives. Equation (6) defines the Recall rate. Recall
describes the amount of true positive examples recalled by the detector from the perspective
of true results. When calculating Precision and Recall separately by gradually lowering
the IOU thresholds that consider detections to be true. With Recall on the horizontal axis
and Precision on the vertical axis formed precision–recall (P–R) curve; Equation (7) defines
the mAP index. It describes the area enclosed by the P–R curve and the coordinate axis
and characterizes the model’s combined performance in terms of Precision and Recall. The
experiments are implemented on an Nvidia RTX-2070 Super GPU.

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

mAP =
∫ 0

0
P(R)dR (7)

3.2. Experiment 1: Fusion Configuration Research

Firstly, we evaluate the performance of the transformer encoder fuse with the detection
framework. We select five pre-fusion positions in the baseline detection networks shown in
Figure 6; we add the transformer encoder, train, and test different configuration module’s
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performance separately according to the corresponding relationship. Hyperparameter
settings: SGD optimizer with 0.01 learning rate; the batch size is set to 16. the number of
workers is set to 8; After 300 epochs, Table 1 listed the results.

Table 1. Experiment results of different fusion configurations.

Method Precision (%) Recall (%) mAP0.5
(%)

mAP0.5:0.95
(%)

Training
Time(min) Consumption (W) FLOPs (G)

YOLOv5 + ViT(1) 96.88 91.94 96.49 60.95 73.1 172.9 1.1
YOLOv5 + ViT(2) 95.50 93.04 96.60 60.03 73.1 171.6 1.1
YOLOv5 + ViT(3) 97.60 91.00 96.73 60.59 55.2 161.5 1.1
YOLOv5 + ViT(4) 94.71 91.58 96.26 62.04 55.6 155.7 1.1
YOLOv5 + ViT(5) 98.76 90.84 96.60 61.52 46.7 151.9 1.1

YOLOv5 + ViT(1+2) 95.59 91.58 96.77 60.20 73.6 172.9 1.1
YOLOv5 + ViT(3+4+5) 95.52 91.21 96.17 58.80 64.8 162.1 1.1

Baseline 95.28 92.67 96.62 61.38 45.9 148.7 1.1

We count the power consumption of the GPU in the calculation process. Figure 9
plots the mAP–Epoch curve and GPU power usage–training time curve. We can see that
different configurations also correspond to different training times and power, fusing the
transformer module in the neck position can achieve higher performance gains, as well as
relatively low training power consumption.

Figure 9. The upper-left subgraph plots the Epoch–mAP curve; the upper-right subgraph plots the
Epoch–mAP curve; the lower-left subgraph is the best mAP in 300 epochs; the lower-right subgraph
plots the GPU power usage and training time curve.

By comparing the training time and power consumption of the baseline and the
proposed method, it can be seen that adding the transformer module increases the compu-
tational complexity. In addition, by observing the experimental data, adding a transformer
module on Position 1 and Position 2 significantly results in longer training time and higher
training power consumption than adding a transformer module on Position 3, Position 4,
and Position 5, which is due to the matching for the multiple layers of the backbone
network, the transformer encoder with a corresponding multiple, as shown in Figure 6.
Furthermore, the front part of the network has a higher resolution feature map than the
end of the network. Thus, fusing the transformer encoder in the backbone brings higher
computational complexity than fusing the transformer encoder in the neck.

Interestingly, although the computational cost of integrating the transformer at the
end of the network is not high, it brings a significant improvement in mAP. We can find
that by adding the transformer module in Position 4 and Position 5, the model performance
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metrics have been improved. In other words, fusing the transformer module at the end
of the network to capture more “global” context information in the low-resolution feature
map, is more efficient for improving performance.

3.3. Experiment 2: Module Scale Research

This experiment studies the performance comparison between the proposed method
with different scales of classic YOLOv5 modules with Small, Medium, Large, and X large
scales. Table 2 and Figure 10 show the test result.

Table 2. Experiment results of different scales.

Method Precision (%) Recall (%) mAP0.5 (%) Parameters
(Byte)

Training
Time(min) Consumption (W) FLOPs (G)

YOLOv5x 98.30 95.24 98.05 86.2 M 328.9 202.1 204.3
YOLOv5l 97.24 96.88 98.56 46.1 M 197.0 192.2 107.8

YOLOv5m 97.41 96.33 98.50 20.9 M 136.1 183.2 47.9
YOLOv5s 95.98 96.15 97.81 7.00 M 72.6 174.5 15.9

YOLOv5 + ViT(4) 94.71 91.58 96.26 1.31 M 55.6 155.7 1.1
YOLOv5 + ViT(5) 98.76 90.84 96.60 1.31 M 46.7 151.9 1.1

Figure 10. The upper left subgraph plots the Epoch–mAP curve; the upper right subgraph is the best
mAP in 300 epochs; the lower-left subgraph plots the GPU power usage and training time curve;
the lower right subgraph plots the GPU temperature during the training progress.

As shown in Figure 10, the best performing model is YOLOv5L with mAP0.5 = 98.56%,
the YOLOv5 + ViT(5) mAP0.5 = 96.60%, which is 1.96% lower than YOLOv5L. However,
the parameters of the proposed method in this paper are only 1.3 M, which is only 1.5% of
the YOLOv5X. It can be seen from the training time and the average power consumption of
the GPU that the proposed methods are more environmentally friendly and energy-saving.
For example, the training process of YOLOv5 + ViT(4) lasts 55.6 min, and the average
power consumption is 155 W while training a YOLOv5X model, the energy consumption is
7.8 times that of YOLOv5 + ViT(4). The method proposed in this paper is lightweight and
low training power consumption and is especially suitable for deployed on satellites for
onboard reasoning and online learning.
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4. Discussion

We evaluated the performance of the vision transformer encoder at different positions
integrated with the lightweight framework. The experimental results show that integrating
the vision transformer encoder in the neck (Position 4 and Position 5) can make the model
more efficient. In this section, we analyze the visualization results, that is Bounding-box
generated before Non-Maximum Suppression (NMS).

Figure 11 shows an offshore scene; we can see that the bounding box generate by
YOLOv5 + ViT(4) is more focused on the target. This shows that the integrated vision
transducer encoder in the neck effectively improves the detection performance.

Figure 11. An offshore visualization scenario. Each subgraph represents the Bounding-box generated
before NMS in the different models.

Figure 12 proves the above point again, integrated vision transformer encoder in the
neck (YOLOv5 + ViT(4)) effectively reduces false alarms caused by river bank textures.

Figure 12. A complex visualization scenario. Each subgraph represents the Bounding-box generated
before NMS in the different models.

Figure 13 shows the comparison with the different scales of YOLOv5. Interestingly,
although the YOLOv5 + ViT(5) model parameters are less than others, it also effectively
avoids false alarms. Compared with the optical image, the SAR image has only one gray
channel, and the ocean remote sensing has an only gray background. The features are
relatively single, so there is no need to obtain redundant feature extraction. Furthermore,
the YOLOv5 detector is easily disturbed by the noise in the SAR image, mistakenly detected
noise as a ship, and leads to a false alarm phenomenon occurring. The detector combines the
vision transformer and suppresses the false alarms. From this point of view, YOLO− ViTSS
has an anti-noise ability. This is because, due to the integration of the vision transformer
encoder, the model not only pays attention to the pixel information of the corresponding
channel but also pays attention to the context information, which effectively reduces the
false alarm caused by noise, which is suitable for SAR images with inherent coherent noise
especially. We call the proposed model, which fuses with the vision transformer module
in the neck: YOLO with the Vision Transformer encoder for SAR Ship Detection(YOLO
− ViTSS). Experiments show that YOLO−ViTSS has good anti-noise performance and is
very lightweight and energy-saving, it can be deployed on spaceborne computers with
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limited computing power for online training and on-orbit detection, transplanting the
YOLO−ViTSS to the remote sensing satellite platform will be an important future work.
Furthermore, another important future work is exploring interpretability and setting up
cross-validation training, it will be an effective technical route to further improve the
generalization ability of the model and reduce the parameters.

Figure 13. An offshore visualization scenario. Each subgraph represents the Bounding-box generated
before NMS in the different scale models.

5. Conclusions

The vigorous development of the commercial aerospace industry and the interconnec-
tion of everything in the intelligent world has become an irreversible trend. Satellite remote
sensing has entered the era of a big data link with IoT. Compared with traditional remote
sensing data interpretation calculations on the ground that consume electricity resources
on the earth, it is more environmentally friendly to run high-performance computing with
solar power from satellites in orbit. Although the energy savings of a satellite may be
negligible. However, with the construction of giant constellations, if the satellites are fully
utilized for high-performance computing, the savings in power resources on Earth will
be considerable.

On-orbit interpretation gives remote sensing images an expanse of application space.
The experiment performance shows that our method is effective. YOLO-ViTSS has anti-
noise ability, lightweight characteristics, and energy-saving. The model size of 1.31 MB
and computational complexity is 1.1GFLOPs can be easily integrated into the satellite
computing platform. The average training power consumption of 151 W can be powered
by a 0.7-square-meter satellite solar array, which can meet the microsatellites’ power supply.
YOLO-ViTSS has great potential deployed to the onboard computer on SAR satellite
constellations to build a novel real-time, online training supportable, online IoT accessible,
eco-friendly, and sustainable SAR image interpretation mode.
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