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Abstract: The population dynamics of small and middle-sized pelagic fish are subject to considerable
interannual and interdecadal fluctuations in response to fishing pressure and natural factors. How-
ever, the impact of environmental forcing on these stocks is not well documented. The Moroccan
Atlantic coast is characterized by high environmental variability due to the upwelling phenomenon,
resulting in a significant abundance and variation in the catches of small and middle-sized pelagic
species. Therefore, understanding the evolution of stock abundance and its relationship with dif-
ferent oceanographic conditions is a key issue for fisheries management. However, because of the
limited availability of independent-fishery data along the Moroccan Atlantic coast, there is a lack
of knowledge about the population dynamics. The main objective of this study is to test the corre-
lation between the environment conditions and the stock fluctuations trends estimated by a stock
assessment model that does not need biological information on growth, reproduction, and length or
age structure as input. To achieve this objective, the fishery dynamics are analyzed with a stochastic
surplus production model able to assimilate data from surveys and landings for a biomass trend
estimation. Then, in a second step, the model outputs are correlated with different environmental
(physical and biogeochemical) variables in order to assess the influence of different environmental
drivers on population dynamics. This two-step procedure is applied for chub mackerel along the
Moroccan coast, where all these available datasets have not been used together before. The analysis
performed showed that larger biomass estimates are linked with periods of lower salinity, higher
chlorophyll, higher net primary production, higher nutrients, and lower subsurface oxygen, i.e.,
with an enhanced strength of the upwelling. In particular, acute anomalies of these environmental
variables are observed in the southern part presumably corresponding to the wintering area of the
species in the region. The results indicate that this is a powerful procedure, although with important
limitations, to deepen our understanding of the spatiotemporal relationships between the population
and the environment in this area. Moreover, once these relationships have been identified, they
could be used to generate a mathematical relationship to simulate future population trends in diverse
environmental scenarios.

Keywords: chub mackerel; population trend; SPiCT model; environmental covariates; Moroccan
Atlantic coast

1. Introduction

Small and middle-sized pelagic fish are considered an essential resource in the marine
ecosystem, which occupy an intermediate level in the trophic web [1]. In economic terms,
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the small pelagic group is the main fish group harvested, representing approximately 39
million tons [2] and playing a crucial role in the ocean’s food chain. Large fluctuations in
the abundance of small and middle-sized pelagic fish have been observed over multiple
decades and in very diverse areas, this instability being one of the main characteristics of
these resources [3,4]. Their stock abundance can be driven by the main force of fishing
mortality but can also be influenced by environmental variables. In this respect and based
on biological characteristics, middle and small pelagic fish differ from each other [5]. The
main differentiating characteristics between medium and small pelagic fish are mostly
more plasticity in the food spectrum, a longer life span and major number of age groups,
high mobility, and horizontal and vertical migration capacity [6]. However, middle-sized
juvenile pelagic fish are in many aspects similar to smaller species. Due to their biological
characteristics, middle-sized pelagic species tend to migrate more widely than smaller
forms and are able to cross environmental barriers [5,6]. Considering all these characteris-
tics, small and middle-sized pelagic species are typically very sensitive to environmental
forcing [7–9].The processes explaining the impact of environmental covariates on small and
middle-sized pelagic dynamics are not fully understood. According to Freon et al. (2005),
their effects on small pelagic stocks, can be observed on three-time scales in which fisheries
are influenced. The first category is short-term influences in which the environmental
variability will affect only fish movement associated with changes in their aggregation
pattern, which will affect the catchability of the harvested small pelagic species. The second
type is medium-term influences, in which environmental covariates affect larval survival,
which results in the interannual variability inthe recruitment success of the stock. The
last category is long-term influences, which is related to the long-term fluctuations in the
abundance trend of stocks, which are interpreted to be the result of environmental forcing.

The Moroccan Atlantic coast is one of the most productive fishing areas in the world
because of the sustained Eastern Central Atlantic Upwelling system [10–12], which leads
to a high biomass of small and middle-sized pelagic fish [13,14]. The small pelagic fishery
occupies an important place in the Moroccan fisheries sector [15], with approximately 80%
of the national fisheries production (National Fisheries Office (ONP), 2019). The volume of
catches reached 1.4 million tons in 2019, an increase of 9% compared to the previous year
[16]. This increase in catches requires intervention and analyses of the fishing-pressure level
on the small pelagic stocks, as there are several biological signal indications of a decrease in
the stock capacity within a highly unstable hydro-climatic environment [16]. Most studies
in Morocco use fisheries and survey data to represent the abundance of stock and compare
it with ocean dynamics observed by satellites [17–21].

However, based on existing data, including catches/landings and time series of avail-
able abundance indices provided by surveys, even with some gaps in the time series,
exploration can be conducted in a data-poor context for stocks, in order to provide an
estimation of the population dynamics trend using a Surplus Production model in Con-
tinuous Time (SPiCT, [22]). This approach is implemented for chub mackerel (Scomber
colias) in the center and south of the Moroccan Atlantic coast (from Cape Cantin to Cape
Blanc, Zones A, B, and C in Figure 1). Although this species is classified as a middle-
sized pelagic fish, the stock is included in the Moroccan small pelagic fisheries. The stock
corresponding to the center and south of the Moroccan Atlantic coast was selected as the
study area, because it represents the largest proportion of the total small pelagic catches
along the whole Moroccan Atlantic coast, 96% compared to 4% in the Mediterranean and
the Northern Atlantic areas [16,23]. Chub mackerel population dynamics, stock identity,
and status are still unknown in the whole area from the Moroccan coast to the southern
Iberian waters [23]. The uncertainty about their population structure is mainly due to the
lack of evidence of gene frequency differences among geographic samples; however, the
biological traits suggest some similarity between Mediterranean and Atlantic individuals,
but there are insufficient data and consistency to generate robust evidence on stock identity
[23,24]. Despite this species occupying an important place in the commercial fishery of
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the whole Moroccan coast, the available biological data (length-age composition, weight,
maturity, etc) for this stock are very limited [25].

Figure 1. Chub mackerel study area along the Moroccan Atlantic Coast. Central area: A + B zones.
Southern area: C zone.

Understanding the relationship between the environmental variations and the abun-
dance of chub mackerel in the center and south of the Moroccan Atlantic coast is the main
aim of this paper. First, a population trend is estimated based on four fisheries and surveys
datasets available for the study area. The fishery dynamics are analyzed with a stochastic
surplus production model able to assimilate data from surveys and landings for a biomass
trend estimation including process and observation error [22]. Then, in a second step, the
model outputs are correlated with different environmental (physical and biogeochemical)
variables in order to assess the influence of different environmental drivers on population
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dynamics. This two-step procedure is applied for the chub mackerel along the Moroccan
coast, where all these available datasets have not been used together before. The results
indicate that this is a powerful procedure, although with important limitations, that can
deepen our understanding of the relationships between the population and the environ-
ment in this area. Moreover, once these relationships have been identified, they could
be used to generate a mathematical relationship to simulate future population trends in
diverse environmental scenarios.

2. Materials and Methods
2.1. Study Area

This study is focused on the central (between Cape Cantin and Cape Boujdor
(32◦32′24′′ N–26◦07′59′′ N) and the south of the Moroccan Atlantic shelf (26◦ N-north Cap
Blanc) (Figure 1). These two areas enclose the central and south stocks of small pelagic fish,
mainly composed of sardines, anchovies, chub mackerel, horse mackerel, and occasionally
sardinellas. These zones produce about 45% of the total catch of small pelagic fish in
the Moroccan Atlantic area [15]. The abundance of these resources seems to be strongly
correlated with the intensity, seasonal, and interannual variability of the coastal upwelling
phenomena, which occur in the Grand Canary Ecosystem [26,27].

2.2. Biomass Trend Estimation
2.2.1. Model Description

The SPiCT is a stochastic state-space model that provides stock status estimation and
reproduces population dynamics by aggregating biomass across size and age groups by
following Pella and Tomlinson equations [28]. The basic model equations are classified into
process and observation equations.

The process equations describe population dynamics through exploitable biomass (Bt)
and fishing mortality (Ft), while the observation equations link observed indices (It) and
catches (Ct) with those dynamics as follows:

• Biomass equation

dBt = rBt

(
1− Bt

K

n−1
)

dt− FtBtdt + σBBtdWt, (1)

where r and K represent the intrinsic growth rate of the exploitable biomass Bt and the
carrying capacity, respectively, and n determines the shape of the production curve. For
the model implemented here, n = 2 was assumed imposing a Schaefer model on the
population dynamics. The last term accounts for process noise, where σB is the standard
deviation of that process noise and Wt is a Brownian motion, a Gaussian stochastic process
that is frequently used when defining a stochastic perturbation of a measurement. Please
note that the stochastic differential equation (SDE) described in (1) without the last term is
an ordinary differential equation (more about SDEs in [29,30]).

• Fishing mortality equation

d log(Ft) = σFdVt (2)

where dVt is a standard Brownian motion, and σF is the standard deviation of the noise.

• Index equation

log(It) = log(qBt) + et, et ∼ N(0, σ2
I ) (3)

where q is a catchability parameter, and σI is the standard deviation of the index observation
error.

• Catch equation

log(Ct) = log(
∫ t+4

t
FsBsds) + εt, εt ∼ N(0, σ2

C) (4)
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where σC is the standard deviation of the catch observation error.

2.2.2. Model Data Input

The SPiCT model was fitted using landings time series from 1990 to 2018 and three
different time series of abundance indices from acoustic surveys conducted by: the Norwe-
gian research vessel RV Dr. Fridjof Nansen (1999–2015) using a pelagic trawl, the Russian
RV Atlantida fleet (1994–2015) also using a pelagic trawl, and the Moroccan vessel R/V Al
Amir Moulay Abdellah in the period 2000–2017 fished by purse-seine. It is important to
consider here that the selectivity of the survey gears is an important factor mentioned in
several papers. The availability of current data on the selectivity of commercial and survey
trawls and purse seiners is critical to ensure that the assessments are based on the fishing
gear characteristics actually used in the fisheries [31]. All these time series were obtained
from the last CECAF report [32], and they are displayed in Figure 2.

Figure 2. Data input summary. (Top left): chub mackerel catches in tons. (Top right): Amir
Moulay Abdellah acoustic estimates (autumn). (Bottom left): Nansen acoustic estimates (autumn).
(Bottom right): Atlantida acoustic estimates (summer).

2.2.3. Model Output Consistency Analysis and Model Implementation

The consistency for the model output was tested for the estimated relative biomass
time series, which provides relevant information on population fluctuations. For this, a
retrospective analysis (running the model by removing the last year of data at each iteration)
was performed, and its corresponding measure of retrospectivity [33] was calculated
basically as the difference between the most recent year’s estimate, when removing one
year or more, and the estimate for the same year provided by the model without removing
any data. In addition, as the model assumed that one-step ahead (OSA) residuals of the
fit were independent and normally distributed, bias, autocorrelation, and normality were
tested for those residuals. Bias was determined by calculating the probability of the mean
of residuals to be different from zero, autocorrelation by a Ljung-Box simultaneous test
for 4 lags, and normality by a QQ-plot with a Shapiro test. The model and tests were
implemented using the SPiCT R package (version 1.3.4, Vienna, Austria); more information
on these tests and the model implementation is available at [22,34] (Handbook for the SPiCT).
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2.3. Comparison of Model Outputs with Physical and Biogeochemical Variables
2.3.1. Sources of Environmental data

Environmental variables in the selected area of study (20◦ N to 35◦ N and −5◦ W
to −20◦ W, Figure 1) were obtained from the Copernicus Marine data portal https://
resources.marine.copernicus.eu/, accessed on 19 January 2021. Both physical variables and
biogeochemical variables were downloaded using global reanalysis products that cover the
region of interest and provide information at a monthly resolution for the entire time range
considered in the stock model (1993 to 2018).

For physical conditions, the product ‘GLOBAL_REANALYSIS_PHY_001_030’ was
used. This dataset contains 3D fields of the different variables at a spatial resolution of
0.086 degrees and monthly time-step. From the total dataset, the following variables
were obtained:

• Bottom salinity;
• 3D temperature (◦C);
• 3D salinity;
• 3D zonal velocity (m/s);
• 3D meridional velocity (m/s).

Biogeochemical conditions were downloaded from ‘GLOBAL_REANALYSIS_BIO_001_029’
product, which provides 3D fields at a spatial resolution of 0.25 degrees (i.e., coarser than
the physical ones) at a monthly time-step. From this product, the following variables were
downloaded:

• 3D chlorophyll (mg/m3);
• 3D net primary production (NPP) (mgC/m3);
• 3D oxygen (O2) (mmol/m3);
• 3D nitrate (NO3) (mmol/m3);
• 3D phosphate (PO4) (mmol/m3).

2.3.2. Comparison Procedure

The environmental data were spatially explicit and with monthly resolution, while
the biomass estimates were merged for the whole Moroccan fishing grounds (except
‘north’). Hence, in order to perform a correlation analysis, it was necessary to aggregate the
environmental information. A direct approach was selected; thus, the monthly mean value
for each variable integrated in the entire FAO fishing grounds (FAO 34.1.1 (Morocco Coast)
and 34.1.3 (Sahara Coastal)) was computed. Two different integration depths were also
tested: 50 m and 150 m, except for oxygen, was considered in the layer 100–200 m (thus
providing a subsurface estimate of oxygen concentration).

This aggregation provided the monthly time series in the whole fishing area for the
period 1993–2018 (the period covered by the stock estimates) for each integrated variable.
From that 312 data point series, the values for each month of the year were extracted,
creating 12 time series with 26 years (the first time series corresponded to all Januaries, the
second to all Februaries, etc).

Further, we also computed the time series for each variable corresponding to each
season, defined as: winter: December, January, and February; spring: March, April, and
May; summer: June, July, and August; and fall: September, October, and November. Each
one of those time series (monthly and seasonal) was compared with the biomass estimates
provided by the SPiCT model by computing the Pearson correlation values with Matlabr.

The correlation between biomass estimates and environment was also analyzed to
make use of the spatially explicit information provided by the hydrodynamic–biogeochemical
models and computing the correlation coefficient (R) for each grid cell of the model domain.

However, and before performing the analysis of the relationship between environmen-
tal variables and the biomass estimates, a spectral analysis of the biomass time series was
conducted in order to better understand its time dynamic and help assess the results of the
correlation analysis.

https://resources.marine.copernicus.eu/
https://resources.marine.copernicus.eu/
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Thus, Singular Spectrum Analysis (SSA, [35]) was applied to the 26 years of the
relative biomass estimates. This analysis separates the independent signals (in frequency)
that compose a given time series by isolating the different eigenvectors that compose the
low-frequency signals within (e.g., Macías et al., 2014).

3. Results
3.1. Model Results

The estimated relative biomass and its retrospective analysis with their corresponding
95% confidence intervals (CIs) and with different scenarios shown by different colors are
presented in Figures 3 and 4, respectively, while Figure 5 summarizes the test diagnostics
for checking residual assumption violations. The estimated relative biomass time series is
shown in Figure 3 (blue line). The Bt/BMSY time series showed three main peaks, the first
in 1995, the second in 2008, and the third, which was the highest, in 2017. This last peak
did not appear when running the model again removing the last year (red line in Figure 4),
but in general the trend was very consistent until 2014, considering that the changes in the
trend for recent years occurred due to the update of new information in the model.

The estimated relative quantity of stock biomass may have much less uncertainty
and bias, although the noticeable uncertainty values observed in the peaks may be related
to the lack of biomass index data in those peaks. In addition, the value of Mohn’s ρ for
this variable was below 0.2 (Mohn’s ρ = 0.18), in the range of an admissible retrospective
pattern [36]. Figure 5 shows that there were not important model assumption violations
except for the catch residuals, which were not normally distributed; this reflects some
deficiencies in the model to fit the catch data but does not invalidate the model results.

1990 1995 2000 2005 2010 2015 2020

0
1

2
3

4

Relative biomass

Time

B
t

B
M

S
Y

Jan
Apr
Jul
Oct

spict_v1.3.6@26da6b

Figure 3. Atlantic chub mackerel. Estimated relative biomass time series (blue line) and estimated
BMSY (black line). Data are shown using points colored by season; CI of Bt/BMSY estimates is
respresented using dashed blue region.
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Figure 4. Atlantic chub mackerel. Retrospective analysis for biomass relative to BMSY from SPiCT
assessment model. Different runs are shown by different colors of the same model.

1990 2005

9.
5

Catch

Time

lo
g 

ca
tc

h 
da

ta

2005 2015

18
.5

Index 1

Time

lo
g 

in
de

x 
1 

da
ta

2000 2010

11
.5

Index 2

Time

lo
g 

in
de

x 
2 

da
ta

1995 2005 2015

12
.5

Index 3

Time

lo
g 

in
de

x 
3 

da
ta

1990 2005

−
3

1

Bias p−val: 0.7847

Time

C
at

ch
 O

S
A

 r
es

id
ua

ls Jan
Apr
Jul
Oct

2005 2015

−
2.

0

Bias p−val: 0.5148

Time

In
de

x 
1 

O
S

A
 r

es
id

ua
ls

2000 2010

−
2

1

Bias p−val: 0.5206

Time

In
de

x 
2 

O
S

A
 r

es
id

ua
ls

1995 2005 2015

−
2

1

Bias p−val: 0.8774

Time

In
de

x 
3 

O
S

A
 r

es
id

ua
ls

0 1 2 3 4

−
0.

4
1.

0

Lag

C
at

ch
 A

C
F LBox p−val: 0.4063

0 1 2 3 4

−
0.

5
1.

0

Lag

In
de

x 
1 

A
C

F LBox p−val: 0.0797

lag.signf: 1

0 1 2 3 4

−
0.

5
1.

0

Lag

In
de

x 
2 

A
C

F LBox p−val: 0.406

0 1 2 3 4

−
0.

5

Lag

In
de

x 
3 

A
C

F LBox p−val: 0.5446

−2 0 1 2

−
3

1

Shapiro p−val: 0.0273

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

−2 −1 0 1 2

−
2.

0

Shapiro p−val: 0.7412

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

−2 −1 0 1 2

−
2

1

Shapiro p−val: 0.9473

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

−1.5 0.0 1.0

−
2

1

Shapiro p−val: 0.9991

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

spict_v1.2.8@d9ece0a31623f1a26d3cb4328499f16136822d14

Figure 5. Atlantic chub mackerel. Summary diagnostics for violation of SPiCT model assumptions.

3.2. Spectral Analysis of the Relative Biomass Time Series

The two most important signals in the relative biomass time series detected by the
SSA analysis were defined by eigenvectors 1 (first signal) and 2 and 3 (second signal) and
represented 83% of the total variability (Figure 6, lower panel). The graphical represen-
tation of both low frequency signals (Figure 6, upper panel) revealed that the first signal
(accounting for 46% of the variability) was a positive trend with no clear oscillations, while
the second signal (representing 36% of the variability) was a 16.5-year oscillation with
increasing amplitude (peaks in 1995, 2007, and 2017).
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Figure 6. Atlantic chub mackerel. SSA analysis of the relative biomass time series. Upper panel,
individual signals identified by the SSA analysis. Lower panel, original relative biomass series (red
Asterisk)) and the reconstructed pattern using the two main signals (blue line) representing 83 percent
of the total variability of the series (details in the text).

An important result of this analysis was the presence of the strong (46% of total
variability) trend in the relative biomass time series. This indicates that detrending the time
series for looking for correlations with the environmental variables (a common approach in
this type of analysis) should be avoided. Furthermore, the second major signal indicated
the presence of three high ‘peaks’ separated by two low ‘valleys’, even if the absolute values
at the first peak were not higher than those on the second valley. All these characteristics
of the biomass time series should, thus, be taken into consideration when performing the
correlation analysis further on.

3.3. Correlation Analysis Biomass Trend–Environment

The monthly time series of environmental variables computed as described in Section
2.3.1 were used to search for linear correlations (Pearson correlation) with the relative
biomass time series and to identify those statistically significant (p < 0.01), indicated with
bold values in Table 1. The 3D zonal and meridional velocity and phosphate variables were
not shown in the table, as these two variables were not correlated with the estimated trend
in the relative stock biomass in all seasons.

As derived from the table above, the following variables with significant correlations
and absolute R-values were selected for the analysis (marked in bold in the table):

• Mean 3D salinity (3D salt) in the upper 50 m (3D salt) in fall and winter (R∼−0.5);
• Mean integrated chlorophyll (chlo) in the upper 150 m in all seasons except winter

(R∼0.6);
• Mean integrated net primary production (NPP) in the upper 150 m in all seasons

except winter (R∼0.5);
• Subsurface oxygen concentration (Oxy) (100–200 m) in all seasons (R∼−0.8);
• Mean integrated nitrate (Nit) in the upper 150 m in all seasons (R∼0.7).
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Table 1. Pearson correlation R values (by vertical integration) between environmental variables and
Atlantic chub mackerel relative biomass time series. Bold numbers: significant correlation values
(p < 0.01).

Environmental Variables SST 3D Temp 3D Salt Chlo NPP Oxy Nit

For 50 m integration depth

Winter −0.0001 0.009 −0.6 0.43 0.43 −0.83 0.38

Spring −0.05 −0.10 −0.38 0.61 0.57 −0.80 0.45

Summer 0.26 0.17 −0.36 0.54 0.48 −0.65 0.43

Fall 0.31 0.22 −0.51 0.58 0.47 −0.73 0.43

For 150 m integration depth (except for oxygen with 100–200 m)

Winter −0.00014 −0.05 −0.49 0.36 0.34 −0.83 0.69

Spring −0.06 −0.08 −0.32 0.64 0.56 −0.80 0.68

Summer 0.27 0.06 −0.16 0.58 0.48 −0.65 0.56

Fall 0.31 −0.07 −0.42 0.64 0.44 −0.73 0.69

It is noteworthy to point out that the only non-biogeochemical variable with relation
to the biomass time series was the 3D mean salinity in the upper 50 m of the region. All
other considered physical variables showed non significant correlation values.

This first correlation analysis seemed to point out that larger biomass estimates were
typically linked with an enhanced strength of the upwelling in the region, i.e., lower salinity,
higher chlorophyll, higher net primary production, higher nutrients, and lower subsurface
oxygen.

The selected environmental variables (bold values in Table 1) are displayed along the
relative biomass time series in Figures 7–11 for the period 1993–2018.
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Figure 7. Atlantic chub mackerel. 3D salinity in fall (red line) and B/BMSY (black dots) for the period
1993–2018.
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Figure 8. Atlantic chub mackerel. Integrated chlorophyll (0–150 m) in fall (red line) and B/BMSY

(black dots) for the period 1993–2018.
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Figure 9. Atlantic chub mackerel. Mean integrated net primary production (0–150 m) in spring (red
line) and B/BMSY (black dots) for the period 1993–2018.
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Figure 10. Atlantic chub mackerel. Integrated subsurface (100–200 m) mean oxygen concentration in
fall (red line) and B/BMSY (black dots) for the period 1993–2018.

1933 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
4

6

8

In
te

g
 n

it

Integ nitrate & biomass

0

1

2

B
io

m
a

s
s

Figure 11. Atlantic chub mackerel. Integrated nitrate (0–150 m) in fall (red line) and B/BMSY (black
dots) for the period 1993–2018.

Of all the tested variables, the higher correlation values corresponded to the subsurface
oxygen and the integrated nitrate concentrations Figures 10 and 11. In both cases, high
(above 0.7) and significant correlations were found for all seasons (Table 1) and for all
individual months (not shown).

The spatial analysis of correlation between the biomass and environment is shown
in Figure 12. The maximum values (in absolute terms) of R for the different variables
were typically found in the region south of the Canary Islands and the nearby coastal
African areas.
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Figure 12. Atlantic chub mackerel. Spatially explicit analysis for the correlation between B/BMSY

and the selected environmental variables (with significant correlations and absolute R–values (see
Table 1)).

Alternatively, it is possible to determine which regions of the analyzed area presented
the larger anomalies for the years in which the biomass estimates predicted larger-than-
normal values. Figure 13 shows that the years with exceptionally large biomass estimates
(over the percentile 75) corresponded to 2008, 2015, 2016, and 2017.

Figure 14 shows the anomalies (computed with respect to the climatological value)
of the different environmental variables for those ‘high biomass’ years. This analysis
corroborates that those years with a particularly high biomass of c hub m ackerel in the
region correspond to years with enhanced strength of the upwelling (lower salinity, higher
chlorophyll, higher net primary production, higher nutrients, and lower oxygen), with the
most acute anomalies normally associated with the southern part of the studied area (as
already indicated by the spatially-explicit correlation analysis above).
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Figure 13. Atlantic chub mackerel. Boxplot of B/BMSY time series. The red line marks the median,
the blue lines the 75 percentile range, and the dotted line the interval of confidence.

Figure 14. Atlantic chub mackerel. Anomalies for the different environmental variables in years of
high B/BMSY time series values (2008, 2015, 2016, and 2017).
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4. Discussion
4.1. Methodological Considerations

The effect of the environmental variations on the distribution and abundance of chub
mackerel is an important issue that continues challenging scientists and fishery managers.
The main limitation on determining the relationships between the environment and popula-
tion dynamics is the short datasets that are generally available [37,38]. In addition, the stock
is also harvested in Morocco by artisanal fleets, which are characterized by a partial or total
lack of data on landings and effort; therefore, it is difficult to estimate the real importance of
artisanal fisheries in the stock analysis [24]. Given the unavailability of fishery-independent
information, a reliable estimate of the historical biomass series is not easily obtained. The
procedure presented here combined all the fishery and surveys data sets available in the
region to generate an abundance trend for chub mackerel. This trend could be the first step
in determining the main environmental factors influencing population dynamics.

This abundance time series was estimated using a SPiCT model, a model that has been
used for scientific advice in the ICES framework by providing trends (category 3 and 4
stocks [39]) but also by providing quantitative assessments (category 1 stocks [40]). One
of the main advantages of this model is that it is based on a continuous-time formulation
as opposed to fixed and constant time steps allowing incorporation of arbitrarily sampled
data [22,40]. It is therefore easier to fit this model to a mixture of annual, semiannual,
and quarterly data [41]. In addition, the model is fully stochastic in the sense that the
observational error is included in the catch and index observations, and the process error is
included in the fishery and stock dynamics [22].

The main output of the SPiCT model used in this study was the estimated time
series of relative biomass (Bt/BMSY), which is less sensitive to the choice of biomass
representative of the stock [22] and, in fact, is considered a robust estimator of population
dynamics [42]. The uncertainty in the relative biomass time series estimates was much
lower by assuming a Schaefer-type production curve. The consistency of the key model
outputs was evaluated performing a retrospective analysis (e.g., [33,43]) that resulted in an
acceptable Mohn’s rho value. Despite the model’s success in estimating stock abundance
by integrating all available data from different time series and data sources, it did not
include environmental variability. This unmodeled process variability was included as
a random error (process error) term in the biomass dynamic equation [22]. It has been
assumed that the environmental changes can affect both the carrying capacity and the rate
of stock production [44,45].

Many studies have identified possible assumptions that link environmental effects
to changes in stock abundance [46–48], Rincón et al. [49], so it should be required to
include environmental variability in fisheries’ management approaches [50]. However, it is
necessary to first understand the relationship between the environment and fluctuations in
stock biomass and to identify the specific factors that may impact stock abundance in order
to include these external factors in the fisheries’ management approaches [4].

4.2. Moroccan Chub Mackerel Fishery

In the central zone, chub mackerel is exploited by the Moroccan coastal purse seiners,
which mainly target sardine, making catches of chub mackerel in this area less variable [32].
In the southern zone of Morocco, this species is fished by Moroccan coastal purse seiners
as well as by Moroccan trawlers such as Refrigerated Sea Water (RSW), and the catches
have fluctuated over time due to the presence and absence of Russian and European
pelagic trawlers that continued to fish under the Morocco–Russia and Morocco–EU bilateral
fisheries agreements in certain years [23,32,51]. For most fisheries, changes in the time on
fishing gear, spatial distribution of the harvested fish population, and species targeting
will strongly determine apparent trends in population abundance [52]. The fishery–based
approach is not sufficient to indicate the stock status, suggesting that other unbiased
information should be added, which may also control stock dynamics [53]. A previous
study found that this information included a marginal 2% improvement in the success rate
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of describing population dynamics [52]. In our case, the fishing conditions have remained
more or less constant during the last five years; hence, the fluctuations in the population
should be driven by other factors.

The exploited stock of chub mackerel is harvested in the upwelling ecosystems of the
Atlantic coast of Morocco, which presents a high latitudinal and temporal variability inen
vironmental conditions. According to previous studies, in addition to exploitation, the
causes of large variations in the small and middle-sized pelagic fish biomass are related
to natural variability, mainly environmental changes [3,54]. However, factors that affect
recruitment of the small pelagic fishes might be substantially different from those affecting
the middle-sized ones [6].

4.3. Environmental Effect on Chub Mackerel Abundance Variability

This work identifies environmental factors related to the abundance of chub mackerel.
Among the environmental factors studied, salinity, chlorophyll concentration, net primary
production, oxygen concentration, and nitrate concentration were the main parameters
significantly correlated with the spatiotemporal variations of chub mackerel, which are
also factors linked to the upwelling intensity. Salinity showed a negative relationship
with the estimated relative biomass, which is consistent with chub mackerel behavior:
this species aggregations tend to be higher in shallower areas characterized by lower
salinity; the negative relationship appears to be related to the spawning success [55],
which suggests a link between salinity fluctuations and the stock spawning. This area
is characterized by a high spatial variability in primary productivity, which is mainly
due to strong and sustained coastal wind stress, resulting in offshore Ekman transport
and upwelling off nutrient- rich subsurface water [4]. It has been shown that primary
productivity partly controls the abundance levels of exploited small pelagic stocks [56],
which was confirmed by the strong linear relationship found between the net primary
production and the chub mackerel abundance. However, the feeding strategy of middle-
sized pelagic fish differs considerably from that of small pelagic [6]. Several studies have
identified appropriate habitat characteristics for spawning and larval growth of chub
mackerel with an increase in primary production [57,58]. The waters of the northwest
African coast contain high values of inorganic nutrients such as nitrate, which has a positive
effect on phytoplankton growth [59]; this may impact the abundance of zooplankton (large
copepods, mesozooplankton) in particular, which are major contributors to the diet of
middle pelagic fish and are constantly highly abundant [6] and may also indirectly impact
the chub mackerel biomass. Once phytoplankton cells die or are eaten and excreted by
zooplankton, the cells sink and are remineralized by bacteria. This process occurs in the
subsurface layer and reduces the concentration of dissolved oxygen, which is usually the
case in strong upwelling [7]. In our analysis, the dissolved oxygen concentration showed
a significant (p < 0.001) negative correlation with the estimated chub mackerel relative
biomass, a parameter that is related to the upwelling intensity, as explained above.

These correlation analysis results allowed us to propose that fluctuations in the envi-
ronment play a major role in the abundance of the chub mackerel stock, which showed that
the abundance of this harvested stock population continued to increase until 2017; then, a
slight decrease was observed in 2018, indicating that the evolution of this stock can follow
changes in the environmental factors mainly related to the upwelling intensity that also
changed during those years [60].

In our study region, the upwelling is an Ekman-type, where new nutrient inputs and
turbulence are related to wind speed [38]. Cury and Roy (1989) showed that small-fish
productivity can be sometimes positively and other times negatively correlated with the
upwelling intensity [7,61–64]. In an Ekman type of upwelling, the annual recruitment
increases with upwelling intensity until the wind speed attains a value of about 5–6 m.s-1
and declines for higher values of wind (strong upwelling), even if the primary production
increases [7]. This suggests that the relationship between recruitment variability and annual
upwelling indices are dome-shaped in Ekman- type upwellings and linear for non-Ekman-
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type upwellings [7,61]. This may explain the strong fluctuations observed in the estimated
stock abundance trend, despite the stability of the catches.

It has been hypothesized in Martins et al. (2013) that the Portugal–Cadiz waters
provide a nursery for a large population spawning north or more probably in Moroccan
waters, representing the core of both chub mackerel biomass and catches of the northwest
Atlantic [65]. This movement requires particular physical mechanisms to transport early life
stages from the spawning areas to the nursery habitat [66]. The size and age composition
of landings show the presence of an ascending size/age gradient from the Portugal–Cadiz
area to the Moroccan waters [66]. In the northern area of Morocco, the small sizes (juve-
niles/young adults) are dominant [67,68], and the same age and length stock distribution
was observed in the Portugal-Cadiz area. In contrast, most individuals landed in the
southern zone are large (in the range of 30cm) and older (6+ age) [65,67]. This confirms the
migration of juveniles and young adults individuals from the northern part of Morocco to
the south as they become older. Before each spawning season, chub mackerel grow and
accumulate energy during the wintering period. Wang et al. (2021) have reported that for
the chub mackerel stock in the northwest Pacific Ocean, the environmental conditions in
the wintering area have a strong impact on the chub mackerel abundance. In our case, we
can say that if the wintering area is the southern part of the study region, this confirms our
results of the spatial correlation analysis (Figure 12) showing that the high values of the
absolute R-values between the estimated abundance and environment were detected in
the southern region. In addition, the spatial distribution analysis of anomalies (Figure 14)
illustrates that the most acute anomalies of the environmental variables corresponding to
the years with strong upwelling intensity and therefore the highest stock biomass were
typically observed in the southern part of the study area, which may explain the increase
in catches reported especially in the south.

4.4. Summary

Based on our results, it can be said that the chub mackerel population in this study
area shows fluctuations due to the upwelling variability, where we were able to identify
the factors related to the upwelling intensity, which can influence the dynamics of this
stock. In the most common situation, environmental variability impacts the distribution of
fish, which may be associated with changes in the aggregation pattern and thus affects the
catches and availability of harvested stocks [9]. Therefore, stock assessment models need
to be adapted to consider both the fishery impact and the environmental effects [45]. A
similar relationship was tested for the white shrimp stock in Senegal using Fox and Freon
surplus production models including environmental effects (the upwelling intensity and
the primary production), to analyze the fluctuations of the stocks in a long time series [45].
Comparing the results, their simple model explained just 17.7% of the observed abundance
variance, and the model including the environmental effect of upwelling explained 64.9%
of this variance [45], showing the significant effect of environmental variability in the stock
assessment model results.

The results obtained during this work provided additional knowledge on the chub
mackerel population dynamics along the central and southern Atlantic coast of Morocco
using a new approach. To improve this approach, we are interested in developing a stock
assessment model (with an updated analysis using all the available information at that
time) using a mathematical relationship between the stock abundance and environmental
covariates. This mathematical relationship will be a tool to simulate scenarios on population
dynamics under different environmental conditions and will provide a significantly better
explanation of the variance observed for the stocks in which fishing effort alone is not a
sufficient parameter to analyze changes in the stock abundance time series.
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