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Abstract: Rapid and accurate prediction of crop nitrogen content is of great significance for guiding
precise fertilization. In this study, an unmanned aerial vehicle (UAV) digital camera was used
to collect cotton canopy RGB images at 20 m height, and two cotton varieties and six nitrogen
gradients were used to predict nitrogen content in the cotton canopy. After image-preprocessing,
46 hand features were extracted, and deep features were extracted by convolutional neural network
(CNN). Partial least squares and Pearson were used for feature dimensionality reduction, respectively.
Linear regression, support vector machine, and one-dimensional CNN regression models were
constructed with manual features as input, and the deep features were used as inputs to construct a
two-dimensional CNN regression model to achieve accurate prediction of cotton canopy nitrogen. It
was verified that the manual feature and deep feature models constructed from UAV RGB images
had good prediction effects. R2 = 0.80 and RMSE = 1.67 g kg−1 of the Xinluzao 45 optimal model,
and R2 = 0.42 and RMSE = 3.13 g kg−1 of the Xinluzao 53 optimal model. The results show that the
UAV RGB image and machine learning technology can be used to predict the nitrogen content of
large-scale cotton, but due to insufficient data samples, the accuracy and stability of the prediction
model still need to be improved.

Keywords: UAV-RGB image; image analysis; leaf nitrogen content; cotton; machine learning

1. Introduction

The precise application of nitrogen fertilizer based on crop growth is a current hotspot
in research on agriculture [1]. Traditional nitrogen fertilizer management is based on
field soil sampling and testing or plant nutrition analysis, with an advantage of high
prediction accuracy for crops at a certain sampling point. However, due to the high cost, it
cannot meet the need of accurate monitoring of crop nutrients in large areas and multiple
periods. Compared with traditional methods, image-based plant nutrition detection has
the advantages of fast sampling speed, strong real-time detection, and high prediction
accuracy [2].

By combining remote sensing technologies, image-based monitoring can realize large-
scale crop growth monitoring in the field. Lee et al. [3] found that the R2 reached 0.85, and
the root mean square error reached 4.52 g m−2 through combining unmanned aerial vehicle
(UAV) multi-spectral images with machine learning methods in predicting the corn canopy
nitrogen content in the field. However, remote sensing image data contains a large amount
of redundant information [4]. Extracting useful data from the complex image data to
construct a prediction model is always faced with a tough technical challenge. The present
methods for feature extraction from image data mostly focus on color and texture [5].
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Feature extraction is the first step in constructing a nitrogen prediction model, and further
screening and fusion of the extracted features need to be combined with machine learning
methods, including data analysis methods such as classification, clustering, and regression.
Machine learning methods have obvious advantages in discriminating model construction
methods [6].

As the scale increases, the height of data collection also increases, but the prediction
accuracy of the model based on the data collected by the existing image acquisition equip-
ment is not improved with the increase in height, which limits the application of remote
sensing technology in the monitoring of crops. Deep learning, a sub-branch of machine
learning, is a learning process that uses deep neural networks in extracting features. Deep
learning shows high prediction accuracy in practice and can obtain very complex underly-
ing patterns for the data. It is especially suitable for large data sets and high-dimensional
data sets. The hidden layer of the network significantly reduces the demand for features
engineering. These characteristics entail unique deep learning advantages in crop monitor-
ing [7]. With the help of deep learning, the features that can be used for crop monitoring
can be effectively extracted [8].

Taking cotton plants in the field as the research subject, this study constructed a
nitrogen prediction model based on the cotton canopy data collected by using the UAV and
the appropriate feature screening and extraction methods. The aim of this study was to
provide a technical measure for the realization of fast, economical, non-destructive, and
high-efficient cotton nitrogen estimation in cotton fields and build a theoretical basis for
remote sensing technology for crop monitoring.

2. Materials and Methods
2.1. Experimental Design

This experiment was carried out in the suburbs of Shihezi City, Xinjiang, China
(44◦18′52.81′′ N, 85◦58′48.27′′ E) in 2019. Cotton was sown in April 2019 and harvested
in October 2019. The water and fertilizer were applied through drip irrigation under
the mulch. The film width was 2.05 m. Six rows were under each film. The wide row
spacing between two rows was 0.66 m, and the narrow row spacing was 0.10 m. Wide and
narrow rows were arranged alternately. The seeding density was about 110,000 plants/hm2

(Figure 1).
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The soil type of the test site was irrigated gray desert soil, with organic matter, avail-
able nitrogen, available phosphorus, and available potassium content of 11.75 g kg−1,
0.45 mg kg−1, 0.39 mg kg−1, and 375.21 mg kg−1. To improve the generalization and
accuracy of the prediction model, two varieties of cotton Xinluzao 45 and 53 were selected
as the research subjects in this study, and six nitrogen fertilizer gradients (0 kg hm−2

(N0), 120 kg hm−2 (N1), 240 kg hm−2 (N2), 330 kg hm−2 (NC), 360 kg hm−2 (N3), and
480 kg hm−2 (N4)) were set. Each gradient had three repetitions, and a total of 36 plots
was set. The area of each plot was 62.5 m2 (2.5 × 25) (Figure 1). The applied nitrogen
fertilizer was urea, which was dissolved in a differential pressure tank and applied through
drip irrigation.

2.2. Data Acquisition

RGB image data of the cotton canopy was collected five times from June to August in
2019 (June 28, July 6, July 16, July 28, and August 7) using digital cameras on a four-rotor
UAV (Phantom 4 advance, DJI, China). The takeoff weight of the UAV was 1380 g, the
maximum flight speed was 20 m/s, and the flight took about 30 min. The camera was a
1-inch CMOS camera with an effective pixel of 20 million. In the process of data acquisition,
the flight altitude was 20 m, the ground resolution was about 0.5 cm, the overlap rate
of heading and side direction was set to 75%, and the collected data were saved in the
*.TIF format. Pix4D ag (Pix4D, Lausanne, Switzerland) software was used for UAV image
stitching (Figure 1). To minimize the influence from the difference in light intensity at
different sampling times on image quality and improve the comparability of the images, the
time of 12:00–14:00 with strong light and relatively stable solar altitude angle was selected
for image acquisition.

Three cotton samples were selected on the side and middle row of the membrane in
each plot for the nitrogen content measurement. The root, stem, and leaves were separated
and dried in an oven until constant weight. The dry weight of each organ was weighed. The
dried stem and leaves were smashed separately and digested with concentrated sulfuric
acid (98%) to determine the leaf nitrogen content in cotton by the Kjeldahl method (Figure 2).
The average value of two sampling points in each plot was used for analysis.
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Figure 2. Nitrogen status of Xinluzao 45 and Xinluzao 53.

The images collected from one plot in each sampling were taken as one sample. A
total of 180 samples was collected. The data set was divided into the training set and the
test set at a ratio of 2:1. For each nitrogen application gradient, two replicates were set as
the training set, and one was set as the test set (Table 1).

Table 1. Data set division.

Variety Data Set June 28 July 6 July 16 July 28 August 7 Total

Xinluzao45
Training set 12 12 12 12 12 60

Test set 6 6 6 6 6 30

Xinluzao53
Training set 12 12 12 12 12 60

Test set 6 6 6 6 6 30
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2.3. Image Preprocessing

ENVI 5.3 software (ENVI, Exelis Visual Information Solutions, Boulder, CO, USA)
was used to divide the image data collected in each sampling. The ROIs of the target plots
were manually marked, and the mask was attached to output the image data of the target
plots. The marking of the soil pixels in the intervals between rows as plant regions caused
by the slight error in the selection of ROIs, and the appearance of a large amount of soil
background in the early growth stage of cotton will affect the detection accuracy of the
model. Therefore, this study adopted a threshold segmentation method to remove noise
such as soil in the target area and only retained the cotton canopy pixels.

2.4. Feature Extraction

Traditional manual scene classification includes low-level features and intermediate
features. Low-level features mainly refer to features that can be obtained through simple
operations based on the image itself, such as color, texture, shape, etc. These features are
often those with distinguishing features extracted by imitating human vision. Intermediate
features refer to those obtained by multi-feature fusion based on low-level features, which
are mainly about the diverse fusion of color and texture.

In this study, 46 features including 25 visible-band vegetation indexes (Table 2), the HSI
color model, and image texture were used as manual features. Texture features included
mean, standard deviation (std), angular second moment (Asm), entropy (Ent), contrast
(Con), and inverse differential moment (Idm) under gray level co-occurrence matrices of
0◦, 45◦, 90◦, and 135◦. Hue (H), saturation (S), and intensity (I) were used in the HSI color
model to represent images, which was more in line with the way people describe and
interpret colors.

Table 2. Visible-band vegetation indexes.

Vegetation Index Variable Vegetation Index Variable

R, G, B V1, V2, V3
(

g2 − r2)/
(

g2 + r2) V15 [9]
r, g, b = R/N, G/N, B/N

N = R + B + G
V4, V5, V6

(
g2 − b× r

)
/
(

g2 + b× r
)

V16 [9]
(g− r)/(g + r) V17

r/g V7 (2g− r + b)/(2g + r + b) V18
g/b V8 (2g− r− b)/(2g + r + b) V19 [10]
r/b V9 1.4r− g V20 [11]

r− b V10 2g− r− b V21
r + b V11 V21− 1.4r− g V22 [12]
g− b V12 0.441r− 0.881g + 0.3856b + 18.78745 V23 [13]

(r− b )/(r + b ) V13 (g− r)/(g + r− b) V24 [14]
(r− g− b)/(r + g) V14 (g− b)/(r− g) V25

Deep features are usually deep and abstract features of images selected by the neural
network model. It has the characteristics of no manual participation and less influence
from illumination and posture, but the expression of features cannot be clearly identified.
In this study, convolutional neural networks (CNNs) were used for deep feature extraction.

2.5. Feature Dimensionality Reduction

In this study, 46 manual features were extracted, but the redundant information and
noise could cause errors in model construction and reduce the accuracy. Therefore, data
dimensionality reduction was used to extract the internal essentials of the features, reduce
the errors caused by redundant information and noise, and facilitate calculation and visual-
ization. Data dimensionality reduction included feature extraction and feature selection.
Feature extraction transformed high-dimensional feature vectors into low-dimensional
feature vectors through mapping (transformation). Feature selection realized data dimen-
sionality reduction by selecting some of the most representative and good-performance
features from the original features.
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Partial least squares-based dimension reduction (PLSDR) is a data dimensionality
reduction method based on feature extraction [15]. Through modeling with partial least
squares to extract features, the potential components that could represent the original data
space were obtained, and the data dimensionality reduction was achieved. Pearson, a
commonly used data dimensionality reduction method based on feature selection, was
used to select features by calculating the correlation and coefficient. PLSDR and Pearson
were used for manual features dimensionality reduction in this study.

2.6. Model Construction

Multiple linear regression (LR), a model analyzing the linear relationship between
feature variables and predicted values, was used to construct the model. Support vector
machine (SVM) is a generalized linear classifier for nonlinear classification by the kernel
method [6,16], and its decision boundary is the maximum margin hyperplane for solving
learning samples. CNN is constructed by imitating the visual perception mechanism. The
parameter sharing of the convolution kernel in the hidden layer and the sparsity of inter
layer connection enable the CNN to learn the features of pixels with less computation.
CNN can not only extract deep features by increasing the depth of the network [16,17] but
also avoid complex feature engineering. Therefore, CNN is widely used in coping with
problems in regression and classification [18,19]. In this study, LR and SVM were used
for manual feature model construction, and two CNN structures (Figure 3) were used for
manual feature and deep feature model construction, respectively. The one-dimensional
(1D) CNN (Figure 3a) included an input layer, three 1D convolution layers (1D-CNN), a
full connection layer (FC), and an output layer. The 1D-CNN included a 1D convolution
structure (Conv1D), a rectified linear unit activation function (ReLU), batch normalization
(BatchNorm), and max pooling (MaxPool). The number of convolution kernels of the
three 1D-CNNs was 32, 64, and 128. The two-dimensional (2D) CNN (Figure 3b) included
an input layer, four 2D convolution layers (2D-CNNs), an FC, and an output layer. The
2D-CNN included a 2D convolution structure (Conv2D), ReLU, BatchNorm, and MaxPool.
The number of convolution kernels of the four 2D-CNNs was 32, 64, 128, and 256.
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3. Results and Discussion
3.1. Analysis of Data Dimensionality Reduction Results

Partial least squares analysis was carried out for the data of the two cotton varieties
in the experiment. For Xinluzao 45, when ten principal components were remaining, the
contribution rate of principal components was 99.90%, and the root mean square error
was the lowest (Figure 4a). For Xinluzao 53, when eight principal components were
remaining, the root mean square error was the lowest, and the contribution rate of principal
components was 99.93% (Figure 4b).
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Variables such as standard deviation and contrast in texture features, saturation in HIS
color space, and V9 and V25 in the color index were of great importance. When analyzing
the data of the two varieties, the same variables had different contribution rates to the
model, but the set of important variables had high similarity (Figure 4). This is because
there are phenotypic similarities among different cotton varieties, which can be used as a
reference for model generalization.

Pearson correlation analysis was carried out on the 46 features extracted from the
image data of the two varieties of cotton, at the significance level of 0.01. There were 25 sig-
nificantly correlated features extracted from Xinluzao 45 (Figure 5a) and 28 significantly
correlated features extracted from Xinluzao 53 (Figure 5b).
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There were strong correlations among features, especially the features for Xinluzao 53,
such as texture features and color indexes of V15–V22, indicating that the feature data had
redundancy. If a large number of highly correlated features was selected, it would reduce
the effect of model fitting (Figure 5). Therefore, the features obtained through correlation
analysis were sorted during model training, and the optimal feature set was selected after
model verification.

3.2. Manual Feature Regression Model
3.2.1. Results of Traditional Machine Learning Methods

The partial least squares regression model was constructed based on the features
obtained by the partial least squares method. The LR and SVR models were constructed
based on the feature sets screened by Pearson correlation analysis. The Python 3.6.4
programming language was used in modeling. When constructing the PLSR model, the
optimal data sets obtained by partial least squares dimensionality reduction were input, in
which Xinluzao 45 contained 10 principal components, and Xinluzao 53, which contained
8 principal components. When modeling with the features screened by Pearson correlation
analysis, the features were sorted according to the correlation strength, and LR and SVR
models were constructed with the data sets of different sizes (2, 3, . . . , 23) to screen the
optimal model. After verification, for Xinluzao 45, 14 features were used to construct the LR
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model, and 16 features were used to construct the SVR model. For Xinluzao 53, 9 features
were used to construct the LR model, and 13 features were used to construct the SVR model
(Figure 6).
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The model fitting for Xinluzao 45 was better than that of Xinluzao 53 (Figure 6). This
was because when collecting UAV remote sensing data, the growth of Xinluzao 45 was
better than that of Xinluzao 53, and the complexity of each plot in the image data of the latter
was higher than that of the former. For example, compared with Xinluzao 45, Xinluzao 53
had less dense vegetation and more exposed bare soil (Figure 1), which brought difficulties
to evaluate the leaf nitrogen level of the whole site. However, after the removal of noise
and feature screening, the correlation coefficient was still maintained at 0.37.

3.2.2. Results of 1D CNN

To test the superiority of the multi-layer convolution network for feature extraction,
this study took 46 features of the two varieties as inputs and constructed a 1D CNN model.
The framework used was pytorch1.5.0, the loss function was MSELoss, the learning rate
was 0.001, and the number of iterations was 200.

The predicted results of 1D CNN were better than those of traditional machine learning
methods (Figure 7), and there was no need for feature dimensionality reduction. To verify
the effectiveness of CNN feature extraction, the saliency map was used to visualize the
significance of CNN features. In Figure 8, it can be seen that the features sensitive to the
model were similar to the important features of feature dimensionality reduction screening,
and CNN could extract deeper fused features, which led to the good performance of CNN.

3.2.3. Results of Deep Feature Regression Model

The 1D CNN model constructed using manual features had reliable performance in
the prediction of leaf nitrogen content of the two varieties. Therefore, this study used the 2D
CNN model for direct extraction of the deep features of UAV remote sensing images, which
reduced the steps of feature engineering. The model was constructed with the pytorch1.5.0
framework, the loss function was MSELoss, the learning rate was 0.0005, and the number
of iterations was 200. GeForce GTX 1080 Ti graphics cards were used for acceleration. The
model prediction results are shown in Figure 9. The R2 of the model for Xinluzao 45 was
0.79, and that for Xinluzao 53 was 0.418. The 2D CNN model performed well in both
the training set and the test set, especially in the training set, and the R2 values of both
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varieties were greater than 0.9, which proved that the 2D CNN was effective for the deep
features extracted. We will increase the number of training data in subsequent experiments
to improve the accuracy and stability of the results.
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4. Conclusions

In this study, UAV-based RGB remote sensing image data were collected for the
prediction of cotton leaf nitrogen content. Through the combination of feature extraction,
feature dimensionality reduction, and machine learning model construction, the prediction
of cotton nitrogen content based on manual features was realized. Reliable prediction
accuracies were obtained for the models for both cotton varieties (Xinluzao 45, R2 = 0.79,
RMSE = 1.73 g kg−1; Xinluzao 53, R2 = 0.39, RMSE = 3.20 g kg−1). By constructing a
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CNN model, the prediction of cotton nitrogen content based on deep features was realized
(Xinluzao 45, R2 = 0.80, RMSE = 1.67 g kg−1; Xinluzao 53, R2 = 0.42, RMSE = 3.13 g kg−1).
The CNN model does not need the construction of feature engineering, and the extracted
deep features are highly effective in model prediction. Therefore, it is feasible to predict
cotton nitrogen content using UAV-based RGB remote sensing images, but it is necessary
to further improve the generalization of prediction models for different varieties. In future
research, we will pay attention to more cotton varieties, planting areas, and growth periods;
continue to expand data samples and improve the cotton nitrogen content prediction model;
and try to apply this method for the nutrition detection of other crops.
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